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High-dimensional problems frequently arise in the pricing of derivative 
securities – for example, in pricing options on multiple underlying assets and 
in pricing term structure derivatives. American versions of these options, ie, 
where the owner has the right to exercise early, are particularly challenging to 
price. We introduce a stochastic mesh method for pricing high-dimensional 
American options when there is a finite, but possibly large, number of exercise 
dates. The algorithm provides point estimates and confidence intervals; we 
provide conditions under which these estimates converge to the correct values 
as the computational effort increases. Numerical results illustrate the perform-
ance of the method.

1 Introduction

Pricing a derivative security entails calculating the expected discounted value of 
its payoff. This reduces, in principle, to a problem of numerical integration; but in 
practice this calculation is often difficult for high-dimensional pricing problems. 
High-dimensionality arises in pricing options on multiple underlying assets and 
in pricing options in models that capture many sources of risk, such as stochastic 
volatility, interest rates and exchange rates.

Pricing high-dimensional options is further complicated for American versions 
of these securities, ie, where the owner has the right to exercise early. Although 
there are many techniques for pricing American options on a single underlying 
asset – including lattices, PDE methods, variational inequalities, and integral 
equation methods – when these techniques are generalized to handle multiple state 
variables, they require work that is exponential in the number of state variables. 
This work requirement renders these methods ineffective for more than about 
three or four state variables.
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A distinct advantage of Monte Carlo simulation is that its convergence rate 
is typically independent of the number of state variables. Another advantage is 
the ease with which it can handle a wide range of models and payoff structures. 
However, the traditionally prevailing view has been that simulation methods are 
not applicable to American-style pricing problems. The major obstacle is that 
simulation typically generates trajectories of state variables forward in time, 
while the determination of optimal exercise policies requires backward-style 
dynamic programming techniques. That view has changed as several hybrid 
simulation–dynamic programming methods for attacking these problems have 
been proposed.

Heuristic methods for applying simulation to American option pricing include 
Tilley (1993), Barraquand and Martineau (1995), Raymar and Zwecher (1997), 
and Andersen (2000), among many others. These are heuristic in the sense that 
little can be said about the relation between the values to which they converge and 
the desired option price, though they may provide good approximations in specific 
cases. Broadie and Glasserman (1997) develop a method with theoretical support 
based on simulated trees. Their method generates two estimators, a lower bound 
and an upper bound (ie, one biased low and one biased high1), with both estima-
tors convergent and asymptotically unbiased as the computational effort increases. 
A valid confidence interval for the true American price is obtained by taking the 
upper confidence limit from the “high” estimator and the lower confidence limit 
from the “low” estimator. The main drawback of this method is that the work is 
exponential in the number of exercise opportunities. A further discussion of these 
and other approaches is given in Boyle, Broadie, and Glasserman (1997) and in 
Glasserman (2004).

In this paper we introduce a stochastic mesh method for pricing high-dimen-
sional American options when there is a finite, but possibly large, number of 
exercise dates. The method provides lower and upper bounds and confidence 
intervals for the true price, and we give conditions under which it converges as the 
computational effort increases. The work of the algorithm is linear in the number 
of exercise opportunities and quadratic in the number of points in the mesh. It is 
also linear in the work required to simulate a single state transition.2 The linear, 
rather than exponential, dependence on the number of exercise dates is in marked 
contrast to the random tree method. The work requirement of the stochastic mesh 
method makes it viable for pricing high-dimensional American options.

Any method for pricing American options by simulation can be viewed 
as generating random approximations to the dynamic programming operator 

1 Throughout this paper, a lower bound in the simulation context means that the simulation 
estimator is biased low. In other words, E(X) ≤ Q, where the random variable X represents 
the simulation estimator and Q is the true American option price. Likewise, the simulation 
estimator X is an upper bound if E(X) ≥ Q, ie, if X is biased high.
2 The work required to simulate a state transition is often linear in the number of state vari-
ables but is potentially quadratic in, eg, simulating a discrete-time approximation to a sto-
chastic differential equation. The time required to generate the mesh paths is, in any case, a 
relatively small portion of the total time required by the method.
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that recursively determines the option value. The method of Barraquand and 
Martineau (1995) can be viewed as generating an approximation based solely on 
the evolution of the option’s intrinsic value. The approximating dynamic program 
implicit in Broadie and Glasserman (1997) assigns equal weight to each branch 
in a randomly sampled tree. Carrière (1996), Longstaff and Schwartz (2001), 
and Tsitsiklis and Van Roy (1999) combine simulation with regression on a set of 
basis functions to develop low-dimensional approximations to high-dimensional 
dynamic programs, in the same spirit as some deterministic numerical methods 
(see, eg, Judd, 1998). As explained in Section 8.6.2 of Glasserman (2004), those 
methods are related to the stochastic mesh introduced here and correspond to 
an implicit choice of mesh weights. The stochastic mesh method and a random 
successive approximation method proposed and analyzed by Rust (1997) both 
approximate the dynamic programming operator using values of the transition 
density of the underlying process, but the methods differ in the way they use these 
values and in the scope of problems to which they apply. Subsequent work on the 
mesh method introduced here includes Avramidis and Hyden (1999), Avramidis 
and Matzinger (2004), Avramidis et al (2000), Boyle, Kolkiewicz, and Tan (2000, 
2002), Broadie, Glasserman, and Ha (2000), and Broadie, Glasserman, and Jain 
(1997).

An interesting new line of research on the pricing of American options by 
simulation is the development of dual formulations by Haugh and Kogan (2004), 
Jamshidian (2003), and Rogers (2002). These provide a framework for calcu-
lating tight upper bounds on American option prices. Andersen and Broadie 
(2004) present a practical way of computing these bounds. They also show how 
to combine a lower bound computed from a heuristic or other method with an 
upper bound extracted from the same method through the dual formulation. This 
combination provides an interval estimate for the true price, in the same spirit 
as the interval estimates in Broadie and Glasserman (1997) and in this paper. 
Glasserman (2004, pp. 477–8), notes a connection between the upper bounds 
computed through duality and those developed through approximate dynamic 
programming, as in this paper.

The next section gives a description and theoretical analysis of the basic sto-
chastic mesh method. This, however, is just the starting point, as it leaves open 
several questions of implementation. Section 3 develops a specific method based 
on a particularly effective choice of mesh density. Section 4 develops several 
enhancements that are crucial in practice to obtaining accurate price estimates in 
reasonable computing time. Computational results are given in Section 5. Proofs 
are given in the Appendix.

2 The stochastic mesh method

The stochastic mesh method is designed to solve a general optimal stopping 
problem, of which the American option pricing problem with discrete exercise 
opportunities is a special case. Let St = (St

1, … , St
n) be a vector-valued Markov 

process on R n with fixed initial state S0 and discrete time parameter t = 0, 1, … ,  T. 
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The problem is to compute

(1)Q E h S=  max ( , )
τ ττ

where τ is a stopping time taking values in the finite set {0, 1, … ,  T}, and h(t,  x) ≥ 0 
is interpreted as a payoff from exercise at time t in state x.3 More generally, the 
value starting at time t in state x is

(2)Q t x h t x E Q t S S xt t( , ) max ( , ), ( , )= + = ( )+1 1

for t < T and Q(T, x) = h(T, x). We are interested in computing Q ≡ Q(0, S0). In an 
important special case, the vector of state variables St is governed by risk-neutral 
probabilities and h(t, x) gives the payoff in state x at time t, discounted to time 0, 
with the possibly stochastic discount factor recorded in St. More generally, h could 
give the payoff in units of an arbitrary numeraire asset contained in the vector of 
state variables with the law of the state variables adjusted accordingly.

Examples: For illustration, we give a few selected examples of payoff func-
tions on multiple assets. For a basket call option, the payoff function is 
h(t, St) = (a1St

1 + … + anSt
n – K)+ for given constants a1, … , an and strike K.4 For 

a quanto spread option, h(t, St) = St
1(a2St

2 – a3St
3 – K)+, where St

1 represents an 
exchange rate or another random quantity adjustment. For a spread option on 
two baskets, h(t, St) = (a1St

1 + a2St
2 – (a3St

3 + a4St
4) – K)+. As a final example, 

h(t, St) = (max(a1St
1, … , anSt

n) – K)+ for a max-option (also called an outperform-
ance option). If the St

i are prices of discount bonds of various maturities (in, eg, a 
Gaussian model of interest rates), then the payoff given above for a basket option 
becomes the payoff of an option on a coupon-paying bond.

The stochastic mesh method begins by generating random vectors Xt(i) for 
i = 1, … , b and t = 1, … , T. Methods for generating the stochastic mesh Xt(i) will 
be described shortly. Since S0 is given, we set X0(1) = S0. The mesh estimator is 
defined inductively by setting

(3)ˆ( , ( )) ( , ( ))Q T X i h T X iT T=

for i = 1, … , b. For times t = T – 1, … , 0 and i = 1, … , b, the mesh estimator is

(4)ˆ( , ( )) max ( , ( )), ˆ , ( )Q t X i h t X i
b

Q t X jt t t= +( )+
1

1 1 ww t X i X jt t
j

b

, ( ), ( )+
=

( )










∑ 1

1

3 See, eg, Karatzas (1988) for a justification of American option values as solutions to opti-
mal stopping problems. Some authors restrict the term “American” to continuously exercis-
able securities and use the term “Bermudan” for securities that can be exercised on a finite 
number of dates. We consider only the latter, in some cases viewing it as an approximation 
to the former.
4 The notation x+ is short for max(x, 0).
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where w(t, Xt(i), Xt + 1(j)) is a weight attached to the arc joining Xt(i) to Xt + 1(j), 
which will be defined in a moment. We use the notation Q̂(t, Xt(i)) to indicate the 
algorithm’s estimate of the true American price Q(t, Xt(i)). At time t = 0 only i = 1 
is applicable in equation (4) and Q̂  ≡ Q̂ (0, S0) is the final mesh estimator of the 
true price Q. Illustrations of the mesh are given in Figure 1 for n = 1, T = 4, and 
b = 4 and in Figure 2 for n = 2, T = 2, and b = 3.

FIGURE 1 Mesh illustrated for n = 1, T = 4, and b = 4.
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A generic node in the mesh is denoted Xt(i ); a generic arc from one node to another has 
weight w (t, Xt(i ), Xt + 1(k)).

FIGURE 2 Mesh illustrated for n = 2, T = 2, and b = 3.

The arcs illustrate the calculation of the weighted average in (4).
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In order to complete the description of the algorithm, we need to specify the 
details of how the random vectors are generated and how the weights on the arcs 
are determined. Suppose that conditional on St = x, St + 1 has density f (t, x, ·) 
and let f (t, ·) denote the marginal density of St (with S0 fixed). In the simplest 
implementation, for t = 1, … , T, the vectors Xt(i), i = 1, … , b, are generated as inde-
pendent and identically distributed samples from some density function g(t, ·). We 
require g(t, u) > 0 if f (t – 1, x, u) > 0 for some x. The choices for the mesh density 
functions g(t, ·) for t = 1, … , T are crucial to the practical success of the method. 
A seemingly natural choice is to set the mesh density functions to the marginal 
density functions, ie, to set g(t, u) = f (t, u) for t = 1, … , T. As shown in the next 
section, this choice can lead to estimators whose variance grows exponentially 
with the number of exercise opportunities. Another choice for the mesh density 
functions which avoids this problem is described in the next section.

In order to motivate the weights on the arcs, recall that the American option 
value at time t in state St = x is

Q t x h t x E Q t S S xt t( , ) max ( , ), ( , )= + = ( )+1 1

We need to approximate Q(t, x) at all points x = Xt(1), … , Xt(b) using the 
available information from the mesh, ie, using Q̂(t + 1, Xt + 1( j )) for j = 1, … , b. 
To do this, we need to estimate all of the quantities E [Q(t + 1, St + 1) | St = Xt(i)], 
i = 1, … , b, using the same information Q̂(t + 1, Xt + 1( j )), j = 1, … , b. The main 
difficulty is that the density of St + 1 given St = x is f (t, x, ·) while the mesh points 
Xt + 1( j), j = 1, … , b, were generated from the density function g(t + 1, ·). However, 
observe that

(5)

E Q t S S x Q t u f t x u u

Q

t t( , ) ( , ) ( , , )

(

+ =  ≡ +

=

+ ∫1 11 d

tt u
f t x u

g t u
g t u u

E Q t X

+
+

+

≡ +

∫ 1
1

1

1

, )
( , , )

( , )
( , )

( ,

d

tt
t

t

j
f t x X j

g t X j+
+

++








1

1

11
( ))

( , , ( ))

( , ( ))

The final expression allows us to approximate the expectations E[Q(t + 1, St + 1) | 
St = Xt(i)] for i = 1, … , b, even though the points Xt + 1( j) for j = 1, … , b were gener-
ated according to the density g(t + 1, ·) and not according to f (t, Xt(i), ·). Define

(6)ˆ( , ) max ( , ), ˆ( , ( )) ( , ,Q t x h t x
b

Q t X j w t x Xt t= + +
1

1 1 ++
=

∑










1

1

( ))j
j

b

where w(t, x, Xt + 1( j)) = f (t, x, Xt + 1( j)) ⁄g(t + 1, Xt + 1( j)). The mesh estimator 
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approximates Q(t, Xt(i)) by Q̂(t, Xt(i)).
5

The computational effort in generating the mesh is proportional to b × T. The 
effort in the recursive pricing of equation (6) is proportional to b2 × T. Hence the 
overall effort is quadratic in the mesh parameter (b) and linear in the number of 
exercise opportunities (T + 1).

We make the dependence of Q̂ (0, S0) on b explicit by denoting the mesh esti-
mator Q̂b(0, S0). For any b ≥ 1, the mesh estimator is an upper bound on the true 
price, ie, the bias of the mesh estimator is always positive:

THEOREM 1 (Mesh estimator bias) The mesh estimator Q̂b(0, S0) is biased high, 
ie,

E Q S Q Sb
ˆ ( , ) ( , )0 00 0

  ≥

for all b.

Theorem 1 can be proved using Jensen’s inequality (in particular, E[max(a, Y)] 
≥ max(a, E[Y])) and an induction argument. Details are given in the Appendix.

In order to state the convergence result for the mesh estimator, we give some 
additional notation and assumptions. For t = 1, … , T and k = 0, 1, … , T – t define

(7)R t t k
f t i X X

g t i X
t i t i

t

( , )
, ( ), ( )

,
+ =

+( )
+ +

+ + +

+

1 1

1
1

iii

k

t kh t k X
+=

−

+( )












+( )∏
10

1

1
1

( )
, ( )

(where ∏–1
i = 0 ≡ 1). We require three moment assumptions, stated below for some 

constants r > p > 1.

ASSUMPTION 1

E
g t S

f t S
h t S

t

t
t

r( , )

( , )
,

1

1
2

1

1
2









 ( )













< ∞

for all t2 = t1, … , T.

ASSUMPTION 2

E R t tr
1 2,( )  < ∞

for all t2 = t1, … , T.

5 This choice of weights assumes that the transition density f of the underlying state variables 
is known or can be evaluated numerically. In practice, complicated diffusions are usually 
simulated using an Euler discretization (as described in, eg, Kloeden and Platen, 1999) with 
simpler transition densities approximating the true transition densities, and these can be used 
in the mesh. An alternative strategy for selecting weights that avoids densities entirely is 
proposed in Broadie, Glasserman, and Ha (2000).
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ASSUMPTION 3

(8)E
f t x X

g t X
t

t

q
( , , ( ))

( , ( ))
+

++

















1

1

1

1 1 
< ∞

for all x and t = 0, 1, … , T – 1, for all q ≥ 1.

Assumptions 1–3 are usually difficult to verify in specific cases. But as they 
impose conditions solely on moments of payoffs, weights, and likelihood ratios, 
they do not appear unreasonable from a practical perspective.

Write || · ||p for the p-norm E[(·)p]1 ⁄p of a random variable. Convergence of the 
mesh estimator is given by:

THEOREM 2 (Mesh estimator convergence) Let r > p > 1. Under assumptions 
1–3,

ˆ ( , ) ( , )Q t x Q t xb − → 0

as b → ∞, for all x and t.

Convergence in p-norm implies Q̂b(0, S0) converges to Q(0, S0) in probability and 
thus Q̂b(0, S0) is a consistent estimator of the option value. A consequence of this 
result is that

E Q S Q Sb
ˆ ( , ) ( , )0 00 0

  →

as b → ∞, so the mesh estimator is asymptotically unbiased.

2.1 Path estimator

Next we develop an estimator based on simulated paths which is biased low. By 
combining the high-biased mesh estimator with a low-biased path estimator, we 
can generate a valid confidence interval for the American option price. The path 
estimator is defined by simulating a trajectory of the underlying process St until 
the exercise region determined by the mesh is reached. Denote the simulated 
path by S = (S0, S1, … , ST). The path S is simulated (independent of the mesh 
points Xt(i)) according to the density function of the process St , ie, the density 
of the simulated point St + 1 given St = x is f(t, x, ·). Along this path, the optimal 
policy exercises at τ*(S) = min{t: h(t, St) ≥ Q(t, St)} for a payoff of h(τ*, Sτ*). The 
approximate optimal policy determined by the mesh exercises at

(9)ˆ ( ) min : ( , ) ˆ( , )τ S t h t S Q t St t= ≥{ }
where Q̂(t, St) is given in equation (6). Define the path estimator by

(10)ˆ ˆ, ˆq h S= ( )τ τ

An illustration of the path estimator is given in Figure 3.
We make the dependence of q̂ on b explicit by denoting the mesh policy τ̂b 
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and the path estimator q̂b = q̂b(τ̂b). Since the stopping time τ̂b defined in (9) is not 
necessarily an optimal stopping time, an immediate consequence is that the path 
estimator is a lower bound on the true price:

THEOREM 3 (Path estimator bias) The path estimator q̂b is biased low, ie,

E q Q Sb̂ ,  ≤ ( )0 0

for all b.

Convergence of the path estimator is given by:

THEOREM 4 (Path estimator convergence) Suppose the conditions in Theorem 2 
are in effect and that E[h(t, St)

1 + ε] < ∞ for all t = 1, … , T, for some ε > 0. Suppose 
also that P(h(t, St) = Q(t, St)) = 0 for all t = 0, 1, … , T – 1. Then

E q Q Sb̂ ,  → ( )0 0

as b → ∞, ie, q̂b is asymptotically unbiased.

Equation (9) shows that the mesh estimator must be computed before the path 
estimator. Once the mesh estimator has been computed, the additional effort to 
generate the path estimator is proportional to n × b × T. In our numerical imple-
mentation, we average the results from np independent paths to give the final path 

FIGURE 3 Path estimator illustrated for n = 2, T = 2, and b = 5.
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Each mesh point is labeled with an ‘x.’ The simulated path S = (S0, S1, S2) is shown with 
dashed arrows. The solid arrows illustrate the points used in the computation of Q̂(t, St ). 
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estimator for each mesh. For the path and mesh estimators to have comparable 
variances, we take np proportional to b. Hence, the overall work associated with 
the path estimator is proportional to n × b2 × T, the same as the mesh estimator.

2.2 Interval estimation

In order to give a confidence interval for the option price Q, generate N independ-
ent meshes with corresponding mesh estimates Q̂(i) = Q̂b

(i)(0, S0), i = 1, … , N, and 
then combine them to give

Q N
N

Q i

i

N

( ) ˆ ( )=
=
∑1

1

For each mesh i, i = 1, … , N, generate np independent paths and corresponding 
path estimates. Average these individual estimates to give the path estimates 
q̂ (i) = q̂b

(i)(0, S0), i = 1, … , N.6 These N path estimates, each based on np paths, are 
combined to give

q N
N

q i

i

N

( ) ˆ ( )=
=
∑1

1

With Q̄(N) and q̄(N) replacing Q̂b and q̂b, respectively, Theorems 1–4 hold for any 
N ≥ 1. Finally, form the confidence interval

(11)q N z
s q

N
Q N z

s Q

N
( )

( ˆ )
, ( )

( ˆ)
− +













α α2 2

where zα ⁄ 2 is the 1 – α ⁄ 2 quantile of the standard normal distribution, and s(q̂) 
and s(Q̂) are the sample standard deviations of q̂ and Q̂, respectively.7 Theorems 1 
and 3 show that taking the lower confidence limit from the path estimator together 
with the upper confidence limit from the mesh estimator as indicated in (11) yields 
a valid 100(1 – α)% confidence interval for Q. In fact, the expected coverage of 
the interval will exceed the nominal coverage of (1 – α), depending on the extent 
of the bias in the estimators, ie, the interval in (11) is conservative.

3 Selection of the mesh density

As described in the previous section, the stochastic mesh method leaves a lot of 
latitude in implementation. For the method to be practically viable, it is essential 
to exploit efficiencies in the computation of the estimators wherever possible. This 

6 It is convenient, though not necessary, for np to be a constant independent of the mesh. 
Likewise, it is convenient to have the same number of mesh and path estimates.
7 This implicitly assumes that the estimators have finite second moments. Increasing the 
exponents in Assumptions 1–3 by one more than suffices to ensure this for Q̂ ; requiring 
E[h2(t, St)] < ∞ for all t ensures it for q̂.
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requires, in particular, careful choice of the density used to generate the mesh. It 
also motivates the use of control variates, a topic discussed in the next section.

In order to illustrate the impact that the mesh density function can have on the 
mesh estimator variance, consider pricing a European option on the stochastic 
mesh. Since early exercise is not allowed, the mesh estimator of the European 
option price from equation (6) simplifies to

ˆ , ( ) ˆ , ( )
, ( ),

Q t X i
b

Q t X j
f t X i

t
j

b

t
t( ) = +( )

=
+∑1

1
1

1

XX j

g t X j
t

t

+

+

( )
+( )

1

11

( )

, ( )

with Q̂(T, XT (i)) = h(T, XT (i)) as before. For ease of notation, we consider the case 
T = 3 and see that Q̂(0, S0) can be written as

(12)

1 0

1
10 1 1

1 11
1 1

1
b

f S X j

g X j
Q X j

j

b , , ( )

, ( )
ˆ , ( )

( )
( )=

∑ (( )

=
( )

( )=
∑1 0

1

1 10 1 1

1 111
b

f S X j

g X j b

f X

j

b , , ( )

, ( )

, 11 1 2 2

2 21
2 22

2

2

( ), ( )

, ( )
ˆ , ( )

j X j

g X j
Q X j

j

b ( )
( ) (

=
∑ ))















=
( )
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The last equality shows that the mesh estimator is simply a linear combination 
of the terminal payoffs. Generalizing the previous expression for arbitrary T and 
simplifying, the mesh estimator of the European value can be written as Q̂ (0, S0) 
= (1 ⁄b)∑b

jT = 1h(T, XT (jT))L(T, jT), where the coefficients L(T, jT) are given by

(13)L T j
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with the convention X0(j0) ≡ S0. Thus the likelihood ratio L(T, jT) can be inter-
preted as the weight associated with the jT th terminal point in the mesh.

It is natural to expect that the main contribution to the variance of the estimator 
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Q̂ (0, S0) comes from the likelihood ratio multiplying the payoff function, rather 
than the payoff function itself. We therefore analyze the variance of L(T, j) (for 
fixed b > 1). Because the points in the mesh at each time slice are identically dis-
tributed, L(T, j), j = 1, … , b, are identically distributed, though not independent. To 
simplify notation, we write L(T) for L(T, 1) (or any other L(T, j) with fixed j). For 
all T, E[L(T)] = 1. However, we will now argue that the variance of each L(T, j) 
often grows exponentially in T.
Observe that
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for all x. Unless f(t, x, Xt + 1( j)) = g(t + 1, Xt + 1( j)) with probability 1, the strict 
form of Jensen’s inequality gives
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An additional condition that we now impose is that this strict inequality hold 
uniformly in x and t. We also require that likelihood ratios involving the same 
mesh point Xt + 1(1) at time t + 1 but different mesh points at time t be positively 
correlated.

PROPOSITION 1 (Variance build-up) Suppose that b > 1, that
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for all t, x, and y. Then there is an a > 0 and λ > 1 (both possibly depending on 
b) for which

(16)var ( )L t a t+  ≥1 λ

for all sufficiently large t.

Remark: Replacing the lower bound in the proposition with aλt – 1 makes the 
inequality valid for all t.
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Whether or not the conditions of this proposition hold may be difficult to 
determine for specific choices of g. However, the importance of the result lies 
in showing that if the mesh density is not chosen carefully there is a risk of an 
exponential growth in variance. The average density method defined below is 
significant because it eliminates this risk. Indeed, it reduces the potentially expo-
nential variance of the L(T, j) to zero!

As noted above, Proposition 1 suggests that for the stochastic mesh to be prac-
tically viable, the distributions used to sample the mesh points must be chosen 
carefully to avoid exponential growth in variance. Fortunately, by inspecting 
equation (12) or (13), we see that the coefficients L(T, j), j = 1, … , b, will be con-
stant (and equal to one) if we choose

(17)g t u f S u t( , ) ( , , )= =0 10 for

and

(18)g t u
b

f t X j u tt
j

b

( , ) , ( ), ,= −( ) =−
=

∑1
1 21

1

for ……,T

We refer to the mesh density functions in equations (17) and (18) as the average 
density functions. A mesh generated with the average density function has the 
attractive feature that the estimate it provides of the European value of an option 
is simply the average of the terminal payoffs:

PROPOSITION 2 Using the average density function, each L(T, j) is identically 
equal to 1. Consequently, the mesh estimate of a European option price is

1

1
b

h T X jT
i

b

, ( )( )
=
∑

and each XT ( j) has the distribution of ST.

Taken together, Propositions 1 and 2 show that judicious choice of mesh density 
can have an enormous impact on the performance of the method.

Using the average density method to generate the mesh can be interpreted in 
the following way. Suppose that from each of the mesh nodes Xt – 1( j), j = 1, … , b, 
we generate exactly one successor Xt( j) from the underlying transition den-
sity f(t – 1, Xt – 1(j), ·). If we then draw a value randomly and uniformly from 
{Xt(1), … , Xt(b)}, the value drawn is distributed according to the average density 
g(t, ·) in (18), conditional on {Xt – 1(1), … , Xt – 1(b)}. Using the average density is 
thus equivalent to generating b independent paths of the underlying and then “for-
getting” which nodes were on which paths.

Taking this observation one step further leads to the following implementation: 
simulate b independent paths (X0(i), … , XT(i)), i = 1, … , b, as in an ordinary simu-
lation and then apply the weight
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to the transition from Xt – 1(i) on the i th path to Xt( j) on the j th path. These weights 
define the mesh; recall equation (6). Since this construction generates exactly one 
successor from each of the b transition densities f (t – 1, Xt – 1(i), ·), i = 1, … , b, it 
may be viewed as a stratified implementation of the average mesh density. This is 
the construction we use in our numerical experiments.

The idea of simulating independent paths and then interconnecting them with 
weights in order to apply dynamic programming is also implicit in the methods of 
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (1999); their weights 
are produced implicitly by a least-squares procedure. Thus, although arrived at by 
a different argument, those methods may be viewed as stochastic mesh methods 
with different choices for weights.

4 Algorithm enhancements

This section describes enhancements to the basic mesh algorithm that can sub-
stantially improve its efficiency. We first explain the use of control variates with 
the mesh estimate and then enhancements to the path estimator.

4.1 Control variates with the mesh estimator

We detail two applications of control variates for improving the mesh estimator. In 
the first application, control variates are used to improve the estimates Q̂(t, Xt(i)) 
of the option value at each mesh point. These are called the inner controls, because 
they are applied within each mesh. We also use control variates to improve the 
mesh estimates Q̄(N). These are called the outer controls because they are applied 
after the N individual mesh estimates at time t = 0 in state S0 are computed.

We begin by describing the inner controls. From equation (6), the mesh esti-
mate Q̂(t, Xt(i)) depends on the continuation value

C(t, i) ≡ E[Q(t + 1, St + 1) | St = Xt(i)]
which is estimated by

1
1 1 1

1
b

Q t X j w t X i X jt t t
j

b
ˆ , ( ) , ( ), ( )+( ) ( )+ +

=
∑

Suppose that there is a known formula for v = E[v(t + 1, St + 1) | St = Xt(i)] or 
that an accurate numerical estimate of v can be obtained very quickly. For 
example, v could represent the expected future value of the first underlying asset, 
E[S1

t + 1 | St = Xt(i)], or it could represent the value of the related European option, 
E[h(t + 1, St + 1) | St = Xt(i)]. We can also construct the mesh estimate of v:
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By the argument leading to equation (5), it follows that E[v̂] = v. Information 
about the known error, v̂ – v, can be used to reduce the unknown error in the esti-
mate of the continuation value. However, the presence of the weights complicates 
the procedure. We use the controlled estimator of the continuation value C(t, i) 
defined by

(19)
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where the notation w(t, i, j) is short for w(t, Xt(i), Xt + 1(j)). This expres-
sion can be explained in several ways. First, note that the term in the 
numerator, ∑b

j = 1v(t + 1, Xt + 1(j)) w(t, i, j) ⁄b – v∑b
j = 1w(t, i, j) ⁄ b has expectation 

zero. If β is positive, then the estimate of the continuation value will be decreased if 
∑b

j = 1v (t + 1, Xt + 1(j)) w(t, i, j) ⁄ b > v∑b
j = 1w(t, i, j) ⁄ b, and will be increased other-

wise. Second, the denominator has expectation one, and if the average of the 
weights, ∑b

j = 1w(t, i, j) ⁄b, is greater than one, the estimate of the continuation 
value will be deflated by this amount (or inflated by the corresponding amount if 
the average is less than one). Thus, the denominator in (19) also acts like a control 
variable. We choose β to solve the weighted least-squares problem:

min ( , , ) ˆ , ( )
,α β

α β1

1
11

b
j

b

tw t i j Q t X j v t
=

+∑ +( ) − + + 11 1

2
, ( )X jt+( )( ) 

With this choice for β, it can be shown that the controlled estimator in (19) simpli-
fies to α + βv.8

8 In contrast, consider the usual (unweighted) control variate procedure. Suppose we want 
to estimate E(Y) and we know that the random variable X has expectation x. Given a sample 
(Xj, Yj), j = 1,…, b, the usual procedure is to form the controlled estimator
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In this case, the controlled estimator simplifies to α + βx. The effectiveness of this pro-
cedure depends on the correlation of X and Y. In the case with weights above, we could 
follow the usual procedure with the identification Xj = Q̂(t + 1, Xt + 1( j ))w(t, i, j ) and Yj = 
v(t + 1, Xt + 1( j ))w(t, Xt(i ), Xt + 1( j )). However, the effectiveness of the procedure depends on 
the correlation of the weighted products Q̂(t + 1, Xt + 1( j ))w(t, i, j ) and v(t + 1, Xt + 1( j )) × 
w(t, Xt(i ), Xt + 1( j )). It is usually easier to find a control v(t + 1, Xt + 1( j )) that is correlated 
with Q̂(t + 1, Xt + 1( j )), and that is the reason for the procedure described in the text.
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The outer controls are fairly standard. We use N independent meshes to gen-
erate estimates Q̂ (i), i = 1, … , N, of the option price, Q = Q(0, S0). Suppose that 
quantity u = u(0, S0) is known in closed form or can be quickly computed. For 
example, u might represent the European option value E[h(T, ST)]. We then use 
each mesh to generate unbiased estimates û (i), i = 1, … , N, of u, using, for example, 
equation (12) or (13). Then we form the controlled estimator of Q:

(20)
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Sometimes it will be useful to use multiple controls, u1, … , uK, giving the analo-
gous controlled estimator:
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The coefficients βk can be estimated by solving a least-squares problem or the 
equivalent multiple linear regression problem.

4.2 Path estimator enhancements

We briefly describe three techniques that can be used to improve the path esti-
mator: (i) control variates, (ii) antithetics, and (iii) policy fixing. In determining 
whether to stop or continue, the path estimator compares the exercise value h(t, St) 
with the estimated continuation value Q̂ (t, St). The latter estimate can be improved 
using inner controls exactly as described for the mesh estimator. Similarly, outer 
controls can be used to improve the np independent path estimates in each mesh. 
However, since the path estimator stops at a random time, we use controls that stop 
at the same random time. The controlled path estimator is given by equation (20) 
or (21), with Q̂ (i) replaced by q̂ (i).

The use of antithetic variates with the path estimator is fairly standard. 
For each simulated path S = (S0, S1, … , ST) we also generate an antithetic path 
S′ = (S0′, S1′, … , ST′). For example, if the original path is driven by standard nor-
mal increments, then the antithetic path is driven by the negative of the normal 
increments. The two option estimates, which in general involve different stopping 
times, are then averaged to give the path estimate. When controls are used, they 
are computed in the same way for the antithetic paths. More detailed discussion of 
the antithetic technique is given in Boyle, Broadie, and Glasserman (1997).

The path estimator stops at the first time at which the exercise value equals 
or exceeds the estimated continuation value, ie, when h(t, St) ≥ Q̂ (t, St). Bias is 
introduced whenever the estimator stops earlier or later than is optimal. Suppose 
that we have an easily computed lower bound P–(t, St) on the option price Q(t, St), 
ie, Q(t, St) ≥ P–(t, St). Then, if P–(t, St) > h(t, St) it must be that the optimal deci-
sion is to continue. In this case there is no need to even compute Q̂ (t, St). This 
saves computation time and reduces bias, since there is some possibility that 
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h(t, St) ≥ Q̂(t, St) and the original path estimator would stop when it is not optimal 
to do so. We call this enhancement policy fixing, since it uses the lower bound 
P–(t, St) to set the exercise policy where possible.9

5 Computational results

In this section we first give numerical examples to illustrate the degree of variance 
reduction possible with the estimator enhancements described in the previous sec-
tion. Then we test the stochastic mesh method on two types of high-dimensional 
options. These numerical results illustrate the bias and convergence results of 
Theorems 1–4, illustrate the convergence rate of the method, and also demonstrate 
the practical viability of the method.

5.1 Comparison of mesh estimator variance with two mesh density 
functions

We illustrate that the theoretical variance build-up described in Proposition 1 has 
severe practical implications. We examine the impact of the two different choices 
for the mesh density functions in a particular example. We compare the marginal 
density functions (ie, g(t, u) = f(t, u), for t = 1, … , T) with the average density 
functions (given in equations (17) and (18)). For simplicity, consider pricing a 
European call option on a single asset under the usual Black–Scholes assumptions. 
That is, the risk-neutral process for the underlying asset St satisfies

(22)d d dS S r t zt t t= − + ( )δ σ

where zt is a standard Brownian motion process, r is the riskless interest rate, δ 
is the dividend rate, and σ > 0 is the volatility parameter. Under the risk-neutral 
measure, ln(Sti ⁄Sti–1) is normally distributed with mean (r – δ – σ2 ⁄ 2)(ti – ti –1) 
and variance σ2(ti – ti–1). In the example, we set r = 3%, δ = 10%, σ = 30%, and 
S0 = 100.10 The call option payoff is h(T, ST) = (ST – K)+. With K = 100 and an 
expiration of three years, the European option value is 0.777.

In order to keep the European option value constant, in Table 1 we fix the 
maturity of the option at three years while increasing the number of exer-
cise opportunities, denoted by d in the table.11 Consistent with the insights of 
Propositions 1 and 2, Table 1 shows that the difference between the two choices 

9 We could also use policy fixing to determine when to stop. For example, suppose that 
we have an easily computed upper bound P– (t, St) on the option price Q(t, St), ie, Q(t, St) ≤ 
P– (t, St). Then if P– (t, St) < h(t, St) it must be that the optimal decision is to stop. Again, this 
eliminates the need to compute Q̂(t, St) and it reduces bias as well. However, in most of our 
applications, it seems to be difficult to determine easily computed and relatively tight upper 
bounds on the option price. A similar policy fixing idea could be applied to the mesh estima-
tor as well.
10 A large dividend rate could arise with foreign currency options, where r represents the 
domestic interest rate and δ the foreign interest rate.
11 Similar results are obtained if we let both the number of time steps and the maturity 
increase, as in Proposition 1.
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of mesh density functions can be enormous. For the European case, the variance 
of the mesh estimator with the marginal density function is too large for practi-
cal computations with d as small as four. The variance with the average density 
function is independent of d (the only contribution is from the variance of the 
payoff function). In the American case, we allow exercise at each of the time 
steps iTmat ⁄d, i = 0, … , d, with Tmat = 3 years. The variance in the American case 
is greater for both mesh density functions. However, the growth in variance with 
the average density function is slow enough to be practical for large values of d. 
In all of the numerical results that follow, we use the average density function as 
the mesh density function.

5.2 Comparison of mesh estimator variance with various inner and 
outer controls

Control variates can be a powerful tool for reducing estimator variance, but the 
choice of good control variates is an art – the best choices are problem specific. 
In order to illustrate the type of process one might follow, we pick a particular 
example and examine several choices for inner and outer controls. We consider 
pricing an American call option on the maximum of five assets under the usual 
Black–Scholes assumptions. The payoff upon exercise of this max-option is 
h(t, St) = (max(St

1, … , St
5) – K)+. Under the risk-neutral measure asset prices are 

assumed to follow correlated geometric Brownian motion processes, ie,

(23)d d dS S r t zt
i

t
i

i i t
i= − + ( )δ σ

where zt
i is a standard Brownian motion process and the instantaneous correlation 

of zi and z j is ρij. For simplicity, in our numerical results we take δi = δ and ρij = ρ 

TABLE 1 Comparison of mesh estimator variance with two mesh density 
functions.

 European estimator variance American estimator variance
 Marginal density Average density Marginal density Average density
  d function function function function

  2  (1.1,   1.5) (0.54, 0.55)  (1.1,    2.0) (0.7, 0.7)
  4  (3.2, 115.0) (0.54, 0.55)  (6.9,  305.4) (0.7, 0.7)
  8 (13.2, 540.1) (0.55, 0.55) (93.3, 6366.9) (0.7, 0.7)
 16 N/A (0.55, 0.55) N/A (0.8, 0.8)
 32 N/A (0.55, 0.55) N/A (1.1, 1.1)
 64 N/A (0.55, 0.55) N/A (1.8, 1.8)
128 N/A (0.55, 0.55) N/A (3.0, 3.0)

The call option parameters are r = 3%, δ = 10%, σ = 30%, S0 = 100, K = 100 with an expiration of 
Tmat = 3 years. All results are based on a mesh parameter of b = 20. Equal time steps are used, with 
exercise opportunities at iTmat ⁄d, i = 0, 1, … , d. The variance is estimated by taking the sample vari-
ance of 100,000 independent replications of the mesh estimators. Because the error in the variance 
estimates is so large in some cases, the process was repeated seven times. In the notation (x, y) used in 
the table, x represents the minimum and y the maximum of the seven variance estimates.
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for all i, j = 1, … , k and i ≠ j. We allow exercise at equally spaced dates.
We test three inner controls and two outer controls. The first inner control we 

test is
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where i* = argmax{St
i, i = 1, … , 5}. That is, the first control is a European option 

on a single asset with a time to maturity of ∆t, and v(1) is easily evaluated using 
the Black–Scholes formula. The second inner control we test is
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where i* = argmax{St
i, i = 1, … , 5} as before. The largest underlying asset at the 

mesh point Xt(i) is used as the second control. The third inner control is
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where i* = argmax{St
i, i = 1, … , 5} and j* = argmax{St

i, i = 1, … , 5, i ≠ i*}. Thus, 
the third control is a European max-option on two assets with a time to maturity 
of ∆t. Note that v (3) is easily evaluated using the formula in Stulz (1982). The first 
outer control we test is the European max-option
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A formula for this value is given in Johnson (1987). Quasi Monte Carlo methods 
can be used to evaluate u(1) quickly and accurately. In particular, we use the 
low discrepancy Sobol’ sequence for this purpose. See Boyle, Broadie, and 
Glasserman (1997) for an overview and Bratley and Fox (1998) or Press et al 
(1992) for implementation details. For the second outer control, u(2), we replace T 
by 2T ⁄ 3 in equation (27). When working backwards through the mesh, we found 
that better estimates are obtained by using the inner control as indicated in equa-
tion (19) to compute both the American price estimate Q̂ and the mesh estimates 
of the outer controls û (1) and û (2).

The results in Table 2 show that considerable reductions in variance are possible 
using control variates. The relative magnitudes of the variances are important for 
comparing various controls; the absolute levels are often difficult to interpret. 
Inner control 3, ie, v (3), consistently outperforms inner controls 1 and 2. The 
best combination tested is inner control 3 together with the two outer controls. 
This combination reduces estimator variance by about a factor of 100. Even this 
impressive figure understates the true gains in performance, because the inner 
controls also reduce estimator bias. Including controls increases computation 
time, typically by a factor of two to three, but the estimator improvement far out-
weighs this increased computational effort.
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5.3 Comparison of path estimator enhancements

We continue with the previous max-option example on five assets to illustrate the 
process of evaluating path estimator enhancements. Based on the previous experi-
ment, we use the inner control v (3) defined in equation (26) for all path estimator 
tests. For outer controls, we test the geometric average control12

(28)w E S S S S S S Sc n n( )1 1 2 1
0 0

1
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We also test the underlying asset controls

(29)w i E S S Sr i i( ) ( )( )2
0 0=   =− +e δ τ

τ

for i = 1, … , n.
Table 3 shows the results using various combinations of outer controls and anti-

thetics. As before, while it is difficult to interpret the absolute estimator variance 
levels, the relative differences in the table show that the path estimator variance 
can be reduced by a factor of 10 to 20. The largest gains are achieved by using 
both types of outer controls in combination with antithetics. The improvements in 
variance are easily worth the additional computational effort associated with the 
controls and antithetics.

In order to test the policy fixing technique, we use three easily computed lower 

TABLE 2 Comparison of mesh estimator variance with various inner and outer 
controls.

 No Inner controls Inner + 1 Outer Inner + 2 Outer
 S control 1 2 3 1 2 3 1 2 3

 90 3.55 1.22 1.31 0.91 0.17 0.21 0.06 0.08 0.09 0.03
100 5.06 1.85 1.94 1.47 0.24 0.28 0.10 0.10 0.11 0.05
110 6.93 2.53 2.62 2.08 0.35 0.37 0.16 0.14 0.14 0.07

Max-option example with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, 
and three-year maturity. The initial vector is S0 = (S, … , S), with S = 90, 100, or 110 as indicated in 
the table. All results are based on a mesh parameter of b = 100. Equal time steps are used, with exer-
cise opportunities at t = 0, 1, 2, and 3 years. The variance is estimated by taking the sample variance 
of 10,000 independent replications of the mesh estimators. Inner controls v (1), v (2), v (3) and outer 
controls u(1) and u(2) are defined in the text. Column 2 under the heading “Inner + 1 Outer” refers 
to using inner control v (2) together with outer control u(1), column 3 under the heading “Inner + 2 
Outer” refers to using inner control v (3) together with outer controls u(1) and u(2), etc.

12 The constant c which makes equation (28) hold is
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bounds on the continuation value. The first is the trivial nonnegativity bound, ie, 
P– (t, St)

(1) = 0. The second is the European option value on a single asset with a 
time to maturity T – t. Thus,
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where i* = argmax{St
i, i = 1, … , 5}. The third is a European max-option on two 

assets with a time to maturity of T – t:

(31)P t S E S S K St
r T t

T
i

T
j

t
( ) ( ), max ,* *3 ( ) = ( ) −( )


− −

+
e




where i* is as before and j* = argmax{St
i, i = 1, … , 5, i ≠ i*}. The three bounds 

satisfy P–
(1)(t, St) ≤ P–

(2)(t, St) ≤ P–
(3)(t, St) ≤ Q(t, St). We first check if P– (t, St)

(1) ≥ 
h(t, St). If so, we know it is optimal to continue. Otherwise we check if P– (t, St)

(2) ≥ 
h(t, St). If so, we know it is optimal to continue, and otherwise we check if 
P– (t, St)

(3) ≥ h(t, St). The same numerical results would be obtained if we simply 
used to the tightest bound P– (t, St)

(3). However, the three bounds are progressively 
more difficult to compute, so checking the bounds in order typically saves compu-
tation time. We measured the computation time corresponding to the last column 
in Table 3 with and without policy fixing. The computation time ratios were 39%, 
58%, and 86%, corresponding to the rows S = 90, 100, and 110, respectively. In 
addition to the computation time savings, policy fixing also reduces the path esti-
mator bias.

5.4 Option pricing results

Next we give numerical results with the stochastic mesh method based on two 
types of options. The first type is the max-option on five assets described earlier. 
The second type is the geometric average option on five assets. The payoff upon 

TABLE 3 Comparison of path estimator variance with several variance reduction 
techniques

 No Inner Outer control Antithetic + Outer control
 S control 1 2 3 1 2 3

 90 295 265 149 64 118 61 23
100 375 335 171 67 173 91 25
110 530 469 223 79 190 111 24

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and 
three-year maturity. The initial vector is S0 = (S, … , S), with S = 90, 100, or 110 as indicated in the 
table. All results are based on a mesh parameter of b = 20. Equal time steps are used, with exercise 
opportunities at t = 0, 1, 2, and 3 years. The variance is estimated by taking the sample variance of 
100,000 independent replications of the path estimators. All results use the inner control v (3). For 
the outer controls, column 1 refers to the geometric control w (1), column 2 refers to using the five 
underlying assets as multiple controls, and column 3 refers to both types of controls.
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exercise of this option is h(t, St) = ((St
1 … St

5)(1 ⁄ 5) – K)+. Since this option payoff 
is different, we use a slightly different set of inner and outer controls.13

Tables 4–6 show five asset max-option results with, respectively, T = 3, 6, and 
9 (and thus 4, 7, and 10 exercise dates including time zero). Since the true values 
are not known, the pricing errors must be estimated. The columns labeled “Estim 
error” are based on the confidence intervals defined in (11). The error estimates 
in the columns labeled “‘Actual’ error” are based on the most accurate answers, 
which are obtained with the greatest computational effort. Tables 7 and 8 show 
five and seven asset geometric average option results with T = 10 (ie, 11 exercise 
dates). We use this option because the pricing problem can be reduced to a single-
asset American option, which can be priced accurately using a one-dimensional 
binomial tree.

The initial parameters b, np, and N were chosen so that the bias of the mesh and 
path estimators, and the standard errors of the mesh and path estimators were all 
the same order of magnitude. In all of the tables, the mesh parameter b and path 
parameter np doubles from one row to the next within each panel. Hence the com-
putational effort increases by roughly a factor of four from one row to the next. 
The CPU time for the first row (in each panel) of Table 4 is about 25 seconds (on 
a 266 MHz Pentium II processor). Computation times for each successive row are 
1.5, 5.3, 20, 76, 307, and 1,217 minutes. Roughly, the first rows can be computed 
in seconds, the middle rows in minutes, and the last rows in hours.

Several features are notable in the tables. Most importantly, the method 
generally gives good results for a modest amount of computation time and the 
convergence of the method is apparent as the effort increases. For example, in the 
top panel of Table 4 corresponding to S = 90, the estimated error decreases from 
2.50% in the first row to 0.20% in the seventh row. Throughout the seven rows, 
the point estimates vary from 16.438 to 16.481, a difference of only 4.3 cents. So 
even though the half-width of the first confidence interval is over 40 cents, the 
true error of the point estimate appears to be less than two cents. Throughout the 
tables, the ‘actual’ or true error is typically much smaller than the estimated error. 
In the top rows within each panel, the ratio of estimated to true error is often a 
factor of 10 or more. This is consistent with the observation that the intervals are 
conservative due to estimator bias. The average of the mesh and path estimators 
significantly reduces this bias, leading to smaller errors in the point estimates than 
are suggested by the confidence intervals.

13 For the inner control we use the European geometric average option with a maturity of 
∆t. For the mesh estimator outer controls we also use European geometric average options, 
one with a maturity of T and one with a maturity of 3T ⁄ 5. For the path estimator outer con-
trols we use the same controls w(1) and w(2) as for the max-option path estimator. For policy 
fixing with the path estimator, we use P– (t, St)

(1) = 0 and P– (t, St)
(2) equal to the European 

option of the geometric average with a time to maturity T – t. Easily computed formulas are 
available for these European option controls. However, even if they were not available, they 
can be computed reasonably quickly using the Sobol’ sequence or another low-discrepancy 
sequence. The numerical results for this option could be improved with a better choice of 
controls.
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Regarding the convergence rate, note that the estimated error decreases by 
about a factor of two when comparing every other row of the tables. Since the 
work increases by a factor of about four from one row to the next, the results are 
consistent with fourth-root convergence. That is, the convergence appears to be 
O(work–1 ⁄4). In fact, this convergence result is immediate when the stochastic 
mesh method is used to price European options. In this case, the decrease in error 
is order b–1⁄2, the usual simulation result. However, the work is quadratic in b, so 
the O(work–1 ⁄4) convergence result follows.

Comparing the results in Tables 4–6 shows that increasing the number of 
exercise opportunities increases estimator error. This is consistent with Table 1. 

TABLE 4 American max-option on five assets, T = 3.

 Path est Std err Mesh est Std err 90% confidence Point Estim
S0 q̄ of q̄ Q̄ of Q̄ bounds est error “Actual” error

 90 15.867 0.038 16.115 0.038 [15.804, 16.177] 15.991 1.17% (–0.16%, –0.03%)
 90 15.929 0.036 16.042 0.022 [15.870, 16.078] 15.985 0.65% (–0.19%, –0.06%)
 90 15.979 0.022 16.060 0.017 [15.942, 16.089] 16.020 0.46% ( 0.02%,  0.16%)
 90 15.986 0.014 16.042 0.010 [15.963, 16.058] 16.014 0.30% (–0.01%,  0.12%)
 90 15.997 0.013 16.029 0.007 [15.976, 16.040] 16.013 0.20% (–0.02%,  0.11%)
 90 16.012 0.009 16.014 0.005 [15.997, 16.022] 16.013 0.08% (–0.02%,  0.11%)
 90 16.003 0.005 16.010 0.003 [15.995, 16.016] 16.006 0.07% (–0.06%,  0.07%)

100 25.092 0.043 25.378 0.049 [25.022, 25.460] 25.235 0.87% (–0.26%, –0.13%)
100 25.208 0.031 25.379 0.030 [25.157, 25.428] 25.294 0.54% (–0.03%,  0.11%)
100 25.216 0.019 25.342 0.020 [25.184, 25.375] 25.279 0.38% (–0.09%,  0.05%)
100 25.256 0.018 25.312 0.012 [25.226, 25.332] 25.284 0.21% (–0.07%,  0.07%)
100 25.248 0.012 25.305 0.010 [25.228, 25.321] 25.277 0.18% (–0.10%,  0.04%)
100 25.275 0.007 25.275 0.007 [25.265, 25.286] 25.275 0.04% (–0.11%,  0.03%)
100 25.274 0.005 25.294 0.005 [25.267, 25.302] 25.284 0.07% (–0.07%,  0.07%)

110 35.449 0.041 35.943 0.056 [35.382, 36.036] 35.696 0.92% (–0.04%,  0.05%)
110 35.618 0.035 35.811 0.040 [35.561, 35.877] 35.715 0.44% ( 0.01%,  0.10%)
110 35.626 0.023 35.757 0.024 [35.588, 35.796] 35.691 0.29% (–0.05%,  0.03%)
110 35.670 0.015 35.743 0.018 [35.645, 35.772] 35.706 0.18% (–0.01%,  0.08%)
110 35.691 0.011 35.711 0.011 [35.673, 35.730] 35.701 0.08% (–0.03%,  0.06%)
110 35.685 0.007 35.696 0.007 [35.673, 35.708] 35.691 0.05% (–0.05%,  0.03%)
110 35.688 0.006 35.701 0.005 [35.679, 35.710] 35.695 0.04% (–0.04%,  0.04%)

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and 
three-year maturity. The initial vector is S0 = (S, …, S), with S = 90, 100, or 110 as indicated in the 
table. Equal time steps are used, with exercise opportunities at t = 0, 1, 2, and 3 years. The number of 
replications is N = 50 for each row. For each panel, the parameters (b, np) are (50, 500), (100, 1000), 
(200, 2000), (400, 4000), (800, 8000), (1600, 16000), (3200, 32000) for each of the seven rows, 
respectively. The point estimate is (q̄  + Q̄) ⁄ 2. The estimated error is (y – x) ⁄ 2z, where the 90% con-
fidence interval is represented as [x, y] and the point estimate is z. The “actual” error is ((z – y7) ⁄ y7, 
(z – x7) ⁄ x7), where [x7, y7] represents the best 90% confidence interval from the seventh row of each 
panel. The European values are 14.586, 23.052, and 32.685 for S = 90, 100, and 110, respectively.
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As the problem dimension increases, Tables 7 and 8 show that the estimator error 
also increases.

The enormous computational effort required for the last rows of each panel 
shows that this method is not generally useful for generating extremely accurate 
pricing results. However, the stochastic mesh method can easily be parallelized 
for implementation on multi-processor computers. Since the estimates are based 
on N independent meshes, it is straightforward to parallelize these computations. 
This can reduce the work by about a factor of N if there are N or more processors 
available. Further speedups are possible if the computations within each mesh 
are parallelized.14 The results from the bottom rows of the tables could then be 

14 Avramidis et al (2000) report nearly perfect speed-up in parallelizing this method.

TABLE 5 American max-option on five assets, T = 6.

 Path est Std err Mesh est Std err 90% confidence Point Estim
S0 q̄ of q̄ Q̄ of Q̄ bounds est error “Actual” error

 90 16.159 0.049 16.768 0.082 [16.079, 16.903] 16.464 2.50% (–0.25%,  0.16%)
 90 16.257 0.029 16.675 0.042 [16.209, 16.744] 16.466 1.62% (–0.24%,  0.17%)
 90 16.294 0.022 16.581 0.019 [16.258, 16.612] 16.438 1.08% (–0.41%,  0.00%)
 90 16.351 0.016 16.570 0.015 [16.324, 16.595] 16.460 0.82% (–0.27%,  0.13%)
 90 16.439 0.012 16.522 0.009 [16.419, 16.536] 16.481 0.36% (–0.15%,  0.26%)
 90 16.441 0.010 16.488 0.005 [16.425, 16.496] 16.465 0.22% (–0.24%,  0.16%)
 90 16.448 0.006 16.500 0.003 [16.438, 16.505] 16.474 0.20% (–0.19%,  0.22%)

100 25.469 0.046 26.432 0.072 [25.393, 26.550] 25.951 2.23% ( 0.01%,  0.24%)
100 25.686 0.041 26.203 0.042 [25.619, 26.272] 25.945 1.26% (–0.01%,  0.22%)
100 25.761 0.018 26.059 0.022 [25.730, 26.094] 25.910 0.70% (–0.15%,  0.08%)
100 25.807 0.019 25.987 0.016 [25.776, 26.014] 25.897 0.46% (–0.20%,  0.03%)
100 25.873 0.010 25.942 0.012 [25.857, 25.963] 25.908 0.20% (–0.15%,  0.08%)
100 25.894 0.009 25.965 0.007 [25.880, 25.976] 25.930 0.18% (–0.07%,  0.16%)
100 25.900 0.007 25.940 0.005 [25.889, 25.948] 25.920 0.12% (–0.11%,  0.12%)

110 35.927 0.055 37.070 0.106 [35.836, 37.245] 36.499 1.93% (–0.08%,  0.09%)
110 36.190 0.036 36.882 0.062 [36.131, 36.985] 36.536 1.17% ( 0.02%,  0.19%)
110 36.308 0.027 36.726 0.035 [36.263, 36.783] 36.517 0.71% (–0.03%,  0.14%)
110 36.378 0.018 36.574 0.020 [36.349, 36.607] 36.476 0.35% (–0.14%,  0.03%)
110 36.443 0.012 36.566 0.013 [36.423, 36.588] 36.505 0.23% (–0.06%,  0.11%)
110 36.460 0.008 36.532 0.008 [36.446, 36.546] 36.496 0.14% (–0.08%,  0.08%)
110 36.477 0.007 36.517 0.006 [36.466, 36.527] 36.497 0.08% (–0.08%,  0.09%)

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and six-
year maturity. The initial vector is S0 = (S, …, S), with S = 90, 100, or 110 as indicated in the table. Equal 
time steps are used, with exercise opportunities at t = 0, 1, … , 6 years. The number of replications is 
N = 35 for each row. For each panel, the parameters (b, np) are (50, 500), (100, 1000), (200, 2000), 
(400, 4000), (800, 8000), (1600, 16000), and (3200, 32000) for each of the seven rows, respectively. 
The point estimate is (q̄  + Q̄) ⁄ 2. The estimated error is (y – x) ⁄ 2z, where the 90% confidence inter-
val is represented as [x, y] and the point estimate is z. The “actual” error is ((z – y7) ⁄ y7, (z – x7) ⁄ x7), 
where [x7, y7] represents the best 90% confidence interval from the seventh row of each panel. The 
European values are 14.586, 23.052, and 32.685 for S = 90, 100, and 110, respectively.
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computed in seconds or minutes instead of hours.
In order to place these results in some perspective, consider the convergence of 

the binomial method. For single asset pricing problems, Leisen and Reimer (1996) 
show that the binomial method converges linearly with the number of time steps 
when applied to European options. Broadie and Detemple (1996) offer compelling 
empirical evidence that linear convergence also holds for the binomial method 
applied to American options. Since the computational work is quadratic in the 
number of time steps, the convergence rate for the binomial method is O(work–1⁄2). 
All of the multi-dimensional generalizations of the binomial method (eg, Boyle, 
Evnine, and Gibbs, 1989; He, 1990; and Kamrad and Ritchken, 1991) have work 
which increases as mn + 1, where m is the number of time steps and n is the number 

TABLE 6 American max-option on five assets, T = 9.

 Path est Std err Mesh est Std err 90% confidence Point Estim
S0 q̄ of q̄ Q̄ of Q̄ bounds est error “Actual” error

 90 16.094 0.057 18.252 0.290 [16.001, 18.729] 17.173 7.94% ( 2.77%,  3.44%)
 90 16.317 0.037 17.220 0.064 [16.256, 17.325] 16.768 3.19% ( 0.35%,  1.00%)
 90 16.412 0.020 16.912 0.033 [16.379, 16.966] 16.662 1.76% (–0.29%,  0.36%)
 90 16.471 0.019 16.838 0.014 [16.440, 16.861] 16.655 1.27% (–0.33%,  0.32%)
 90 16.546 0.014 16.789 0.010 [16.522, 16.806] 16.667 0.85% (–0.26%,  0.39%)
 90 16.573 0.010 16.738 0.007 [16.557, 16.748] 16.656 0.58% (–0.32%,  0.33%)
 90 16.613 0.007 16.704 0.003 [16.602, 16.710] 16.659 0.32% (–0.31%,  0.34%)

100 25.362 0.050 28.165 0.455 [25.280, 28.913] 26.764 6.79% (2.11%,  2.54%)
100 25.675 0.038 26.618 0.062 [25.612, 26.720] 26.146 2.12% (–0.25%,  0.17%)
100 25.887 0.029 26.660 0.062 [25.840, 26.761] 26.274 1.75% ( 0.24%,  0.66%)
100 25.969 0.017 26.333 0.023 [25.941, 26.370] 26.151 0.82% (–0.23%,  0.19%)
100 26.045 0.010 26.266 0.011 [26.029, 26.283] 26.155 0.49% (–0.21%,  0.21%)
100 26.081 0.011 26.195 0.006 [26.063, 26.205] 26.138 0.27% (–0.28%,  0.14%)
100 26.113 0.007 26.204 0.004 [26.101, 26.211] 26.158 0.21% (–0.20%,  0.22%)

110 35.815 0.062 38.040 0.196 [35.713, 38.362] 36.928 3.59% ( 0.23%,  0.57%)
110 36.293 0.042 37.457 0.162 [36.224, 37.723] 36.875 2.03% ( 0.09%,  0.42%)
110 36.370 0.025 37.083 0.033 [36.329, 37.137] 36.727 1.10% (–0.31%,  0.02%)
110 36.575 0.018 36.958 0.023 [36.546, 36.996] 36.767 0.61% (–0.20%,  0.13%)
110 36.654 0.015 36.944 0.011 [36.629, 36.962] 36.799 0.45% (–0.12%,  0.22%)
110 36.694 0.011 36.880 0.008 [36.676, 36.893] 36.787 0.29% (–0.15%,  0.19%)
110 36.731 0.008 36.832 0.006 [36.719, 36.842] 36.782 0.17% (–0.16%,  0.17%)

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and nine-
year maturity. The initial vector is S0 = (S, …, S), with S = 90, 100, or 110 as indicated in the table. Equal 
time steps are used, with exercise opportunities at t = 0, 1, … , 9 years. The number of replications is 
N = 25 for each row. For each panel, the parameters (b, np) are (50, 500), (100, 1000), (200, 2000), 
(400, 4000), (800, 8000), (1600, 16000), and (3200, 32000) for each of the seven rows, respectively. 
The point estimate is (q̄  + Q̄) ⁄ 2. The estimated error is (y – x) ⁄ 2z, where the 90% confidence inter-
val is represented as [x, y] and the point estimate is z. The “actual” error is ((z – y7) ⁄ y7, (z – x7) ⁄ x7), 
where [x7, y7] represents the best 90% confidence interval from the seventh row of each panel. The 
European values are 14.586, 23.052, and 32.685 for S = 90, 100, and 110, respectively.
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of underlying assets.15 Hence, the convergence rate of the multi-dimensional 
binomial method appears to be O(work–1 ⁄(n  + 1)). A second-order finite-difference 
method may converge an order of magnitude faster than a binomial approxima-
tion, but its computational requirements still grow exponentially in the dimension 
of the problem. These considerations suggest that the stochastic mesh dominates 
binomial and finite difference methods in sufficiently high dimensions. Numerical 
results in this paper indicate that the crossover may occur at four or five dimen-
sions.

15 Storage is another problem when applying the binomial method to high-dimensional prob-
lems. Storing all of the terminal option values requires order mn storage.

TABLE 7 American max-option on five assets, T = 10.

 Path est Std err Mesh est Std err 90% confidence Point Estim
S0 q̄ of q̄ Q̄ of Q̄ bounds est error “Actual” error

 90 1.308 0.025 1.582 0.030 [1.266,  1.631] 1.445 12.63% 6.03%
 90 1.361 0.021 1.497 0.032 [1.327,  1.550] 1.429  7.79% 4.88%
 90 1.353 0.012 1.388 0.005 [1.333,  1.396] 1.370  2.29% 0.57%
 90 1.355 0.008 1.392 0.006 [1.342,  1.403] 1.373  2.23% 0.81%
 90 1.348 0.007 1.386 0.002 [1.337,  1.389] 1.367  1.93% 0.33%
 90 1.362 0.004 1.380 0.001 [1.355,  1.382] 1.371  0.98% 0.66%
 90 1.356 0.003 1.375 0.001 [1.351,  1.376] 1.365  0.90% 0.22%

100 4.166 0.035 4.522 0.034 [4.108,  4.577] 4.344  5.40% 1.23%
100 4.258 0.019 4.439 0.017 [4.226,  4.467] 4.348  2.77% 1.34%
100 4.272 0.017 4.392 0.009 [4.244,  4.407] 4.332  1.87% 0.96%
100 4.282 0.015 4.368 0.005 [4.258,  4.376] 4.325  1.37% 0.79%
100 4.267 0.008 4.348 0.003 [4.253,  4.352] 4.308  1.15% 0.39%
100 4.290 0.007 4.320 0.002 [4.279,  4.323] 4.305  0.52% 0.33%
100 4.283 0.004 4.309 0.001 [4.276,  4.311] 4.296  0.40% 0.12%

110 10.156 0.037 10.527 0.036 [10.096, 10.587] 10.341  2.37% 1.28%
110 10.170 0.018 10.401 0.022 [10.140, 10.436] 10.285  1.44% 0.73%
110 10.192 0.013 10.369 0.017 [10.171, 10.396] 10.280  1.10% 0.68%
110 10.193 0.009 10.240 0.013 [10.178, 10.262] 10.216  0.41% 0.05%
110 10.203 0.007 10.252 0.004 [10.191, 10.258] 10.228  0.33% 0.16%
110 10.199 0.004 10.238 0.002 [10.193, 10.242] 10.218  0.24% 0.07%
110 10.208 0.002 10.230 0.002 [10.205, 10.233] 10.219  0.14% 0.08%

Geometric average option with n = 5 assets. The parameters are r = 3%, δ = 5%, σ = 40%, ρ = 0, 
K = 100, and one year maturity. The initial vector is S0 = (S, …, S), with S = 90, 100, or 110 as indicated 
in the table. Equal time steps are used, with exercise opportunities at t = 0, 1, 2, … , 1 years. The 
number of replications is N = 25 for each row. For each panel, the parameters (b, np) are (50, 500), 
(100, 1000), (200, 2000), (400, 4000), (800, 8000), (1600, 16000), and (3200, 32000) for each of the 
seven rows in order. The point estimate is (q̄  + Q̄) ⁄ 2 The estimated error is (y – x) ⁄ 2z, where the 90% 
confidence interval is represented as [x, y] and the point estimate is z. The actual error is (z – Q) ⁄Q, 
where Q is the true value determined from a single asset binomial tree. The European and American 
values are (1.172, 1.362), (3.445, 4.291), and (7.521, 10.211) corresponding to S = 90, 100, and 110, 
respectively.
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6 Conclusions

American-style securities whose value depends on multiple assets or on multiple 
state variables are increasingly common. With this comes a growing need for 
methods to price and hedge these securities. Approximation methods have been 
proposed for some types of high-dimensional securities. However, no convergent 
algorithm has been proposed and tested for any general class of such securities.

In this paper, we propose, analyze, and test the stochastic mesh method for 
pricing a general class of high-dimensional pricing problems with a finite number 
of exercise dates. The computational effort increases quadratically with the 
number of mesh points and linearly with the number of exercise opportunities. We 
show that the method converges as the computational effort increases. Numerical 
results illustrate this convergence and demonstrate the viability of the method. 
Practical success of the method depends critically on the use of effective variance 

TABLE 8 American max-option on seven assets, T = 10.

 Path est Std err Mesh est Std err 90% confidence Point Estim
S0 q̄ of q̄ Q̄ of Q̄ bounds est error “Actual” error

 90 0.728 0.019 0.763 0.044 [0.697,   0.835] 0.745  9.21% –1.99%
 90 0.744 0.008 0.762 0.041 [0.731,   0.831] 0.753  6.60% –0.93%
 90 0.741 0.009 0.876 0.028 [0.727,   0.922] 0.809 12.01%  6.37%
 90 0.756 0.006 0.772 0.017 [0.747,   0.800] 0.764  3.47%  0.46%
 90 0.753 0.004 0.789 0.004 [0.747,   0.796] 0.771  3.17%  1.42%
 90 0.758 0.002 0.777 0.001 [0.754,   0.779] 0.767  1.60%  0.91%

100 3.159 0.034 3.929 0.140 [3.103,   4.160] 3.544 14.92%  8.38%
100 3.232 0.026 3.447 0.036 [3.190,   3.507] 3.340  4.75%  2.12%
100 3.220 0.010 3.426 0.011 [3.204,   3.444] 3.323  3.62%  1.62%
100 3.250 0.012 3.408 0.016 [3.230,   3.434] 3.329  3.05%  1.80%
100 3.256 0.010 3.361 0.003 [3.239,   3.367] 3.308  1.93%  1.17%
100 3.260 0.006 3.347 0.002 [3.251,   3.350] 3.304  1.50%  1.03%
100 3.264 0.004 3.314 0.001 [3.258,   3.316] 3.289  0.88%  0.58%

110  9.812 0.072 10.324 0.068 [ 9.693, 10.436] 10.068  3.69%  0.68%
110  9.954 0.046 10.093 0.053 [ 9.878, 10.180] 10.023  1.51%  0.23%
110 10.000 0.000 10.065 0.017 [10.000, 10.092] 10.033  0.46%  0.33%
110 10.000 0.000 10.000 0.000 [10.000, 10.000] 10.000  0.00%  0.00%
110 10.000 0.000 10.000 0.000 [10.000, 10.000] 10.000  0.00%  0.00%

Geometric average option with n = 7 assets. The parameters are r = 3%, δ = 5%, σ = 40%, ρ = 0, 
K = 100, and one-year maturity. The initial vector is S0 = (S, …, S), with S = 90, 100, or 110 as indicated 
in the table. Equal time steps are used, with exercise opportunities at t = 0, 1, 2, … , 1 years. The 
number of replications is N = 25 for each row. For each panel, the parameters (b, np) are (50, 500), 
(100, 1000), (200, 2000), (400, 4000), (800, 8000), etc., for each of the rows in order. The point esti-
mate is (q̄  + Q̄) ⁄ 2. The estimated error is (y – x) ⁄ 2z where the 90% confidence interval is represented 
as [x, y] and the point estimate is z. The actual error is (z – Q) ⁄Q, where Q is the true value determined 
from a single asset binomial tree. The European and American values are (0.628, 0.761), (2.419, 3.270), 
and (6.201, 10.000) corresponding to S = 90, 100, and 110, respectively.
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reduction techniques. In particular, our results indicate the necessity of using con-
trol variates well-suited to the specific pricing problem.

An evident limitation of the method is its reliance on explicit knowledge of the 
transition density of the underlying state variables. In many cases, the transition 
density is unknown or may even fail to exist. In such settings one may consider 
using a normal or lognormal density as an approximation. An alternative strategy 
for selecting mesh weights is proposed and tested in Broadie, Glasserman, and Ha 
(2000). That method does not use a transition density but instead uses information 
about moments of the underlying state variables or the prices of easily computed 
European options. Glasserman and Yu (2003) show that this method is equivalent 
to a regression-based estimator.

Another important topic not investigated here is the calculation of price sensi-
tivities for hedging purposes. The problem of estimating sensitivities in pricing 
European options by simulation has been considered in Broadie and Glasserman 
(1996), and those methods are potentially applicable in the stochastic mesh as 
well. There are at least two natural strategies to consider – estimating sensitivi-
ties of the mesh estimator and estimating sensitivities of the path estimator. The 
second of these is the more straightforward and would likely give better results. 
See Piterbarg (2003) and Kaniel, Tompaidis, and Zemlianov (2003) for recent 
work on this problem.

Appendix
PROOF OF THEOREM 1 The proof is by induction. At the terminal time we 
have Q̂b(T, x) = h(T, x) = Q(T, x) for all x. Take as induction hypothesis that 
E[Q̂b(t + 1, x)] ≥ Q(t + 1, x) for all x. Now we have
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The first three steps use the definition of Q̂b, Jensen’s inequality, and the fact that 
the mesh points at each time slice are identically distributed. The fourth uses a 
basic property of conditional expectations and the fifth uses the induction hypo-
thesis. The sixth step follows from the identity
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and the last step follows from the optimality equation (2). 

In order to prove Theorem 2, we prove a preliminary lemma (see Assumptions 1 
and 2).

LEMMA 1 For any r ≥ 1, (i) if Assumption (1) holds then E[Q(t, Xt(1))r] < ∞. (ii) 
If Assumption (2) holds then supb ≥ 1E[Q̂b(t1, Xt1(1))r] < ∞.
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(ii) Paralleling (32), we have
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The r-norm E[Q̂b(T – k, XT  –  k(1))r]1⁄r is bounded by the sum of the r-norms of the 
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The right side is independent of b and finite by hypothesis; we conclude that 
supb ≥ 1E[Q̂b(T – k, XT –  k(1))r] < ∞. 

Proof of Theorem 2: We prove the result by induction, proceeding backwards from 
the terminal time. At T there is nothing to prove because Q̂b(T, ·) ≡ h(T, ·) ≡ Q(T, ·) 
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with the last inequality ensured by Lemma 1. It follows that the sequence in (33) 
in uniformly integrable, and therefore that the expectation of the left side of (33) 
converges to 0:
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from which ∆b → 0 follows.
For the analysis of ∆, first observe that the b summands appearing in the sum-

mation in ∆ are independent and identically distributed with mean
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converges to its expectation in p′-norm as b → ∞. This holds (eg, Theorem I.4.1 of 
Gut, 1988) provided the summands have finite p′-norm. By Hölder’s inequality,
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The first factor on the right is finite by (8) (Assumption 3) and the finiteness of 
second factor follows from Lemma 1 (i). 

Proof of Theorem 4: We first show that
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exercise time. The two differ only if the mesh policy either exercises prematurely 
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Under the hypothesis in the theorem that the “boundary” {x: h(t, x) = Q(t, x)}, 
t < T, is hit with probability zero, there exists an ε > 0, almost surely, for which
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Using this together with the previous inequality we get

(35)P P Q t S Q t Sb b t t
t

T

ˆ ˆ ( , ) ( , )τ τ ε≠( ) ≤ − >( )
=

−

∑
0

1

Notice that ε depends on the path S = (S0 , … , ST) but is independent of the mesh. 
Because convergence in p-norm implies convergence in probability, we know 
from Theorem 2 that

(36)P Q t S Q t S S t Tb t t
ˆ ( , ) ( , ) , , , ,− >( ) → = …ε 0 0 1a.s.,

The dominated convergence theorem further implies that

P Q t S Q t S t Tb t t
ˆ ( , ) ( , ) , , , ,− >( ) → = …ε 0 0 1

which, together with (35), establishes (34).

Asymptotic unbiasedness now follows:

0 0 0≤ − ( )  = ( ) −Q S E h S E h S h Sb bb
( , ) ˆ , , ˆ ,ˆ ˆτ τ ττ τ ττ

τ ττ τ τ τ
b

b
E h S h S

E h

b b

( ) 

= ( ) − ( ) ≠ 
≤

, ˆ , ; ˆˆ

ττ τ τ

τ τ

τ

τ
ε ε

, ; ˆ

, ( ˆ
( )

S

E h S P

b

b

( ) ≠[ ]

≤ ( )



 ≠+ +1 1 1

ττ ε ε) ( )1 0+ →

the last inequality is Hölder’s. 

Proof of Proposition 1: To lighten notation, we write Lb(T) and Lb(T, i) as L(T) 
and L(T, i) respectively. Let c > 1 be the infimum in (14). We will show that

(37)

(38)

E L t
b

cE L t b E L t L t( ) ( ) ( ) ( , ) ( ,+  ≥   + −1
1

1 12 2 22

1 1 1 2
1

2

)

( , ) ( , ) ( ) (

 ( )
+ +[ ] ≥   +E L t L t

b
E L t bb E L t L t−  ( )1 1 2) ( , ) ( , )

Here and throughout the proof we assume the expectations are finite; if any of 
them is infinite, (16) holds trivially. Set

w t i j
f t X i X j

g t X j
t t

t

( , , )
, ( ), ( )

, ( )
=

( )
+( )

+

+

1

11
tt i j b= … = …0 1 1, , , , , ,

Then

L t j
b

L t i w t i j
i

b

( , ) ( , ) ( , , )+ =
=
∑1

1

1
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Consequently,

(39)

E L t

b
E L t i w t i

i

b

( )

( , ) ( , , )

+ 

=








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
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2
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1 1 1

b
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i
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11
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1

b
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∑



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
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


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

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
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
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
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
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



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


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

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
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2
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



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But

(40)
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
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
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by (14), and

(41)
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1
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X
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
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≥

by (14). Combining (39), (40), and (41) gives (37). Similarly,

E L t L t

b
E L t i w t i

i

b

( , ) ( , )

( , ) ( , , )

+ +[ ]

=
=
∑

1 1 1 2

1
1

2
1


































=
∑ L t j w t j
j

b

( , ) ( , , )2
1



=






=
∑1

1 1 1 2
1

b
E L t w t L t j w t j

j

b

( , ) ( , , ) ( , ) ( , , )


















=  
1

1 1 1 1 22

b
E L t w t w t( , ) ( , , ) ( , , )





+

−  ( ) ( , ) ( , ) ( , , ) ( , , )b E L t L t w t w t1 1 2 1 1 2 2 }
=   + −

1
1 1 1 1 2 12

b
E L t w t w t b E L( , ) ( , , ) ( , , ) ( ) (tt L t, ) ( , )1 2 { }



Volume 7/Number 4, Summer 2004 URL: www.thejournalofcomputationalfinance.com

A stochastic mesh method for pricing high-dimensional American options 69

(42)
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where the last step following from the conditional independence of w(t, 1, 1) and 
w(t, 2, 2) given {Xu(i), u = 0, … , t, i = 1, … , b}. Arguing as in (41), we get

(43)E L t w t w t E L t( , ) ( , , ) ( , , ) ( , )1 1 1 1 2 12 2  ≥  
Combining (42) and (43) yields (38).

In vector-matrix notation, (37) and (38) become

E L t

E L t L t
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( )

( , ) ( , )
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with the inequality holding componentwise. Combining this with the bounds

E [L (1)2] ≥ c,   E [L(1, 1)L(1, 2)] ≥ 1

and the non-negativity of the matrix entries, we get

(44)
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
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The eigenvalues of the matrix in this inequality are

λ± =
+ − ± + − + −( ) ( ) ( )b c b c c

b

1 1 4 1

2

2

so both are positive and λ+ is strictly greater than 1. Write (c, 1)′ = a+w+ + a–w– 
where w± are eigenvectors with eigenvalues λ±. It is easy to see that (c,1)′ itself is 
not an eigenvector and therefore that a+ ≠ 0. Using the fact that E[L(t + 1, 1)2] ≥ E
[L(t + 1, 1)L(t + 1, 2)] (since L(t + 1, 1) and L(t + 1, 2) have the same distribution) 
and taking norms in (44) we get

E L t u v
a

t t
t( )+  ≥ + ≥+ +

+
+1

1

2 2
2

1
2

1
2 λ

Since E[L(t + 1)] = 1,

var ( )L t
a

t+  ≥ −+
+1

2
1λ

By choosing 1 < λ < λ+ and t0 large enough that
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a
a t

≡






− >+ +

2
1 0

0λ
λ

we get (16) for all t ≥ t0. 

Proof of Proposition 2: A simple induction argument applied to (13) verifies that 
L(T, j) ≡ 1 using the average density function. That each XT ( j) has the distribution 
of ST is also proved by induction: it clearly holds for T = 1; and if the unconditional 
distribution of each XT – 1( j ) is that of ST – 1, then the unconditional distribution of 
each draw from

1
1 1

1
b

f T X jT
j

b

− ⋅( )−
=

∑ , ( ),

is that of ST. 
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