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ABSTRACT

Optimal Dynamic Allocation between
Taxable and Nontaxable Assets

Zhidong Wang

This dissertation studies the problem of dynamically trading between taxable and

nontaxable assets in order to maximize the expected utility of terminal wealth.

Some properties of the optimal solution are demonstrated and are applied to

simplify the representation, analysis and computation of the optimal policy. In

particular, the optimal policy can be simply described by one or two target lines

in a two-dimensional state space. Here a target line is a curve that consists of the

optimal target points on all trading tracks in a certain direction, and a trading track

is a set of states with a common characteristic value. The analytical solution for

the optimal policy just prior to the termination is also derived. Besides providing a

reference for numerical solutions, it can be used throughout the whole time horizon

as a good approximate optimal policy.

Several numerical methods are developed for these problems. One method cal-

culates expectation by solving partial differential equations (PDE), and two meth-

ods by applying simulation (using point-estimation and regression, respectively).

The PDE-based method has the highest computational efficiency and provides the

best solution, while the two simulation-based methods can also provide solutions

which have investment performance very close to that of PDE-based method.
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Chapter 1

Introduction

Taxes are an important concern to investors and the impacts of taxes are studied

in a large pool of literature. However, finding the optimal policy for dynamic

investment in the presence of taxes is difficult, because it is a complicated stochastic

control problem, for which there is usually no analytical solution.

In recent years, some progress on the numerical solution of tax-aware portfolio

optimization models has been accomplished. Considering capital-gains tax and

calculating tax for each share of sold stock with its purchase price as the basis (i.e.,

using the exact tax basis), Dybvig and Koo [5] formulated a dynamic investment

problem to maximize the expected utility of final wealth with a fixed horizon, and

numerically solved the problem with four periods and one stock.

DeMiguel and Uppal [4] extended the Dybvig and Koo model to include trans-

action costs, intermediate consumption and labor income, and solved an example

with seven periods and two stocks, as well as an example with ten periods and

one stock, by applying an efficient nonlinear programming algorithm. However,

using the exact tax basis leads to path dependency, and cause the state space to
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increase exponentially with the number of periods. It is thus not practical to solve

problems with more than a small number of periods.

Using the weighted average purchase price as the tax basis, which removes

the path dependency, Dammon, Spatt and Zhang ([2] and [3]) provided numerical

results for long-term (80 steps) consumption and investment on one or two risky

stocks with taxes.1

In this dissertation, we consider the numerical solution to the optimal alloca-

tion between taxable and nontaxable assets.2 We focus on a class of problems

with the following conditions: constant relative risk aversion (CRRA) type utility

function, fixed terminal horizon, with and without the constraint of one-way trad-

ing direction from taxable to nontaxable or the reverse. To our knowledge, there

has been little research on the numerical solution for this problem.3 Solving this

simple two-assets problem will further our understanding of the impact of taxes

and other parameters on the optimal dynamic portfolio strategies, and can serve

as a starting point to solve more complicated models.

Unlike the aforementioned research works, we, (1) build a model and conduct

computations in a continuous space for the asset price processes (instead of using a

1In the papers [5], [4], [2] and [3], the assets include a riskless bond, in addition to the stock(s).
2A nontaxable asset may be a tax-exempt or tax-free asset (e.g., municipal bond), or a asset

held in a nontaxable account (such as the Roth IRA).
3Huang [6] considered a model with taxable and tax-deferred account, where the tax-deferred

account is treated as a nontaxable account (Roth IRA), and there may be multiple assets (not
just one asset, as in our model) in each account, but she did not provide numerical results for
the optimal policy.

In addition, it is important to note that there are some differences between nontaxable and
tax-deferred account: the contribution to a tax-deferred account (such as a 401(k)) is thought of
as the net income or gain that will be charged tax, while the asset in a nontaxable account can be
transferred from any source of wealth (that could be savings of many years) not just the current
income after tax. These two types of accounts are not “equivalent within a constant factor” as
treated in [6].
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binomial approximation of the asset price processes which may lead to substantial

errors); (2) conduct further analysis on the properties of the optimal solution and

provide a simple representation of the optimal policy in the form of target line(s)

instead of an exhaustive list of decisions at each state.

The rest of this dissertation is organized as follows. In Chapter 2, we present

the basic setting of the model and the dynamic programming formulation, demon-

strate several properties of the optimal solution for our problem, and represent the

problem in a two-dimensional state space, which makes it easier to represent and

analyze the optimal policy

In Chapter 3, we study the optimal policies for our problems where trades are

made at discrete times. We show the simple structures of the optimal policies,

which can be simply described by one or two target lines. As an approximate

solution for our problems, we present the analytical solution for the time just prior

to termination. We call this the “limiting solution,” which is useful to check the

numerical solution. Last, we present computational results to illustrate characteris-

tics of the optimal policy (e.g., the shapes of the target lines and their movement in

time) and compare performance of the optimal policy and several heuristic policies.

One important result is that the myopic policy, which uses the “limiting solution”

at all times prior to termination, gives a performance nearly indistinguishable from

the optimal policy for two-way trading problems.

In Chapter 4, we introduce the numerical solution methods: a PDE-based

(using finite difference) and two simulation-based (using point-estimation and re-
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gression, respectively) numerical methods to compute the optimal policy. The key

points of the implementation are presented and the computational performance of

these numerical methods are compared.



5

Chapter 2

The model and preliminaries

2.1 The model

2.1.1 Basic setting

In this dissertation, we consider the following situation: there are two assets that

can be traded - one is taxable (hereafter we simply call it the stock) and the other

is nontaxable (we call it the index fund).1 A nontaxable asset may be a tax-exempt

or tax-free asset (e.g., a municipal bond), or an asset held in a nontaxable account

(such as Roth IRA2). Let s(t) and i(t) be the price of the stock and index fund

at time t, respectively, and assume that they follow geometric Brownian motion

diffusion processes:

ds(t)/s(t) = µsdt + σsdz (2.1.1)

di(t)/i(t) = µidt + σidv (2.1.2)

1We can imagine a practical situation where an investor has only two funds to invest, one is
in a taxable account and the other is in a nontaxable account. Here calling them stock and index
fund is just for convenience.

2In practice, there are some restrictions on a Roth IRA account, such as maximum annual
contributions and penalties for early withdrawals. In this dissertation, we assume that there are
no such restrictions on the nontaxable account.
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where dv and dz are increments to standard Brownian motions with correlation ρ.

We assume that the investor can trade only in discrete time {tk|k = 0, 1, ..., N},

and the final time is T = tN .3 In order to represent the controllable state variables

before and after trading, we let t+k denote the time just after decision at time tk.

For brevity, the uncontrolled variables i(tk) and s(tk) are denoted by ik and sk.

Let x(t) and y(t) be the number of shares (or units) of stock and index fund,

respectively, in the investor’s account at time t. Obviously x(t) and y(t) remain

constant in the period [t+k , tk+1] for any k < N . We assume that there is a short-

sale constraint, that is, the amount of stock and index fund must be nonnegative

(i.e., x(t) ≥ 0 and y(t) ≥ 0 for all t).

Let I(t) be the dollar value of index fund holdings at time t, i.e., I(t) = y(t)i(t).

Between transactions, since y(t) is constant, I(t) is a geometric Brownian motion

process with the same parameters as that of i(t).

When shares of stock are sold, some tax may be taken from the sale and the

remaining value invested in the index fund. If some units of the index fund are

sold, there is no need to pay tax and the entire sales value is invested in the stock.

There is no cash flow in or out, and no other transaction costs.

At any trading time tk, there are two kinds of trades as follows:

• Simple trade: a trade (i.e., an exchange of assets) in which a part of investor’s

assets is transfered in one direction, either from the taxable to the nontaxable

3We use the discrete-time setting in order to make it convenient to represent the problem
in a dynamic programming framework and describe the algorithm for a computer. When the
time-step is small enough the solution will approach that of a continuous-time problem.
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(denoted by “TN”) or the reverse (denoted by “NT”).

• Compound trade: a series of simple trades.

We call a “one-way trading problem” an investment problem with the restric-

tion that trading is only allowed in a single direction for all trading times, and use

the terms “PTN” or “PNT” to denote the one-way trading problem in “TN” or

“NT” direction. Correspondingly, we call a “two-way trading problem” a problem

without such restriction. It includes two cases: allowing compound trades or not;

and they are named as “PCT” and “PNCT”, respectively. In problem PNCT, the

investor can only make a simple trade (in either direction) at one trading time;

while in PCT, the investor can sell and buy stock many times at one trading time.

In the real world, tax laws are complicated, differ across countries, and change

over time. Here we consider two simple methods to compute the tax payment,

they represent two cases of tax law: allowing reimbursement for loss (RL) and not

(NRL). Specifically, given a basis price p and a fixed tax rate α, if d shares of stock

are sold at time t, the tax payment will be:

• αd(s(t)− p)+, for the NRL case, or

• αd(s(t)− p), for the RL case.

In the U.S. tax code, there are two allowable methods for setting the basis price:

1) each share of stock uses its purchase price (termed the exact basis price), and

2) all shares of stock use the average purchase price (APP). In this dissertation,
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we only consider the latter. Let a(t) be the average purchase price of all shares of

stock held at time t. Then given a(t0), a(t) is determined as follows:

• a(t) is constant in the period [t+k , tk+1] for any 0 ≤ k < N ;

• at time tk,

– after a simple trade of selling some shares of stock, a(t+k ) = a(tk)

– after a simple trade of buying u shares of stock,

a(t+k ) = a(tk)x(tk)+s(tk)u
x(tk)+u

,

– after a compound trade of selling d shares of “old” stock and buying u

shares of “new” stock,4 a(t+k ) = a(tk)(x(tk)−d)+s(tk)u
x(tk)−d+u

.

Using the exact basis price provides investors more flexibility and results in an

optimal policy superior to that obtained by using APP. However the computational

results of [4] show that the optimal solutions for both situations are very close and

we conjecture that this will hold for our problem. In addition, using APP makes

the problem path-independent and simplifies the computation considerably. In

fact, we will see that using APP allows problems to be represented and solved in

a two-dimensional state space.

We define b(s, p) as the realized cash from the sale of one share of stock when

the stock price is s and the basis price is p. That is,

• for the NRL case, b(s, p) = s− α(s− p)+ = (1− α)s + α min(s, p),

4It can be shown that no matter how complicated a compound trade is (i.e., no matter how
many simple trades it uses and in what order), the compound trade can always be reduced to a
series of two simple trades: first selling stock (a TN trade) and then buying stock (an NT trade).
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• for the RL case, b(s, p) = (1− α)s + αp.

Hereafter, we call b(s(t), a(t)) the “realized price” of stock at time t. For all

x ≥ 0, xb(s, a) = b(xs, xa) in both the NRL and the RL cases.

Let w(t) = x(t)b(s(t), a(t))+ I(t) denote the net wealth at time t if both assets

are entirely liquidated, i.e., the “realizable wealth.” The investor’s objective is to

maximize the expected utility of realizable wealth at the final time T , i.e.

max E[U(w(T ))],

for given utility function U(w). We assume that the utility function is of the

constant relative risk aversion (CRRA) type, i.e., for final wealth w, utility is

U(w) = wγ/γ with γ < 1 and γ 6= 0 or U(w) = ln(w) if γ = 0.

For the CRRA type of function U(w), we have, for any scaler λ > 0,

U(λw) =

{
ln(λ) + U(w), if γ = 0

λγU(w), if γ 6= 0

For simplicity, hereafter we present formulation only for problems with utility

parameters γ 6= 0. Similar results hold in all Propositions and Theorems for

problems with γ = 0.

Although we only consider the portfolio optimization problem with two assets,

the model can offer advice for some real applications — for example, problem PTN

may be applicable to the case where an investor holds a large position in a company

stock and wants to liquidate all his holdings to a nontaxable asset by a final date.

In some sense, the tax in this dissertation is referred to as the capital gains tax.

A riskless bond with interest rate (or the annual distribution rate, in the case of a
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bond with coupons or dividends) r in the presence of an income tax rate η can be

thought of as a nontaxable asset with interest rate (1− η)r. Hence, the model of

one stock and one riskless bond is just a special case of our model.

2.1.2 Dynamic programming formulation

For later use, we introduce the new variable X(t) = x(t)a(t), the total basis value

of the stock at time t. X(t) remains constant in the no-trading period [t+k , tk+1]

for any k < N , since if x(t) = 0 then X(t) = 0, while if x(t) > 0, x(t) and a(t)

remain constant in that period.

Let Vk(x, I,X, s) be the value function for pre-decision state (x(tk), I(tk),

X(tk), sk) at time tk, we can describe our problems in a dynamic programming

framework as follows.5

(P1):

• at the final stage N ,

VN(x, I,X, s) = U(I + b(xs,X))

• at stage k < N ,

Vk(x, I,X, s) = max
(x′,I,X′)∈Ω(x,I,X,s)

V k(x
′, I ′, X ′, s)

with

V k(x, I,X, s) = E[Vk+1(x, I(tk+1), X, sk+1)|sk = s, I(t+k ) = I]

5We use X(t) instead of a(t) for convenience in representing some properties, especially The-
orem 2 in Chapter 3.
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Here V k(x, I,X, s) is the indirect value function for the post-decision state (x(t+k ),

I(t+k ), X(t+k ), sk) at time tk. To distinguish it from the value function Vk(), we

call V k() the value base function. When the stock price is s, the set of states

(x′, I ′, X ′) reachable from (x, I,X) is denoted by Ω(x, I,X, s). Depending on the

trading restrictions, we formally define four subproblems by the set of reachable

states as follows:

1. Problem PTN: one-way trading from the taxable to the nontaxable asset.

ΩTN(x, I, xa, s) = {(x− d, I + db(s, a), (x− d)a)|0 ≤ d ≤ x}

where the APP basis a is constant for all time.

2. Problem PNT: one-way trading from the nontaxable to the taxable asset.

ΩNT (x, I,X, s) = {(x + u, I − us,X + us)|0 ≤ u ≤ I/s}

3. Problem PCT: two-way trading with compound trades.

ΩCT (x, I, xa, s) = { ( x + u− d, I − us + db(s, a), xa + us− da )

| 0 ≤ d ≤ x, 0 ≤ u ≤ I + db(s, a)

s
}

4. Problem PNCT: two-way trading with no compound trades.

ΩNCT (x, I,X, s) = ΩTN(x, I,X, s)
⋃

ΩNT (x, I,X, s)

To clearly show the effects of the basis price and simplify the expressions, we

use xa instead of X in ΩTN and ΩCT . Otherwise we will need to replace a by X/x,
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and prohibit any d when x = 0. In problem PTN, since the basis price a(t) will

not change, we do not need the state variable X and a simpler formula applies.

In this dissertation, we only list problem PNCT as an example of a differ-

ent trading restriction, but do not provide specific analysis for its optimal policy.

However, we can show some results such as that when the trading interval is short

enough, the optimal policy for PNCT is close to that of PCT.

2.2 Preliminaries

2.2.1 Basic properties

From the model setting, we find some basic properties for our problems. They

will be used later to simplify the model, analyze the optimal policy and design

numerical solution methods.

Proposition 1. For problems PTN, PNT, PCT and PNCT, the following prop-

erties hold:

(1) For any post-trade state (x(t+k ), I(t+k ), X(t+k )) ∈ Ω(x(tk), I(tk), X(tk), s),

w(t+k ) = w(tk); (i.e., the realizable wealth will not change in trading);

(2) For any scalar λ > 0, Vk(λx, λI, λX, s) = λγVk(x, I,X, s);6 (this implies that

the optimal policy can be described in a way that is independent of the level

of wealth);

(3) For any scalar p > 0, Vk(px, I, X, s/p) = Vk(x, I,X, s); furthermore, there

exists a function Jk(I, X, Y ) such that Jk(I, X, xs) = Vk(x, I,X, s);

6If γ = 0, then Vk(λx, λI, λX, s) = ln(λ) + Vk(x, I,X, s).
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(4) Vk(x, I,X, s) is increasing in x, I and X, and more strongly, Jk(I, X, Y ) is

increasing in I, X and Y .

Proof:

Here we provide a detailed proof for (1), and give the main points to prove (2),

(3) and (4).

(1) We only need to prove w(t+k ) = w(tk) in either TN or NT trading, because

based on this fact it is easy to see w(t+k ) = w(tk) for any sequence of simple

trades and then for two-way trading problems.

In TN trading,

a(t+k ) = a(tk) and I(t+k ) = I(tk) + (x(t+k )− x(t+k ))b(sk, a(tk)),

w(t+k ) = x(t+k )b(sk, a(t+k )) + I(t+k ) = x(tk)b(sk, a(tk)) + I(tk) = w(tk).

In NT trading,

I(t+k ) = I(tk)− sk(x(t+k )− x(tk)),

a(t+k ) =
a(tk)x(tk) + sk(x(t+k )− x(tk))

x(t+k )
,

X(t+k ) = x(t+k )a(t+k ) = X(tk) + sk(x(t+k )− x(tk)),

using X(t+k )−skx(t+k ) = X(tk)−skx(tk) and I(t+k )+skx(t+k ) = I(tk)+skx(tk),

w(t+k ) = I(t+k ) + skx(t+k )− αf(skx(t+k )−X(t+k )) = w(tk)

with f(z) = z for the RL case, or f(z) = z+ for the NRL case.
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(2) We can prove this by coupling two states (λx, λI, λX, s) and (x, I,X, s) with

a proportional policy in the same sample path of s(t) and i(t), from the fact

that the tax payment (a kind of transaction cost) is proportional to the trade

size, and the utility function is homogeneous: U(λw) = (λ)γU(w).

(3) From b(s, a) = pb(s/p, a/p) and the process s(t)/p is a geometric Brown-

ian process with the same parameters as that of s(t), we can see x shares

of stock with price s and APP a is equivalent to xp shares of stock with

price s/p and APP a/p, and hence Vk(x, I, xa, s) = Vk(px, I, xpa/p, s/p) =

Vk(px, I, xa, s/p).

(4) We can prove this by the fact that for two states Z1 = (I1, X1, Y1) and Z2 =

(I2, X2, Y2) with I1 ≤ I2, X1 ≤ X2 and Y1 ≤ Y2, if Z1 changes to (I ′1, X
′
1, Y

′
1)

then Z2 can change to (I ′2, X
′
2, Y

′
2) with I ′1 ≤ I ′2, X ′

1 ≤ X ′
2 and Y ′

1 ≤ Y ′
2 .

Using property (4) of Proposition 1, we can prove that in the RL case, the

optimal policy must realize the capital loss on taxable asset, when nontaxable

asset is a riskless bond. This result is well known in work relating to investment

with taxes, see e.g., Constantinides [1]. It is also true when the nontaxable asset

always has a positive return although it may be volatile (though this violates our

assumption of GBM on the assets).
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2.2.2 Representation in two-dimensional state space

To solve our problem efficiently and represent the optimal policy simply, we can

reduce the dimensions of the state space.

In the no-trading period [t+k , tk+1], a(t) is constant. Applying property (3) in

Proposition 1, we have Vk(x, I,X, s) = Vk(X, I, X, s/a), where there are only three

different variables in the right-hand side. We can use the ratio of s(t)/a(t) instead

of s(t) and a(t) so that the dimensions of state space is reduced by one.

Since a(t) is meaningful only when x(t) > 0, we introduce a new state variable

c(t) defined by: c(t) = s(t)/a(t) when x(t) > 0 and c(t) = 1 when x(t) = 0. We

call c(t) the “relative price.”

To simplify the formulation, we introduce a new function

q(c) = b(c, 1).

We can see b(s, p) = pb(s/p, 1) = pq(s/p) for both the NRL and the RL cases.

From property (2) in Proposition 1, we can represent our problem with wealth-

independent state variables, and reduce the state space by one more dimension.

We introduce a new state variable z(t) = I(t)/w(t), the ratio of the nontaxable

asset value to the wealth, termed the “N/W ratio.”

Now we can represent our problem with a new two-dimensional state (z(tk), c(tk))

at each stage k. Let Hk(z, c) be the indirect utility value of a state which has one

unit wealth, N/W ratio z, and relative price c at stage k. Using Vk(x, I,X, s) =
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Vk(X, I, X, c) and w = I + Xq(c) = 1, we have

Hk(z, c) = Vk((1− z)/q(c), z, (1− z)/q(c), c)

The original problem formulation (P1) in Section 2.1 can be transformed to the

following form.

(P2):

• at the final stage N ,

HN(z, c) = U(1)

• at stage k < N

Hk(z, c) = max
(z′,c′)∈Ω′(z,c)

Hk(z
′, c′)

with

Hk(z
′, c′) = E[(wk+1)

γHk+1(zk+1, c
′sk+1/sk)]

wk+1 =
ik+1

ik
z′ +

q(c′sk+1/sk)

q(c′)
(1− z′),

zk+1 =
ik+1z

′

ikwk+1

The variables wk+1 and zk+1 are the wealth and the N/W ratio at time tk+1

respectively, given a state with post-decision N/W ratio z′, relative price c′

and wealth w(tk) = 1 at time t+k .

The set of states (z′, c′) reachable from (z, c) is denoted by Ω′(z, c). It can be

defined by using some characteristics of (z, c) in the 2-D state space.

For simple (TN or NT) trading, given an initial state, the set of reachable states

is a continuous curve, and the states on this curve share a common characteristic
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value. In the state space (z, c), it is natural to use c as the characteristic value for

TN trading. For NT trading, we use the value K, defined by:

K(z, c) =
(c− 1)(1− z)

z(q(c)− 1) + 1
(2.2.1)

as the characteristic value. It is easy to verify that for any two states with the

same characteristic value (c or K), one of states can reach the other by a simple

(TN or NT) trade.

We call a “trading track” the set of all the states with a given characteristic

value (c or K). We let T T (c) denote the TN trading track with relative price c,

i.e.,

T T (c) = {(z, c) : 0 ≤ z ≤ 1},

and let T N(K) denote the NT trading track with characteristic K, i.e.,

T N(K) = {(z, c) :
(c− 1)(1− z)

z(q(c)− 1) + 1
= K, 0 ≤ z ≤ 1 and c > 0},

or in the form where z is free:

T N(0) = {(z, 1) : 0 ≤ z ≤ 1}

T N(K) = {(z, 1 +
K

1− zq(K + 1)
) : 0 ≤ z < m(K)}, if K 6= 0

where m(K) is the maximal possible z value on the NT trading track with char-

acteristic K. Specifically

m(K) =


1, if K = 0
1/q(K + 1), if K > 0
(K + 1)/q(K + 1), if K < 0
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This figure shows the NT trading tracks for some characteristic K values which are selected such
that the value of ln(K + 1) are -1.0, -0.6, -0.2, 0.2, 0.6 and 1.0. The part of a NT trading track
down from a state represents the set of all the states that can be reached from this state by a
NT trade. Thus a NT trading track also shows how the N/W ratio z and the relative price c
change in NT trades.

Figure 2.1: NT Trading tracks

Figure 2.1 shows several NT trading tracks in the space (z, ln(c)).7 In the NT

trading direction, the N/W ratio decreases and the relative price c moves closer to

1, i.e., ln(c) moves closer to 0.

We also can verify that:

1. In the original state space (x, I,X, s), the K value of a NT trading track

passing state (x, I,X, s) is:

K = (xs−X)/(I + X).

2. For trading track with characteristic value K, given the N/W ratio z, the

7In all figures related to state space in this dissertation except the Appendix, the horizontal
axis is measured in logarithm of relative price, i.e., ln(c).
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relative price c is:

C(z, K) = 1 +
K

1− zq(K + 1)
(2.2.2)

For problem PTN (or PNT), the set of reachable states for a given state is the part of TN (or
NT) trading track moving up (or down) from it. For problem PCT, the set of reachable states
for (z′, c′) with c′ > 1, is the shaded area on the right side of line c = 1 (i.e., ln(c) = 0) bounded
by the TN and NT trading tracks; the set of reachable states for (z′′, c′′) with c′′ < 1, is the
shaded area on the left side of line c = 1.

Figure 2.2: Reachable states

From the relation between (x, I,X, s) and (z, c), the set of states reachable

from (z, c) for each problem is as follows:

Ω′
TN(z, c) = {(y, c)| y ≥ z},

Ω′
NT (z, c) = {(y, 1 + K(z,c)

1−yq(K(z,c)+1)
)| 0 ≤ y ≤ z},

Ω′
NCT (z, c) = Ω′

NT (z, c)
⋃

Ω′
TN(z, c),

Ω′
CT (z, c) = {(y, 1 + K(v,c)

1−yq(K(v,c)+1)
)| 0 ≤ y ≤ v, v ≥ z}.

Figure 2.2 illustrates the reachable states for each problems in the space (z, ln(c)).
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Chapter 3

Optimal policies

3.1 Optimal policy at discrete times

In this section, we study the properties of the optimal policies for problems PTN,

PNT and PCT. These properties make the computation and representation of

optimal policies simpler. The analysis for problem PCT is not as strong as that for

one-way trading problems PTN and PNT, for it relies on additional assumptions.

3.1.1 One-way trading problems

For one-way trading problems, we have the following two theorems:

Theorem 1. In problem PTN, for k = 0, 1, 2, ..., N − 1,

(1) Vk(x, I, xp, s) and V k(x, I, xp, s) are concave in x and I;

(2) there exists a function x∗k(w, s, p) such that the optimal policy for state (x, I, xp, s)

at stage k is: if x > x∗k(I + xb(s, p), s, p), then sell stock to reach the position

x∗k(I + xb(s, p), s, p), otherwise remain at x.

Proof: See Appendix.

Theorem 2. In problem PNT, for k = 0, 1, 2, ..., N − 1,
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(1) Vk(x, I,X, s) and V k(x, I,X, s) are concave in x, I and X;

(2) there exists a function x∗k(x, I,X, s) such that the optimal policy for state

(x, I,X, s) at stage k is: if x < x∗k(x, I,X, s), then buy stock to reach the posi-

tion x∗k(x, I,X, s), otherwise remain at x.

Proof: See Appendix.

To represent the optimal policy in (z, c) state space, we define the optimal N/W

ratio for each trading track.

• For problem PTN, at stage k for relative price c, let zT
k (c) be the optimal

N/W ratio on TN trading track T T (c), i.e.,

zT
k (c) = arg max

0≤y≤1
Hk(y, c)

• For problem PNT, at stage k for characteristic value K, let zN
k (K) be the

optimal N/W ratio on NT trading track T N(K), i.e.,

zN
k (K) = arg max

0≤y≤m(K)
Hk(y, C(y, K))

For brevity, we call zT
k (c) and zN

k (K) the “target N/W ratio.”

From Theorems 1 and 2, we know that, for one-way trading problem, the local

optimal state is unique for each trading track, and the optimal policy is of the

“threshold” type. Correspondingly, with the characteristic value c or K for each

TN or NT trading track, the optimal policy can be represented as follows

• For problem PTN, at stage k, for state (z, c), the optimal action is: if z <

zT
k (c) then increase the N/W ratio to zT

k (c) (by selling stock), otherwise do

not trade.



22

Figure 3.1: Optimal policy for one-way trading problems

• For problem PNT, at stage k, for state (z, c), with characteristic K = K(z, c),

the optimal action is: if z > zN
k (K) then decrease the N/W ratio to zN

k (K)

(by purchasing stock), otherwise do not trade.

The optimal target states (represented, in (z, c) space, as (zT
k (c), c) for PTN

and (zN
k (K), C(zN

k (K), K)) for PNT) are continuous (since the state and action

spaces are continuous) and form a trading/no-trading boundary which separates

the state space into “Trading” and “No-trading” regions. If the state is in the

trading region, the optimal policy is to trade to move to the boundary; while if it

is in the no-trading region, then the optimal policy is to make no trade. Figure

3.1 illustrates this “threshold” optimal policies for problems PTN and PNT.

3.1.2 Problem PCT

For problem PCT, where multiple NT and TN simple trades are allowed at any

trading time, we haven’t proved the similar concavity of the value base function,

or a weaker statement called Condition A that the local optimal states in each

NT and TN trading track is unique, for all the times like theorems for one-way

trading problems. However, we further our research on the cases where a weaker
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version of Condition A (which we call Condition A’) holds. In our computational

experiments, Condition A, which also implies A’, holds (within a very small nu-

merical error tolerance) at all times, so we conjecture that it is true. In the later

half portion of this subsection, we will analyze the properties of the optimal policy

shown in our computational experiments.

Define Condition A as the situation where there is a unique local optimal state

in each NT and TN trading track. Specifically, Condition A holding at stage k can

be represented in state space (z, c) with value base function Hk(z, c) as follows:

• There exists zT
k (c) for each trading track T T (c), such that

Hk(z
T
k (c), c) = max(y,c)∈T T (c) Hk(y, c), and

the local optimality holds for zT
k (c) on T T (c), i.e.,

for any z1 < z2 < zT (c), Hk(z1, c) ≤ Hk(z2, c);

for any z1 > z2 > zT (c), Hk(z1, c) ≤ Hk(z2, c).

• There exists zN
k (K) for each trading track T N(K), such that

Hk(z
N
k (K), C(zN

k (K), K)) = max(y,c)∈T N (K) Hk(y, c), and

for any two states (z1, c1), (z2, c2) ∈ T N(K),

if z1 < z2 < zN(K), or z1 > z2 > zN(K), then Hk(z1, c1) ≤ Hk(z2, c2).

Define Condition A’ as the situation where in each NT or TN trading track, the

value base function V () or equivalent H() will decrease along the trading direction

after reaching the maximum value. Specifically, Condition A’ holding at stage k
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can be represented in the state space (z, c) with the value base function Hk(z, c)

as follows:

• There exists zT
k (c) for each trading track T T (c), such that

Hk(z
T
k (c), c) = max(y,c)∈T T (c) Hk(y, c), and

for any z1 > z2 > zT (c), Hk(z1, c) ≤ Hk(z2, c).

• There exists zN
k (K) for each trading track T N(K), such that

Hk(z
N
k (K), C(zN

k (K), K)) = max(y,c)∈T N (K) Hk(y, c), and

for any two states (z1, c1), (z2, c2) ∈ T N(K),

if z1 < z2 < zN(K), then Hk(z1, c1) ≤ Hk(z2, c2).

Condition A’ is weaker than Condition A because it relaxes the monotonicity

requirement on one side of the maximum point on a trading track. Condition A

implies Condition A’.

Since state and control spaces are continuous, and the assets’ price processes

are continuous, Hk(z, c) is continuous in the state space (z, c). Then the two sets of

target states {(zN
k (K), C(zN

k (K), K)),∀K ∈ (−1,∞)} and {(zT
k (c), c),∀c > 0} are

two continuous “target lines” in the space (z, c) for NT and TN trading, denoted

by “N-line” and “T-line” respectively. Obviously, the two target lines have a cross

point at c = 1. Applying property (4) in Proposition 1, we have the following

result for the T-line in the NRL case.

Proposition 2. In the NRL case, for problems PTN, PCT and PNCT, the value
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on the T-line is decreasing in c when c ≤ 1, i.e., Hk(z
T
k (c1), c1) ≥ Hk(z

T
k (c2), c2),

if 0 < c1 < c2 ≤ 1.

With respect to the optimal policy in PCT, we have:

Theorem 3. For problem PCT, at stage k, if Condition A’ holds, then the optimal

action for a state is one of following three actions:

(1) execute a simple trade to make a transition to one of two target lines;

(2) execute a trade to make a transition to a cross point of two target lines;

(3) execute no trade.

Proof: See Appendix.

From Theorem 3, we know that, when condition A’ holds, the process of finding

the optimal target state from a given state can be reduced to selecting the state

with maximum value base function (H()) value among the reachable cross points,

the reachable single (NT or TN) trading target states and the original state.

Condition A’ significantly simplifies the numerical computation. Otherwise

more complex mathematical programming techniques would be needed to calculate

the optimal state in the entire set of reachable states for a given state. For example,

iterating the search along TN trading and NT trading until a convergent point is

reached, and dealing with the potential existence of multiple local optimal states.

In addition, Condition A’ ensures that the optimal policy can be simply represented

with two target lines, compared with an exhaustive list of decisions at each state

(z, c).
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Under the RL tax rule, there are five possible cases of the position relation between N-line and
T-line found in our computation. The shaded areas are the no-trading regions which are bounded
by N-line on the top and T-line at the bottom.

Figure 3.2: The position relation of target lines under the RL tax rule
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Under the NRL tax rule, there are two possible cases of the position relation between N-line
and T-line found in our computation. The shaded areas are the no-trading regions which are
bounded by N-line on the top and T-line at the bottom.

Figure 3.3: The position relation of target lines under the NRL tax rule

In our computational experiments, we found that Condition A holds at all

times, within a very small numerical error tolerance.1 In addition, some phenomena

hold all the time, which make the computation even simpler. These phenomena

are described under different tax rules as follows.

Under the RL tax rule: We found that there are only five possible cases for

the position relation between the two target lines as in the following list L:

(shown in Figure 3.2)

Case 1 T-line is under N-line for c > 1 and above N-line for c < 1.

Case 2 T-line is above N-line for c > 1 and under N-line for c < 1.

Case 3 T-line is above N-line for c > 1 and c < 1.

Case 4 T-line is above N-line for state c < 1, and there exists a cross point

1Similar small numerical errors also appear in our computational tests for one-way trading
problems. These errors affect whether Condition A holds or not. However, Condition A must
hold for one-way trading problems, due to the concavity of value base function proved in the
Theorems 1 and 2.
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(z′, c′) with c′ > 1, T-line is under N-line for 1 < c < c′ and above N-line

for c > c′.

Case 5 T-line is above N-line for state c > 1, and there exists a cross point

(z′, c′) with c′ < 1, T-line is under N-line for c′ < c < 1 and above N-line

for c < c′.

From the five cases, we found: (1) there is at most one cross point besides

c = 1, and (2) all the cross points (including that on c = 1) are not local

minimal points in target lines.

Under the NRL tax rule: We found that there are only two possible cases for

the relation between the two target lines as in the following list L’: (shown

in Figure 3.3)

Case 1’ T-line is under N-line for c > 1 and c < 1; and two target lines

converge to a constant value as c → 0.

Case 2’ There exists a cross point (z′, c′) with c′ > 1, T-line is under N-line

for 1 < c < c′ and above N-line for c > c′; for c < 1, T-line is under

N-line and two target lines converge to a constant value as c → 0.

From the two cases, we found: (1) the cross point on c = 1 is a local minimal

point in target lines, and there are two no-trading regions on the the two sides

of this point;2 (2) when c approaches zero, the two target lines converge to

2This fact also implies that in the RNL case optimal policy is not to move back to c = 1, i.e.,
do not sell all taxable assets (if you have any). In addition, we derive in next section that the
cross point at c = 1 is a minimal point on the target lines for the limiting situation.
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a constant value that is the optimal N/W ratio for portfolio optimization

without taxes.3

In general, these cases show some common characteristics: (1) there are at most

one cross point (except the convergence at c → 0 in the NRL case) besides c = 1,

and the cross point (if it exists) in any half state space (either c < 1 or c > 1) is a

local maximal point in each target line. (2) in a half state space there is at most

one no-trading region, and a no-trading region must be adjacent to the cross point

at c = 1 and bounded by N-line on the top and T-line at the bottom.4 Hence, the

computation, analysis and representation of the optimal policy for them are much

simpler, in comparison with the situations where more cross points exist.

For example, in the “Case 1” of the five possible cases under the RL tax rule,

the optimal policy is as follows (shown in Figure 3.4):

• when c > 1, do the two-way threshold policy, i.e.,

– if (z, c) is above the N-line, buy taxable asset and reach the state on

N-line;

– if (z, c) is in the no-trading region, do not trade.

– if (z, c) is below the T-line, sell taxable asset and reach T-line.

3An intuitive explanation is: because (i) it is unlikely to transit from a state with c << 1 to
states with c > 1 without trading, i.e., it is unlikely to have sk+1 > a(tk) if sk << a(tk), and (ii)
the local minimal at c = 1 depresses the trading to it, hence the situation at c << 1 is similar
to portfolio optimization without taxes (and any other transaction costs) since no tax is charged
or credited when c < 1, and similarly the optimal policy is to keep the N/W ratio to a constant
ratio independent of the relative price.

4The reason for no-trading is: for any state (z, c) in this area, the only reachable cross point
is on c = 1, say (z1, 1), and H(z1, 1) ≤ H(z2, c) ≤ H(z, c), with (z2, c) being the state on N-line;
from Theorem 3, the optimal action for the initial state is not to move.
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Figure 3.4: The optimal policy for Case 1 of problem PCT under the RL tax rule

• when c ≤ 1, move to the cross point at c = 1, i.e.,

sell all taxable asset (realize the loss in the RL case), and buy back some of

taxable asset at the current price to decrease the N/W ratio to the value of

the cross point.

However, we cannot prove that Condition A and the phenomena found in our

computational tests hold for all the stages, though our computational tests show

that these appear to be true.5 We only have a definite theoretical result for the

stage N − 1, given in the next theorem.

Theorem 4. At stage N − 1, the following hold:

(1) Condition A holds.

(2) In the RL case, there is no local minimal point in both target lines in the whole

5In the Appendix we show that we cannot use the same method for one-way trading problems
to prove the concavity (which implies Condition A and some other results in Theorem 4) for
PCT at all stages.
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space 0 < c < ∞, and there are only the five possible cases of the relation of target

lines as in list L.

(3) In the NRL case, there is no local minimal point in both target lines in the half-

space c < 1 and the half-space c > 1; if the cross point at c = 1 is local minimal in

target lines, then there are only two possible cases of the relation of target lines as

in list L’.

Proof: See Appendix.

3.2 Optimal policy just prior to termination

Although we need to use a numerical method to calculate the value function and the

optimal policy for each stage, we can derive analytical results for the optimal policy

just before the terminal time. These results can be used to verify the numerical

solution for short-term problems and also provide a reference for the optimal policy

for long-term problems. This analytical result is derived by maximizing the growth

rate of expected utility as time approaches the termination (see the Appendix for

the detailed derivation). For brevity, we refer to it as the analytical “limiting

solution”, and denote the time just prior to termination by T−. To simplify the

formula, we introduce the new symbol β = 1− α.

3.2.1 Problem PTN

Given the tax rate α and trading track characteristic value c, the optimal target

N/W ratio at the time just before termination is as follows:

• For the RL case:
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The optimal target N/W ratio is

zT (c) =
c2β2σ2

s − q(c)cρβσiσs − q(c)(cβµs − q(c)µi)/(1− γ)

β2c2σ2
s + q(c)2σ2

i − 2q(c)cρβσiσs

(3.2.1)

truncated in range [0, 1] if this ratio is out of the range.

In the simple case where index fund is a riskfree bond, i.e., σi = 0, the

right-hand side of (3.2.1) is

1− q(c)(βcµs − q(c)µi)

(1− γ)β2c2σ2
s

When the tax rate α = 0 and q(c) = c, the last formula gives the optimal

ratio of bond value to total wealth for the optimal investment between stock

and bond without transaction cost, and the result is the same as the classic

Merton solution 1− µs−µi

(1−γ)σ2
s
.

• For the NRL case:

1. If c > 1, the optimal N/W ratio is the same as that for the RL case.

2. If c < 1, the optimal N/W ratio is the same as that for the RL case

without taxes, i.e., the tax rate α = 0. Specifically it is

σ2
s − ρσiσs − (µs − µi)/(1− γ)

σ2
s + σ2

i − 2ρσiσs

3. If c = 1,

– if σs = 0, the optimal policy is the same as that for case c > 1 or

c < 1, depending on whether µs > 0 or not.
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– if σs 6= 0, the optimal N/W ratio is 1.0, i.e., to move all wealth to

nontaxable asset.

To see the impact of the tax rate α, we let Z(α, c) be the right-hand side of

equation (3.2.1). We find that Z(α, c) has the following property:

Z(a1, c) = Z(a2,
a1

1− a1

1− a2

a2

c),

so the T-lines for two different tax rates have the same shape in (z, ln(c)) space,

and differ only in a shift of ln( a1

1−a1

1−a2

a2
).
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This figure shows the optimal N/W ratio for TN trading in three cases: with tax rate of 0.3
under the RL or NRL tax rules, respectively, and without taxes. The model’s parameters are:
µs = 0.15, µi = 0.05, σs = 0.4, σi = 0.1, ρ = 0.3 and utility parameter γ = 0.

Figure 3.5: Optimal N/W ratios at T− in TN trading

Figure 3.5 gives an example of optimal target N/W ratios for TN trading just

before the terminal time for both the RL and NRL cases. The solid line labeled
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“RL0.3” denotes the optimal N/W ratio for the RL case with tax rate α = 0.3;

the dash line labeled “R0” denotes the optimal N/W ratio for case without taxes,

i.e., the tax rate α = 0, where there is no difference between the RL and the NRL

cases; and the “square” series denotes the optimal N/W ratio for the NRL case

with α = 0.3, which has the same value as “RL0.3” and “R0” for points c > 1 and

c < 1 respectively, and is discontinuous at point c = 1 with value 1.0.

3.2.2 Problem PNT

Given the characteristic value K of the trading track, just prior to the terminal

time, the optimal N/W ratio is as follows:

• For the RL case

zN(K) =

K+1
1+βK

(β2σ2
s − ρβσiσs)− (βµs − µi)/(1− γ)

β2σ2
s + σ2

i − 2ρβσiσs

(3.2.2)

truncated in range [0, 1] if this ratio is out of the range.

When index fund is riskless, i.e. σi = 0, the right-hand side of (3.2.2) is

simply:

K + 1

1 + βK
− (βµs − µi)

(1− γ)β2σ2
s

• For the NRL case

1. If K > 0, the optimal N/W ratio is the same as that for the RL case.
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2. If K < 0, the optimal N/W ratio is the same as that for the RL case

without taxes. Specifically it is

σ2
s − ρσiσs − (µs − µi)/(1− γ)

σ2
s + σ2

i − 2ρσiσs

It is the same as that for problem PTN.

3. If K = 0, i.e., c = 1,

– if σs = 0, the optimal policy is the same as that for case K > 0 or

K < 1, depending on whether µs > 0 or not.

– if σs 6= 0, the optimal N/W ratio is 1.0, i.e., not to buy any taxable

asset.

Remark: The optimal N/W ratios for buying and selling stock in the NT and

TN trading, respectively, are the same when c ≤ 1, in the NRL case.

From the target N/W ratio of each K, i.e., zN(K), we can find the final relative

price c∗(K) by c∗(K) = C(zN(K), K). From the relation between zN(K) and

c∗(K), we can derive the target N/W ratio for any given final c. This ratio is

denoted by z′N(c). For the RL case, putting K+1
1+βK

= c−α(c−1)z
q(c)

in equation (3.2.2)

and noticing that the target N/W ratio is unique for each K, we derive z′N(c), as

follows:

• if cβ2σ2
s + q(c)σ2

i − (c + q(c))ρβσiσs > 0

z′N(c) =
cβ2σ2

s − cρβσiσs − q(c)(βµs − µi)/(1− γ)

cβ2σ2
s + q(c)σ2

i − (c + q(c))ρβσiσs

truncated in range [0, 1].
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• otherwise

z′N(c) =

{
1, if ρβσiσs − σ2

i − (βµs − µi)/(1− γ) > 0
0, otherwise

From the process of deriving z′N(c), we know z′N(c) is unique for a given c.

Thus the curve of set {(z′N(c), c)} will not be the irregular case of N-line in Figure

A.1 in the Appendix.

Studying the sign of dz′N(c)/dc, we know z′N(c) is monotonically increasing or

decreasing with c.

Also, we can show that if z′N(c) = 1 at one point c, then z′N(c) = 1 for all c.

That is, the N-line cannot have some parts on the boundary z = 1 and other parts

below the boundary.
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This figure shows the optimal N/W ratio for NT trading in three cases: with tax rate of 0.3
under the RL or NRL tax rules, respectively, and without taxes. The model’s parameters are:
µs = 0.15, µi = 0.05, σs = 0.4, σi = 0.1, ρ = 0.3 and utility parameter γ = 0.

Figure 3.6: Optimal N/W ratios at T− in NT trading
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Figure 3.6 gives an example of optimal N/W ratios for NT trading just prior to

the terminal time for both the RL and NRL cases. The solid line labeled “RL0.3”

denotes the N/W ratio for the RL case with tax rate α = 0.3; the dash line labeled

“R0” denotes the N/W ratio for case without taxes, i.e. tax rate α = 0, where

there is no difference between the RL and the NRL cases; and the “square” series

denotes the N/W ratio for the NRL case with α = 0.3, which has the same value

as “RL0.3” and “R0” for point c > 1 and c < 1 respectively, and is discontinuous

at point c = 1 with value 1.0.

Remark: The optimal N/W ratio just before the terminal time is the limiting

result, and in the NRL case it may be not continuous at c = 1, for both PTN and

PNT. However, for any fixed time-step ∆t, at one time-step prior to termination,

the optimal N/W ratio curve (i.e., the target line) is continuous in c. There is a

peak in the continuous curve at c close to 1, and our computational result verified

this phenomenon.

3.2.3 Problem PCT

Because the analysis is conducted on the last trading action, the situation is the

same as at stage N − 1, and, from Theorem 4, Condition A and other results

of Theorem 4 hold at T−, though there are some special features of the limiting

solution, as the target lines are discontinuous at c = 1 and coincide for c < 1, for

the NRL case.

Now we analyze the optimal policy for problem PCT under different tax rules

by studying the relationship between the N-line and the T-line, based on the results
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from the preceding subsections.

Under the RL tax rule

From the one-way trading problems PTN and PNT, we know that, if the segments

on boundaries of z = 0 and z = 1 are ignored, the T-line is the set of states

{(zT (c), c)} with

zT (c) =
c2β2σ2

s − q(c)cρβσiσs − q(c)(cβµs − q(c)µi)/(1− γ)

β2c2σ2
s + q(c)2σ2

i − 2q(c)cρβσiσs

and the N-line is the set of states {(z′N(c), c)} with

z′N(c) =
cβ2σ2

s − cρβσiσs − q(c)(βµs − µi)/(1− γ)

cβ2σ2
s + q(c)σ2

i − (c + q(c))ρβσiσs

Solving equation zT (c) = z′N(c), which is equivalent to a third-order equation,

we have three roots:

c0 = 1,

c1 =
α

α− 1
,

and

c2 = (
α

1− α
)

σ2
i µs − ρσsσiµi

(1− γ)σ2
sσ

2
i (1− ρ2)− (σ2

i µs + σ2
sµi) + ρσsσi(µs + µi)

.

Since in reality, the tax rate α ∈ (0, 1), c1 < 0 is invalid, hence there is at

most one cross point besides c = 1, and this depends on whether c2 > 0 and the

validity of z, i.e, the additional cross point can only happen when c2 > 0 and

c2β
2σ2

s + q(c2)σ
2
i − (c2 + q(c2))ρβσiσs > 0. Similar to Theorem 4, we can show that

only the five cases in list L are possible. These five cases are not only possible, but
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they also exist, for we can select parameters to construct examples of them. The

cross point at c = 1 has N/W ratio

zT (1) =
β2σ2

s − ρβσiσs − (βµs − µi)/(1− γ)

β2σ2
s + σ2

i − ρβσiσs

(3.2.3)

It is the Merton solution (the optimal solution in the situation without taxes and

transaction costs) for the stock with µs and σs being adjusted by a coefficient β.

We call this cross point the “tax-adjusted Merton solution.”

Under the NRL rule

When c > 1, the optimal policy is the same as in the RL case, so there are only

two possible cases of the relation between target lines in c > 1, as those in list

L’. When c < 1, the N-line and T-line coincide with a constant N/W ratio, which

is the Merton solution for portfolio optimization without taxes, and the optimal

policy is to move to the target line.

At c = 1, we can derive that the cross point at c = 1 is a minimum point in

target lines.6 The reasoning is as follows: (1) If the optimal N/W ratio is z = 1,

we know the state (1, 1) is a minimum on target lines, because any TN trading

can reach this point, and this point must have a smaller value than other points

on T-line. (2) If z 6= 1, then σs = 0, under the assumption µs > 0, we can show

that the cross point at c = 1 is minimum in target lines by studying the growth

rate of expected utility on target lines in range c ≥ 1 and noting that the growth

rates of expected utility on target lines in the half-space c < 1 are not less than

6In limiting solution, it means, the growth rate of expected utility at this point is minimum
in target lines.
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that of any state (z, c) at c = 1.

3.3 Computational results

Using numerical methods introduced in Chapter 4, we can find optimal solutions for

our problems. In this section, we first illustrate the shape of target lines and their

movement in time for problems PTN, PNT and PCT, under different tax rules.

Then we compare the performance of the optimal policy and several heuristic poli-

cies. All of the computational results are obtained with the following parameters:

µs = 0.15, µi = 0.05, σs = 0.4, σi = 0.1, ρ = 0.3, utility parameter γ = 0, tax rate

α = 0.3, trading interval ∆t = 0.1 year.

3.3.1 Target lines for each problem
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Figure 3.7: T-lines of PTN in the RL case

Figures 3.7 and 3.8 show the target lines for Problem PTN in the RL and

NRL cases, respectively. Figures 3.9 and 3.10 show the target lines for Problem
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Figure 3.8: T-lines of PTN in the NRL case
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Figure 3.9: N-lines of PNT in the RL case
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Figure 3.10: N-lines of PNT in the NRL case

PNT in the RL and NRL cases, respectively. The target lines are labeled with the

remaining time to termination.

These figures illustrate that: (1) The target line at one time-step (i.e., 0.1 year)

before the termination is very close to the analytical limiting solution (comparing

the graphs in last section), for both the RL and the NRL cases. (2) As the

remaining time increases, the T-line moves down and the N-line moves up.

In the NRL case, there is a peak at c = 1 in the target line at time close to

termination, and it decreases with time.

Figures 3.11 and 3.12 show the target lines for problem PCT under the RL and

the NRL tax rules. The target lines are labeled in the form of “X time”, where

“X” may be “N” or “T” for N-line or T-line and “time” is the remaining time to

termination.

In Figure 3.11, the target lines belong to Case 1 in list L. In the half-space
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Figure 3.11: Target lines of PCT in the RL case
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Figure 3.12: Target lines of PCT in the NRL case
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c > 1, there exists a no-trading region which becomes wider with the increase in

remaining time. In the half-space c < 1, the two target lines change little with

time.

In Figure 3.12, the target lines belong to Case 1’ in List L’. There are two no-

trading regions on the two sides of c = 1, and they become wider with the increase

in remaining time. The cross point at c = 1 decreases with time.

3.3.2 Policies’ performance

To see how much benefit we can obtain from applying the optimal policy, we

compare the performance of the optimal policy and the following heuristic policies:

Myopic: uses the analytic limiting solution for all t.

PMerton: uses the Merton solution7 for all t.

BHs: buy and hold the stock.

BHi: buy and hold the index fund.

We estimated the expected utilities of these policies by applying each of them

with 65536 simulated sample paths of the assets in a time horizon of 10 or 30 years,

given 1 dollar wealth of the nontaxable asset at the beginning.8 We measure the

performance with certainty equivalent,9 and show the performance for each policy

7That is the optimal proportion of index fund in total nominal wealth for optimal allocation
between stock and index fund without taxes and any transaction costs, given in the seminal
paper of Merton[8].

8In these simulation tests, the standard errors of expected utility of all tested policies are less
than 0.002 for 10-year horizon and 0.006 for 30-year horizon.

9As γ = 0 in our test, for an expected utility v, the certainty equivalent is exp(v). It is
measured in dollar.
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with different tax rates under the RL tax rule in Tables 3.1 and 3.2 for 10-year

and 30-year horizons respectively.

Tax rate
Policy 0 0.1 0.2 0.3 0.4 0.5 0.6
Optimal 2.184 2.148 2.107 2.057 1.996 1.920 1.828
Myopic 2.184 2.145 2.102 2.052 1.992 1.918 1.822
PMerton 2.184 2.123 2.052 1.971 1.883 1.786 1.682
BHs 2.021 2.015 1.980 1.926 1.856 1.770 1.669
BHi 1.569 1.569 1.569 1.569 1.569 1.569 1.569

Table 3.1: Performance of policies under different tax rates, 10-year time horizon

Tax rate
Policy 0 0.1 0.2 0.3 0.4 0.5 0.6
Optimal 10.431 10.050 9.662 9.220 8.702 8.086 7.282
Myopic 10.431 9.939 9.465 8.991 8.486 7.909 7.164
PMerton 10.431 9.612 8.706 7.753 6.783 5.821 4.888
BHs 8.266 8.095 7.706 7.217 6.654 6.026 5.330
BHi 3.864 3.864 3.864 3.864 3.864 3.864 3.864

Table 3.2: Performance of policies under different tax rates, 30-year time horizon

From Tables 3.1 and 3.2, we see: (1) The certainty equivalent of the optimal

policy decreases with the tax rate, and this coincides with our intuition. (2) The

difference between the optimal solution and the Merton solution increases with the

tax rate; using the Merton solution (i.e., ignoring the tax) results in a significant

loss (about 5% in 10 years, 16% to 22% in 30 years) in comparison with the optimal

policy with tax rates in the range of 0.3 to 0.4. (3) The difference between optimal

and myopic is very small (less than 2.5% even in 30 years) for all tax rates; the

myopic policy can be a good approximation in this example.

Remark: Since the shape of target lines is similar to that of the limiting

solution, we can use the limiting solution to study the parameters’ impact on the

optimal policy. This is another use of the limiting solution.
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3.4 Concluding remarks

In this chapter, we study a tax-aware portfolio optimization problem, the dynamic

allocation between taxable and nontaxable assets. Our main contributions are:

(1) We derived several properties of the optimal solution, which make the repre-

sentation, analysis and computation of optimal policies simpler. Specifically, we

show that optimal policies have a simple structure represented by target lines in a

reduced two-dimensional state space. (2) We derived the “limiting solution,” the

analytical solution for the optimal policy just prior to termination, which can be

used to verify numerical results and has the potential to generate a near-optimal

performance when applied at all trading times.

We also present computational results, which show the optimal policies at dif-

ferent trading times for different problems under different tax rules, as well as

the performance of optimal policy and some heuristic policies. In particular, the

“myopic” heuristic policy, which uses the “limiting solution” at all trading times,

performs remarkably well.

Our results about the optimal solution can be applied to some extended models.

For example: (1) All of our theoretical results will hold for the models where assets’

processes are geometric Brownian motions with time-varying parameters. (2) For

models with utility functions which are concave and increasing with wealth size,

Theorems 1 and 2 will still hold. (3) All the results about one-way trading from

taxable to nontaxable, will hold for the model where the tax rate depends on

holding time.
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From our computational experiments for problem PCT, we found that Condi-

tion A and some other phenomena about target lines always hold, which makes

the computation and analysis of the optimal policy simpler. We have a conjecture

about these phenomena, which has however only been proved to hold at the stage

next to termination. A further study for other stages is needed, and the results

may be relevant to a general principle or analytical method for a large class of

stochastic control problems.

In addition, our research may provide a basis for numerically solving problems

which have more practical restrictions in the real world, for example, considering

restrictions on transfers (such as, the maximum annual contribution, the penalty

of early withdrawal, and constraints to wash sell, etc.), dealing with tax-deferred

account instead of nontaxable account, and so on. In our view, it is most valu-

able and challenging to find a good (optimal or near optimal) policy for the tax

optimization problem with multiple assets. The satisfactory performance of the

myopic policy using the limiting solution suggests to us that it may be a promising

approach.
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Chapter 4

Computational methods

In this chapter, we present the numerical methods to calculate the optimal policy

by using the properties derived in the preceding chapters.

To solve our problems, we developed two kinds of methods: one PDE-based

method and two simulation-based methods. They all operate in a dynamic pro-

gramming framework that works backwards in discrete time, and at each time,

selects the optimal action based on expectation of the value on the states at the

next time. The main difference between the two kinds of methods is the way the

expectation is calculated: one uses the numerical solution of a partial differential

equation (PDE), and the others use simulation. The PDE-based method is im-

plemented by using the finite difference approach, and is called the FD method.

The two simulation-based methods are implemented by using point-estimation or

regression, and are called the PE method or RS method respectively.

The purposes of using multiple numerical methods are: to verify the correctness

of computational results, and to compare computational performance and to guide

the usage and development of the solution in practice.
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Since our problems can be solved in a two-dimensional state space, the PDE-

based FD method is more computationally efficient. However, this method is not

suitable for solving high-dimensional problems which are more common in prac-

tice. Perhaps, using a functional approximation (e.g., the finite element technique)

instead of a discrete approximation may be a hopeful way for PDE-based methods

to solve high-dimensional problems, but there is little research to date. Consider-

ing designing and implementing PDE-based method are not as easy as simulation,

we place hopes in the approach of combining functional approximation and sim-

ulation. The regression-based simulation method is representative of this kind of

methods, and has been applied successfully in some financial applications, e.g.,

Longstaff and Schwartz [7] and Tsitsiklis and Van Roy [9] for high-dimensional

American option pricing. To test the regression-based method on the portfolio

optimization, which is a much more complicated problem than pricing American

options,1 we implement the RS method for our problem, also the PE method for

comparison.

The structure of this chapter is as follows. We introduce the solution methods

in Section 4.1, and then compare the performance of the solution methods in

Section 4.2.

1Pricing American option requires determining the optimal decision between the choices of ex-
ercising or continuing, while portfolio optimization problem requires finding an optimal portfolio,
at any state and time.
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4.1 Numerical solution methods

In this section, we introduce the numerical solution methods that will be used for

our problems. These problems are dynamic programming (DP) problems (though

they may be represented in different formulations) and can be solved in a general

DP scheme, that is: working backward from the terminal time for each stage, and

at each stage executing two critical processes:

1. Computation of expectation: obtain the post-decision values on states, by

calculating the expected value resulting from reaching states in next stage.

2. Optimization: obtain the pre-decision values on states, by finding the maxi-

mal of the post-decision value on all reachable states.

According to the methods to calculate the expectation, we classify the corre-

sponding solution methods into PDE-based or simulation-based.

From Chapter 3, we know optimal policy can be represented by some target

lines consisting of optimal target states. Our numerical solution methods are

developed to calculate these optimal target states.

4.1.1 PDE-based method

For given k, we define a continuous-time version of the value function

V (x, y, X, z, t) = E[Vk+1(x, I(tk+1), X, s(tk+1))|I(t) = y, s(t) = z]

for t in the no-trading period [t+k , tk+1]. From

E[Vk+1(x, I(tk+1), X, s(tk+1))|I(t+k ) = y, s(t+k ) = z]
= E[E[Vk+1(x, I(tk+1), X, s(tk+1))|I(t) = I(t), s(t) = s(t)]|I(t+k ) = y, s(t+k ) = z]
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we have

V (x, y, X, z, t+k ) = E[V (x, I(t), X, s(t), t)|I(t+k ) = y, s(t+k ) = z]

which results in a partial differential equation (PDE) dV/dt = 0. Specifically,

Vt + VIµiI + Vsµss +
1

2
VIIσ

2
i I

2 +
1

2
Vssσ

2
ss

2 + ρVIsσiσsIs = 0 (4.1.1)

As V (x, I,X, s, tk+1) = Vk+1(x, I,X, s) and V (x, I,X, s, t+k )= V k(x, I,X, s), we

can use this PDE to calculate V k(), given Vk+1(), the boundary condition at tk+1.

However, since the utility function is homogeneous and there is no x-item in (4.1.1),

we can construct a new value function with two less state dimensions to improve

the efficiency of computation.

Introducing the function F (u, v, t)=V(1, eu, 1, ev, t), that implies V (x, I,X, s, t)

= (X)γF (ln(I/X), ln(sx/X), t) when X 6= 0, we have the following PDE:

0 = Ft + Fu(µi −
1

2
σ2

i ) + Fv(µs −
1

2
σ2

s) +
1

2
Fuuσ

2
i +

1

2
Fvvσ

2
s + ρFuvσiσs (4.1.2)

This PDE has constant coefficients and is convenient for computation.

For given k, let G(u, v) be the value F (u, v, tk+1) (when k = N − 1, G(u, v) is

the utility of state (u, v) at final time), and F (u, v) = F (u, v, t+k ). Our problems

can be solved by iterating the following process for stage k backward from N − 1:

1. Solving PDE: Let F (u, v, tk+1) = G(u, v), calculate F (u, v) = F (u, v, t+k )

with PDE (4.1.2).

2. Optimization: Calculate the related target lines based on F (u, v) (and test

related conditions if needed), output them, and update G(u, v) according to

optimal policy.
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Note: since the values of F (·) and G(·) are used and updated at each stage, we

do not label them with a specific k.

Using software SCiPDE,2 we apply the finite difference (FD) technique to solve

the PDE by setting grid points evenly in the state space (u, v).

We perform the optimization process on a new value base function Θ(u, v) with

Θ(u, v) = F (u, v)( 1
eu+q(ev)

)γ, i.e., normalizing F k(u, v) with one unit of wealth.

This makes the search for reachable states easier. Correspondingly, for state

(u, v), the reachable states is {(z, v) : z > u} for the TN trading direction, and

{(z, ln( (ev−1)(ez+1)
eu+1

+ 1)), z < u} for the NT trading direction. After updating

Θ(u, v) with max Θ(z, y) among states (z, y) reachable from (u, v), we update

G(u, v) with G(u, v) = (eu + q(ev))γΘ(u, v), for the computation of the next iter-

ation.

4.1.2 Simulation-based method

Besides the PDE-based method, we implemented two simulation-based methods

for problem PTN: one uses simulation to estimate the values on discrete points

and approximate the value base function by interpolation, we denote it “PE” (in

short for “point estimation”), the other uses simulation and regression techniques,

we denote it “RS” (in short for “regression simulation”). We first introduce the

common characteristics and then show some key points of the implementation of

each method.

Our simulation-based method is based on formulation (P2) in (z, c) space. For

2SCiPDE is a software system produced by SciComp Inc., which generates C code to solve
PDE by the FD technique.
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problem PTN, the formulation and the computation is simpler than other prob-

lems, as it has a simple formula for the set of reachable states. When we obtain

the function Hk(), we know that the optimal policy for state (z, s) at time tk is

to increase z (if possible) to z∗k(s) = arg maxz Hk(z, s), that is the optimal N/W

ratio.

The DP framework provides a computational outline. The ways to represent

and calculate the value function under this framework result in different methods.

The following are some key points for implementing the PE and RS methods.

Point-estimation-based method (PE)

We implement the PE method according to the following outline:

1. Initialization: Set m + 1 z-nodes z0, z1, ..., zm evenly in the range [0, 1], as

zi = i/m; and set n + 1 c-nodes c0, c1, ..., cn evenly in the ln(c) space in the

range [bl, bu], that is, cj = exp(bl + (bu − bl)j/n)p. Generate L sample pairs

(el, f l), l = 1 to L, according to the distribution of (ik+1/ik, sk+1/sk).
3 Set

k = N .

2. If k = 0 stop; else k = k − 1;

3. For each state point (zi, cj) (for i = 0 to m and j = 0 to n), estimate

Hk(zi, cj) by

H ′
k(zi, cj) =

1

L

L∑
l=1

[(wil
k+1)

γH ′
k+1(zie

l/wil
k+1, cjf

l)]

3For efficiency, if the process parameters are constant, we can use the same sample set for all
stages, otherwise the samples should be generated for each stage.
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with wil
k+1 = elzi +

q(f lcj)

q(cj)
(1− zi).

4. Report computational results for stage k, go to step 2.

In this algorithm, the value base function Hk(z, c) is approximated by interpolation

on grid points (zi, cj)s with value of H ′
k(zi, cj)s, and denoted by H ′

k(z, c). The opti-

mal ratio z∗k(c) is also calculated on H ′
k(z, c). In step 3, the function H ′

k(z, c) is cal-

culated as follows: if k = N , H ′
k(z, c) = U(1); else H ′

k(z, c) = H ′
k(max{z, z∗k(c)}, c).

Regression-based method (RS)

Since our main purpose is to test the performance, and problem PTN only needs to

find the optimal z for a fixed c, we implement the regression-based method in the

one-dimensional space of c and use interpolation on a set of grid points in z-space.

The outline of the algorithm is as follows:

1. Initialization: Set m + 1 z-nodes z0, z1, ..., zm evenly in the range [0, 1], as

zi = i/m. Set L c-nodes c1, ..., cL evenly in ln(c) space of range [bv, bu].

Generate L samples (el, f l) according to distribution of (ik+1/ik, sk+1/sk) for

l = 1 to L. Set n basis functions, φ1(c),φ2(c), ..., φn(c). Set k = N .

2. If k = 0 stop; else k = k − 1;

3. For i = 0 to m

• For l = 1 to L, calculate the sample realized value χi
k(cl) by:

χi
k(cl) = wγH ′

k+1(zie
l/w, f lcl),
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with w = elzi +
q(f lcl)
q(cl)

(1− zi); the function H ′
k+1(z, c) will be introduced

later.

• Use regression to find a vector (ai1
k , ai2

k , ... , ain
k ) such that∑L

l=1(
∑n

j=1 aij
k φj(cl)− χi

k(cl))
2 is minimized.

4. Report computational results for stage k, go to step 2.

In this algorithm, we use Qi
k(c) =

∑n
j=1 aij

k φj(c) to approximate Hk(zi, c), and

then for fixed c, Hk(z, c) is approximated by interpolating Qi
k(c)s on zis, and

denoted by H ′
k(z, c). z∗k(c) is calculated on this approximated Hk(z, c). In step

3, the function H ′(z, c) is computed as follows: If k + 1 = N , H ′(z, c) = 1; else

H ′(z, c) = H ′
k(max{z, z∗k(c)}, c).

4.2 Computational performance of all numerical

methods on PTN

In this section, we compare the computational performance of all numerical meth-

ods on problem PTN (for both RL and NRL cases), on the basis of accuracy

of computational solutions (with one time-step and many time-steps) and per-

formance of policies derived from these solutions. Although we do not conduct

complete study on computation, these results can show certain characteristics of

each solution method.

All the computational results are obtained with the following basic parameters:

parameters of assets’ price processes µs = 0.15, µi = 0.05, σs = 0.4, σi = 0.1 and
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ρ = 0.3, utility parameter γ = 0, tax rate α = 0.3, and basis price p = 1.0.4

To present our results, we use “FDN” to denote the solution of the FD method

with a N ×N grid of state points in range −7 ≤ ln(z) ≤ 17, −8 ≤ ln(s) ≤ 8, and

“PE(n − L)” to denote the solution of the PE method with n + 1 points of s in

range −8 ≤ ln(s) ≤ 8 and L samples simulated for each discrete state point, with

m = 50 for setting z-grids evenly in range [0,1].5

For RS methods, we test several sets of basis functions (SBF) with different

size n and with different simulated sample size L. The following are some selected

RS methods with specific SBF.

RS-l uses power of ln(s), i.e., SBF={1, ln(s)i for i = 1 to n− 1}.

RS-c uses cubic spline series, i.e., SBF={1, ln(s), ln(s)2, ln(s)3 and(ln(s) − xi)
+3

for i = 1 to n − 4}. The nodes xis, which are called knot-nodes or simply

k-nodes, are set evenly in space of range −8 ≤ ln(s) ≤ 8.

RS-q uses quadratic spline series, i.e., SBF={1, ln(s), ln(s)2, and (ln(s) − xi)
+2

for i = 1 to n− 3}, with k-nodes xis being set densely when s is close to p.6

It is specifically designed to deal with the peak of target line at s = p in the

NRL case.

RS-r uses a special SBF of {1, s
q(s)

, ( s
q(s)

)2, ( s
q(s)

)3, ( s
q(s)

)4, and si for i = 1 to n−5}.

4Since the basis price does not change in problem PTN, we use basis price p = 1 so that stock
price s is also the relative price c in the formulation of Model P2, and we do not use the term
“relative price” here.

5We found that the results using m greater than 50 are similar, thus here we report solutions
with this fixed z-grid.

6The k-nodes xis, for i = 1 to n − 3, are set as: x1 = 0, x2j = −23−j , x2j+1 = −23−j for
j ≥ 1, assuming p = 1.
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It uses the fact that the growth rate Q(z) at time just before termination

can be expanded as a1 +a2
s

q(s)
+a3(

s
q(s)

)2 +a4s+a5s
2 where ais are constant,

and we use more items to improve its power for representing.

We use the notation “RS-x(n−i)” to denote the solution of the RS method “RS-x”

using SBF size of n and sample size L = 2i. Like PE solutions, all the solutions

for these RS methods reported here use m = 50 for z-position setting.

In simulation-related computation, either the computation of PE and RS meth-

ods or the evaluation of policies, we found that using the Sobol sequence to generate

simulation sample has much higher accuracy and efficiency than plain random num-

bers. If not mentioned, the simulations reported in this section are implemented

with this kind of Quasi-Monte Carlo methods.

4.2.1 Computation with one time-step

At the time one time-step before termination, the computation is based on the

accurate value at the final time. Hence we report the results at this time to show

the accuracy of each method for one-step computation.

We tested the three kinds of solution methods on two problems: RL1 and

NRL1, which both have the same basis parameters and one time-step dt =

0.01year to final time, but different tax codes, namely RL and NRL, respectively.

From the computational results on the two problems, we found that:

• With proper computational parameter, all the numerical methods can gener-

ate target N/W ratios close to the analytic limiting solution, which is a good
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reference when time-step dt is very short, though it is not the exact optimal

result at time one step before determination.

• With increasing grid density, FD solutions stably converge to some result

very close to that of FD1600.

• PE solutions show a tendency of converging to FD1600 when the number of

discrete points n and the sample size L are increased.

• The convergence of FD and PE solutions verifies the correctness of these two

solution methods presented in different Dynamic Programming formulation

with different state space.

From above findings and the best policy performance of FD1600 which will be

shown later, we believe that FD1600 is the most accurate solution, though we do

not know the exact optimal solution. Hence we analyze the accuracy of solutions

via their distances to FD1600, which is measured by the root mean square error

(RMSE) on the target N/W ratio on 53 s points evenly distributed in the range

−4.16 ≤ ln(s) ≤ 4.16 for our report.

From the analysis on the RMSE to FD1600 for each solution, we found that:

• The accuracy of RS method largely depends on the set of basis functions

(SBF). For example, in the NRL case, with 219 simulation samples, RS-q can

provide the correct optimal N/W ratio of 1.0 at s = p and has a RMSE to

FD1600 which is less than 0.034, while each of the other tested RS methods

has an error greater than 0.5 at s = p and a RMSE to FD1600 around 0.1.
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• Comparing PE and RS solutions with the same total number of samples,

e.g., comparing PE64-2048 with RS solutions with L = 217 or comparing

PE64-8192 with RS solutions with L = 219, generally the RS solutions have

larger errors than PE solutions, except in cases of small size of samples for

problem NRL1 where there are larger errors than problem RL1.

• With the increase in the total number of samples (and thus also the com-

putation effort), the error of RS solutions seems to reach a limit larger than

that of PE solutions. We think that it is caused by the error between the real

value base function and the best linear combination of the basis functions.

For a SBF with a fixed size of n, this error can not be reduced by increasing

the amount of samples. Increasing the size of SBF can improve the represen-

tative ability of SBF and reduce the error, but needs an exponential increase

of samples to support the computation.

• All the solution methods do not perform as well in the NRL case as they

do in the RL case for one-step problem. FD and PE methods (which use

discrete approximation on grid points) need more grid nodes to attain a

specific accuracy in NRL1 than in RL1. For RS methods, we can easily

find a SBF to make error less than 0.01 for problem RL1, while for problem

NRL1, the best performer RS-q has an error larger than 0.03 which cannot

be improved through increasing the sample size.

We think the reason is that there is a steep peak on target N/W ratio at



60

small neighborhood of s = p, i.e., s = 1 in the NRL case.

To show the computational efficiency, in Figures 4.1 and 4.2, we present the

pairs of accuracy and computation time for each solution method on problems

RL1 and NRL1 respectively. In these two figures, the displayed error for PE is

the smallest one among the errors of all PE solutions with the same computation

effort. RS-r and RS-q are the the best among all the selected RS methods for

problems RL1 and NRL1 respectively. The computation time is measured on a

PC with Pentium 4 CPU 3.0GHz.
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Figure 4.1: Accuracy and computation time of each method in the RL case

4.2.2 Computation with multiple time-steps

All the numerical methods involve computational error, and this error will accu-

mulate along with increase in time-steps. From the accurate results of FD method

on problems with one time-step, we are confident of its accuracy for problem with

several time-steps and we believe that the FD method have the best performance
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Figure 4.2: Accuracy and computation time of each method in the NRL case

among all methods for problems with many time-steps. Since we do not know

the exact solution for problem with many time-steps, we use the RSME, a mea-

sure of difference, between FD1600 and other solutions, to make inferences about

accumulated errors.

Here we present some computational results for two problems with 100 time-

steps, which have the same basis parameters and the length of time-step dt =

0.1year, but different tax codes: RL and NRL. We call them problems RL2 and

NRL2 respectively.

Tables 4.1 and 4.2 show the RSME of each solution to FD1600 at different time

points for problems RL2 and NRL2.

From the computational results, we find:

• Generally, the RSME are kept within a small level (less than 0.1) for all the

time for all the methods. The RSME may increase along with the time-steps



62

timestep 1 2 5 10 20 50 100
FD50 0.00751 0.00554 0.00516 0.01468 0.00791 0.01039 0.01286
FD200 0.00056 0.00078 0.00100 0.00115 0.00099 0.00043 0.00055
FD800 0.00013 0.00038 0.00014 0.00184 0.00087 0.00155 0.00069
PE(32-1024) 0.00556 0.00468 0.00660 0.00854 0.00883 0.00905 0.00811
PE(64-2048) 0.00194 0.00203 0.00200 0.00217 0.00244 0.00215 0.00217
RS-r(8-17) 0.00416 0.03206 0.06061 0.07465 0.08294 0.08578 0.08270
RS-r(8-19) 0.00078 0.02921 0.05716 0.07108 0.07956 0.08361 0.08088
RS-l(12-17) 0.01052 0.04165 0.07462 0.09159 0.10334 0.11076 0.10193
RS-l(16-19) 0.00288 0.02776 0.05372 0.06607 0.07358 0.07149 0.05993
RS-c(16-17) 0.00492 0.01839 0.03894 0.05064 0.05375 0.04568 0.04515
RS-c(16-19) 0.00139 0.01793 0.03821 0.04958 0.05241 0.04405 0.04305

This table shows the root mean square error between FD1600 and other solutions at certain time
points (with the number of steps to termination as listed in the first row) for problem RL2 where
investor can trade with time-step dt = 0.1 year, under the RL tax code.

Table 4.1: RSME between FD1600 and other solutions on several time points for
problem RL2

timestep 1 2 5 10 20 50 100
FD50 0.01116 0.02751 0.03125 0.01676 0.01248 0.01233 0.01096
FD200 0.00699 0.00533 0.00576 0.00291 0.00291 0.00237 0.00219
FD800 0.00228 0.00123 0.00544 0.00272 0.00134 0.00064 0.00049
PE(32-1024) 0.16280 0.14551 0.13258 0.10954 0.09244 0.07130 0.06295
PE(64-2048) 0.09439 0.06819 0.05134 0.04665 0.04103 0.03701 0.03576
PE(128-2048) 0.01703 0.01295 0.01043 0.00853 0.00709 0.00577 0.00477
PE(512-2048) 0.00250 0.00244 0.00233 0.00233 0.00214 0.00214 0.00188
RS-q(12-17) 0.07478 0.07641 0.06622 0.06805 0.06531 0.03675 0.01196
RS-q(16-17) 0.06946 0.06833 0.06307 0.07979 0.05586 0.04509 0.01763
RS-q(16-19) 0.03321 0.02342 0.09353 0.03423 0.03313 0.02409 0.01523

This table shows the root mean square error between FD1600 and other solutions at certain time
points (listed in the first row) for problem NRL2 where investor can trade with time-step dt = 0.1
year, under the NRL tax code.

Table 4.2: RSME between FD1600 and other solutions on several time points for
problem NRL2
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at beginning, but when they reach to some point (usually within 10 steps),

they will not increase significantly and may even decrease. For the NRL

case, RSME of almost all the methods even have a decreasing trend along

with time. The reason may be that the optimal N/W ratios approach a limit

value with increases of time to termination, and each solution also has a

trend to reach a limit and thus the errors will not enlarge when the number

of time-steps is more than a certain number.

• For the RL case, RS methods have bigger errors than other methods, and

the errors become serious from the second last time-step while the errors of

other methods are not sensitive at this time-point. Among RS methods, RS-r

method has the largest error since the second last step, although it has the

smallest error for the latest step. It means that an RS method performing

well for one step problem may not perform well for multi-steps problem.

• For FD and PE solutions, the RSME do not increase significantly along with

time. The RSME are very small for all FD solutions, especially FD200 and

FD800. For the NRL case, FD and PE methods need a denser grid than for

the RL case to reach the same error level.

4.2.3 Performance of policies

Each numerical solution produces a policy and implementing the policy starting

from a initial state will result in a corresponding expected utility of the final wealth.

We can use simulation to obtain the estimated expected utility at some states for
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Starting stock prices
Policy 0.0408 0.2019 1.0000 4.9530 24.5325
RS-l(12-17) 1.56401 1.65947 1.97088 2.11522 2.14970
RS-l(16-19) 1.56831 1.66479 1.97108 2.11524 2.14970
RS-r(8-17) 1.56465 1.66339 1.97102 2.11522 2.14970
RS-r(8-19) 1.56460 1.66364 1.97104 2.11524 2.14970
RS-c(16-17) 1.56800 1.66661 1.97118 2.11524 2.14970
RS-c(16-19) 1.56800 1.66681 1.97120 2.11524 2.14970
PE(32-1024) 1.56831 1.66878 1.97131 2.11522 2.14968
PE(64-2048) 1.56831 1.66881 1.97131 2.11524 2.14970
FD50 1.56831 1.66878 1.97129 2.11518 2.14962
FD200 1.56831 1.66881 1.97133 2.11526 2.14970
FD1600 1.56831 1.66881 1.97133 2.11526 2.14970
Myopic 1.56831 1.59966 1.96272 2.09535 2.12510
A0.5 1.42307 1.63948 1.88534 1.99783 2.02693
BH1.0 1.56831 1.56831 1.56831 1.56831 1.56831
BH0.5 1.41690 1.64897 1.92595 2.05410 2.08700
BH0 1.21480 1.57359 1.91986 2.01244 2.01611

This table shows the certainty equivalent of the estimated expected utility for conducting each
policy listed in the first column. The results are estimated with simulation on a time horizon of
10 years, starting from the states with the stock price s in the row under “Starting stock prices”
given the initial realizable wealth of 1 dollar of stock and basis price of 1. The model setting is
the same as that for RL2.

Table 4.3: Policies’ performance on RL2 by simulation

each policy, and then evaluate the performances of all the policies and the solution

methods.7

We test the performances of the policies generated by the solution of different

methods for preceding problems RL2 and NRL2, and show relevant results in

Tables 4.3 and 4.4 respectively.

In the Tables 4.3 and 4.4, data in rows headed by the title of policy are the

certainty equivalent of the estimated expected utility of implementing that policy

from each states with a certain stock price s at beginning, given initial realizable

wealth of 1 dollar of stock. They were estimated by simulation with 262144 sample

7For problem PTN, the policy is to move to the target line of N/W ratio if possible. Our
numerical solutions provide target N/W ratios on c-grid points. We use interpolation on these
grid points to approximate the target line for testing the policies of the numerical solutions.
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Starting stock prices
policy 0.0408 0.2019 1.0000 4.9530 24.5325
RS-q(12-17) 2.15416 2.09883 1.89417 2.11051 2.14914
RS-q(16-17) 2.15416 2.09900 1.89455 2.11051 2.14914
RS-q(16-19) 2.15448 2.10003 1.89402 2.11095 2.14960
PE(32-1024) 2.15308 2.08352 1.84611 2.10762 2.14962
PE(64-2048) 2.15450 2.09872 1.88942 2.11089 2.14968
PE(128-2048) 2.15472 2.10061 1.89513 2.11114 2.14968
PE(512-2048) 2.15474 2.10066 1.89532 2.11117 2.14968
FD50 2.15459 2.10009 1.89459 2.11106 2.14960
FD200 2.15474 2.10066 1.89529 2.11117 2.14968
FD800 2.15474 2.10066 1.89532 2.11117 2.14968
FD1600 2.15474 2.10068 1.89534 2.11117 2.14968
Myopic 2.12853 2.07402 1.56831 2.09279 2.12508
A0.5 2.03157 1.99093 1.84914 1.99663 2.02691
BH1.0 1.56831 1.56831 1.56831 1.56831 1.56831
BH0.5 2.09064 2.03267 1.88263 2.05269 2.08700
BH0 2.00856 1.94381 1.73060 1.99875 2.01587

This table shows the certainty equivalent of the estimated expected utility for conducting each
policy listed in the first column. The results are estimated with simulation on a time horizon of
10 years, starting from the states with the stock price s in the row under “Starting stock prices”
given the initial realizable wealth of 1 dollar of stock and basis price of 1. The model setting is
the same as that for NRL2.

Table 4.4: Policies’ performance on NRL2 by simulation

paths generated by Sobol sequence. The results of using Sobol sequence are much

more accurate than that of using plain random numbers. For example, the exact

expected utility of policy “holding all the wealth on index fund” is 0.45, the sim-

ulation result of using Sobol is 0.45000011, while the result of using plain random

numbers is 0.45064688. Although we do not know the standard error of simulation

results of using Sobol, we can get some estimation or reference from result of using

plain random numbers. From simulation on the same test sets, we found that all

the standard errors of results using plain random numbers are less than 0.001.

Besides the policies produced by each numerical methods, we also test following

heuristic policies.

Dynamic policies: “Myopic” and “A0.5,” which use the limiting solution and
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constant 1/2 respectively as the target N/W ratio for all the time.

Buy-and-hold policies: BH0, BH0.5 and BH1.0, which respectively put 0, 50

and 100 percent of wealth on nontaxable asset at beginning, and make no

trade until the final time.

From the Tables 4.3 and 4.4, we can see that:

• FD1600 has the highest performance in all tested states, FD200 performs

almost as well as FD1600.

• The difference on the policy performance of all solutions are much smaller

than that on the target N/W ratio. For example, RS-l(12-17) has a RMSE

range from 0.01 to 0.11 on the 100 time-points, while the certainty equivalent

of its policy has a relative error less than 0.5% to that of FD1600. A solution

with RMSE less than 0.01 on 100 time-points will have a performance close

to that of FD1600 within a 0.005% relative error, e.g. PE(32-1024) in RL2,

and PE(512-2048) in NRL2. This, in some sense, means the objective value

(the expected utility) is insensitive to the policy.

• Using moderate grid density and sample size, the simulation-based methods

can produce rather good policies whose performances are close to that of

FD1600 with a relative error of less than 0.1%, which is much better than

the best of heuristic policies.

• Among the Heuristic policies, “Myopic” shows a performance not far from

that of FD1600 in most tested states, except at s = 1 in the NRL case, where
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the optimal N/W ratio changes a lot with time. The difference between the

performance of FD1600 and policy “Myopic” shows the benefit of using time-

dependent policy.

4.3 Concluding remarks

In this chapter, we developed one PDE-based (using finite difference) and two

simulation-based (using point-estimation and regression, respectively) numerical

methods for dynamic allocation between taxable and nontaxable assets. The com-

putational performance of these numerical methods are also compared.

Because our problem can be reduced in a two-dimensional state space, the

PDE-based FD method has the best performance (with the highest accuracy and

lowest computation effort). However this method may suffer from the curse of

dimension for problems with a high dimensional state space, which are common

in practice. In addition, a well-defined PDE may not always be available for all

problems. For example, when our problems are represented in the formulation of

model P2, we can not have a PDE for the NRL case, because the function q(c)

does not have a continuous derivative at c = 1. Hence it is worth developing other

numerical methods.

In our computational tests, the PE method is used as a reference to compare

with the RS method. Since the PE method uses discrete approximation for the

value function on grid points, as the FD method, it still cannot deal with high-

dimensional problems, besides it uses more computation on expectation than the
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FD method. Using binomial or multinomial process to approximate the process of

asset’s price can be seen as a simplification of quasi-simulation. A solution method

based on this kind of approximation, which we call a lattice method, is a simplified

PE method. Lattice methods have similar computational features and complexity

as FD methods, but they would have bigger errors than FD methods and the PE

methods which use large size of samples. When the PDE is unavailable and a quick

solution is needed, a lattice method may be acceptable.

The essence of the RS method is to use a linear combination of a set of basis

functions (SBF). Hence its performance is determined by the SBF. However there

lacks a guideline or a systematic method to find a good SBF. Although we tried

many sets of basis functions, we still could not find a good one that makes the

RS method perform better than the plain PE method for multi-steps problems.

In comparison with PE solutions, all of our tested RS solutions have the following

weaknesses: (1) with the same computation effort, the solutions of RS method

have bigger errors for almost all the cases;8 (2) the RS method has a slower (or

no) trend of error reduction with increase of sample size; (3) the RS method has a

bad control on accumulated error with increase of steps.

When we do not know the characteristics of a value function well, spline series

is a good choice for SBF. The spline type of SBFs performed well in most cases

in our tests. In addition to the high accuracy and policy’s performance among

all the RS solutions, spline type of SBFs have some other strengths: (1) they

8The unique counter-example is the RS-q solution on one-step problem with small samples.
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have a good control on accumulated error for multi-period problems; (2) we can

set appropriate k-nodes according to some known features of the approximated

function, as we did for RS-q for problem NRL2, and this work is easier than

designing special basis functions. However, using spline series as SBF still cannot

deal with high-dimensional problems, as it needs to set k-nodes for each dimension.

Finally, it is worth pointing out that we should not disregard the RS method, as

it has a potential for high dimensional problem, just in our 2-D problems it failed

to performs as well as the FD and PE methods. There is also a need to point

out that, even if there are some obvious differences between the solutions (on the

target N/W ratio) provided by all these methods, the performances of the policies

derived from these solutions are very close, sometimes almost indistinguishable.
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Chapter 5

Summary — some words to
investors

In this dissertation, I study dynamic investment policies in the presence of taxes.

An investment policy describes what to do (e.g., how much of each asset to buy

or sell) in different situations, and the term “dynamic” means that it involves a

sequence of decisions over time. As a starting point to solve more complicated

models, I study a simpler case, the dynamic allocation of two assets: one taxable

and one nontaxable asset.

In my research, I derived properties of the optimal policy, and demonstrated its

simple structure. Here I illustrate the optimal policy for a typical situation where

the taxable asset is stock and the nontaxable asset is a riskfree bond. The Merton

policy, which is optimal in dynamic asset allocation without taxes, is to maintain

a constant portfolio (i.e., the assets’ proportion in total wealth) at all times. For

our model, the optimal policy has the following features:

• When there is an embedded capital loss, i.e., the stock price is lower than the

basis price, the optimal policy is to sell all stock (i.e., realize the tax credit)
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and then buy stock (which sets the basis price to the current market price).

The final portfolio is optimal for the situation where the mean return and

volatility of stock are adjusted by a coefficient of (1-tax rate) in the trading

environment with no tax and no transaction cost, i.e., the Merton model.

We call this optimal portfolio the “tax-adjusted Merton solution,” which is

first mentioned in subsection 3.2.3, the “cross point” at c = 1. The reason

for realizing the loss is that the tax credit from realizing the loss outweighs

the present value of the extra tax payment in the future caused by the lower

basis.

• When there is an embedded capital gain, i.e., the stock price is higher than

the basis price, the optimal policy can be described by the critical prices to

sell or buy stock. The optimal policy is to sell stock if the stock price is

greater than the critical sell price, to buy stock if the stock price is less than

the critical buy price, and do nothing when the stock price is between the

critical buy and sell price. If the policy is to do a trade (either to buy or

to sell stock), the final position is determined by the stock price, basis price

and the fraction of stock in total wealth, and is usually not the tax-adjusted

Merton solution. The Merton policy maintains a unique portfolio (i.e., any

deviation in portfolio will be adjusted back to this portfolio) and obtains the

best diversification benefit. However, in the presence of taxes, there exists a

region where it is optimal not to trade. The reason is that in the presence of

taxes, we need to compare the tax payment with the diversification benefit,
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and we only trade when the diversification benefits outweighs the tax cost.

To better understand these features, in the following tables, I present some

numerical results. These numerical results are computed by the “limiting solution.”

Since the policy of the “limiting solution ” is very close to the optimal policy, we

don’t distinguish these terms in what follows. In the computations, we assume the

stock has a mean annual return of 10% and a volatility (standard deviation) of

25%, the riskfree bond has an annual return of 5% and the trading interval is one

year.

Table 5.1 illustrates the trading strategy for a single sample path. We assume

an initial wealth of $10,000, and a fraction in stock of 65.3% (the tax-adjusted

Merton solution) at time 0. At time 1, since the stock price is lower than the basis

price, the optimal action is to realize the loss and buy stock so that the fraction in

stock is the tax-adjusted Merton solution. At time 2, the stock price increases, and

is larger than basis price but less than the critical buy price, so the optimal action

is to buy stock. At times 5 and 6, the stock prices are higher than the critical sell

price, so the optimal actions are to sell stock; after trading the portfolios are be far

from the tax-adjusted Merton solution. At other times, the stock price is higher

than basis price (i.e., there is a capital gain) but in the range between critical buy

price and sell price, so the optimal action is not to trade.

Tables 5.2, 5.3 and 5.4 show the parameters’ impact on the optimal policy, the

tax-adjusted Merton solution (shown in the form of the nominal fraction in stock)

and the critical prices to buy and sell. These numerical results are calculated under
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stock state variables before/after decision crtcl price
time price #stock #bond basis price stock fraction buy/sell action

1 98.2 65.3/67.1 34.7/33.3 100.0/98.2 63.7%/65.3% 103.3/226.2 realize loss
2 101.2 67.1/67.2 33.3/33.2 98.2/98.2 64.9%/64.9% 101.4/222.1 buy stock
3 131.1 67.2/67.2 33.2/33.2 98.2/98.2 69.5%/69.5% 104.7/243.0 no trade
4 152.8 67.2/67.2 33.2/33.2 98.2/98.2 71.6%/71.6% 108.3/264.1 no trade
5 289.1 67.2/67.0 33.2/33.5 98.2/98.2 82.0%/81.8% 112.0/285.3 sell stock
6 320.6 67.0/66.7 33.5/34.1 98.2/98.2 82.6%/82.3% 116.7/310.8 sell stock
7 241.2 66.7/66.7 34.1/34.1 98.2/98.2 76.9%/76.9% 122.7/343.2 no trade
8 356.1 66.7/66.7 34.1/34.1 98.2/98.2 82.4%/82.4% 127.2/366.6 no trade

This table shows a sample path of states under the optimal policy in eight annual time steps.
The risk aversion parameter is zero, and the tax rate is 30%.

Table 5.1: A sample path of states under the optimal policy

the assumption that at time 0, the market prices of the stock and bond are $100,

and the initial portfolio is the tax-adjusted Merton solution. The critical prices to

sell or buy are for the optimal policy at time 1.

tax-adjusted
tax rate Merton sol. buy price sell price

0 80.00% 105.13 105.13
0.1 79.01% 103.72 106.53
0.2 75.00% 103.20 115.79
0.3 65.31% 103.28 226.18
0.4 44.44% 103.88 778.16
0.5 0.00% N/A N/A

This table shows the tax-adjusted Merton solution (represented in the form of the nominal
fraction in stock) at the current time and the critical sell and buy prices at the next trading
time. The risk aversion parameter is zero and the basis price is $100 at time 0.

Table 5.2: Tax-adjusted Merton solution and critical prices to buy and sell under
different tax rates

Table 5.2 shows the impact of tax rates. When the tax rate is greater than 50%

the optimal portfolio is to hold only the bond, so the critical prices are meaningful

when the tax rate is less than 50%. From this table we can see: 1) when the tax

rate is zero, the optimal portfolio is unique (i.e., the Merton solution), and the

critical buy and sell prices are the same; 2) when the tax rate is greater than zero,
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the critical prices are different for buying and selling. The critical buy price is not

sensitive to the tax rate. The critical sell price increases with the tax rate, because

it is optimal to wait longer before selling as the tax payment (the cost of selling)

increases; 3) the range of stock prices for not trading (i.e., the range between the

critical buy and sell prices) increases with the tax rate. The no-trading region can

be quite large. For example, for a tax rate of 30%, stock is not sold until the stock

price exceeds the critical sell price of $226.18.

risk tax-adjusted
aversion Merton sol. buy price sell price

0 65.31% 103.28 226.18
-1 32.65% 104.48 127.46
-2 21.77% 104.73 121.59
-3 16.33% 104.84 119.68
-4 13.06% 104.91 118.73
-5 10.88% 104.95 118.18
-6 9.33% 104.97 117.81
-7 8.16% 104.99 117.55
-8 7.26% 105.01 117.35
-9 6.53% 105.02 117.20

-10 5.94% 105.03 117.08

This table shows the tax-adjusted Merton solution (represented in the form of the nominal
fraction in stock) at the current time and critical sell and buy prices at the next trading time.
The tax rate is 30% and the basis price is $100 at time 0.

Table 5.3: Tax-adjusted Merton solution and critical prices to buy and sell under
different risk aversion parameters

Table 5.3 shows the impact of the risk aversion parameter. From this table we

can see that when the investor becomes more risk averse (i.e., the risk aversion

parameter decreases), the range of stock prices for not trading becomes more nar-

row. More risk averse investors trade more frequently to maintain a sufficiently

diversified portfolio.
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basis price buy price sell price
100 103.28 226.18
90 99.67 244.43
80 96.06 258.65
70 92.45 270.42
60 88.84 280.44
50 85.23 289.13
40 81.62 296.74
30 78.01 303.43
20 74.40 309.34
10 70.80 314.55

This table shows the critical sell and buy prices at time 1, for different basis prices given at time
0. The tax rate is 30% and the risk averse parameter is zero. At time 0 the nominal fraction in
stock is the tax-adjusted Merton solution, 65.31%.

Table 5.4: Critical prices to buy and sell under different basis prices

Table 5.4 shows the impact of the basis price on the critical prices. As the basis

price decreases, the critical buy price decreases and the critical sell price increases,

i.e., the no-trading region increases. When the capital gain is larger, the cost for

selling stock is larger, so it is optimal to wait longer to sell stock.

In summary, the optimal trading strategy in the presence of taxes is quite differ-

ent than with taxes. This thesis derives theoretical results showing the structure of

optimal trading strategies and develops algorithms for computing these strategies

in the presence of taxes.
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Appendix A

Proofs and Derivations for
Chapter 3

A.1 The proofs of theorems for one-way trading

problems

Lemma A.1.1. Let S ⊂ Rm be a convex set, P ⊂ Rn+m a convex set such that

for any x ∈ S, set Q(x) = {u : (u, x) ∈ P} is not empty. If the function f(u) is

concave in u, then the function f ∗(x) ≡ maxu∈Q(x) f(u) is concave in x.

Proof:

Let x1, x2 ∈ S, and for i = 1, 2, let ui = arg maxu∈Q(xi) f(u), that is, f ∗(xi) =

f(ui) and ui ∈ Q(xi) which also implies (ui, xi) ∈ P .

For any λ ∈ (0, 1), we have λu1 + (1 − λ)u2 ∈ Q(λx1 + (1 − λ)x2), because

(λu1 + (1 − λ)u2, λx1 + (1 − λ)x2) = λ(u1, x1) + (1 − λ)(u2, x2) ∈ P , from the

convexity of P .
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Then

f ∗(λx1 + (1− λ)x2) ≥ f(λu1 + (1− λ)u2)

≥ λf(u1) + (1− λ)f(u2)

= λf ∗(x1) + (1− λ)f ∗(x2)

where the first inequality follows by λu1 + (1 − λ)u2 ∈ Q(λx1 + (1 − λ)x2), the

second inequality follows by the fact that f(u) is concave in u.

Therefore, f ∗(x) is concave in x.

Proof of Theorem 1:

Note: In problem PTN, the APP a(t) = p for all the stages, so we neglect the

item “xp” in the state in the proof for simplicity.

(1) Concavity can be proved by induction on k.

Assuming Vk+1(x, I, s) is concave in x and I, then for any positive r, Vk+1(x, rI, s)

is still concave in x and I.

From V k(x, I, s) = E[Vk+1(x, ik+1

ik
I, sk+1)|sk = s], and Vk+1(x, ik+1

ik
I, sk+1) is

concave in x and I for each sample ( ik+1

ik
, sk+1), we have V k(x, I, s) is concave in x

and I.

For given state (x, I, s) the reachable state is {(z, y, s) : 0 ≤ z ≤ x, y =

I + (x − z)b(p, s)} and the set {(z, y, x, I) : 0 ≤ z ≤ x, y = I + (x − z)b(p, s)} is

convex. From the concavity of V k(), and using Lemma A.1.1, we know Vk(x, I, s)

is concave in x and I.
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By inducting, since VN(x, I, s) = U(I +xb(s, p)) is concave in x and I, we know

Vk(x, I, s) and V k(x, I, s) are concave in x and I, for k = 0, 1, 2, ..., N − 1.

(2) From the concavity of V k(x, I, s) and the reachable states have a linear

relation between x and I, we know the optimal state must be the unique local

optimal in V k(), and the optimal policy is of the threshold type. The detailed

proof follows.

Define

Fk(z, w, s, p) = V k(z, w − zb(s, p), zp, s)

and

x∗k(w, s, p) = arg max
0≤z≤w/b(s,p)

Fk(z, w, s, p).

From the concavity of V k(x, I, xp, s), we know that Fk(z, w, s, p) is concave in z

and then for 0 ≤ x ≤ w
b(s,p)

,

max
0≤z≤x

Fk(z, w, s, p) =

{
Fk(x

∗
k(w, s, p), w, s, p), if x ≥ x∗k(w, s, p)

Fk(x, w, s, p), otherwise

Since

Vk(x, I, xp, s) = max
0≤u≤x

V k(x− u, I + ub(s, p), (x− u)p, s)

= max
0≤z≤x

Fk(z, I + xb(s, p), s, p),

the optimal policy for state (x, I, xp, s) is: if x > x∗k(I + xb(s, p), s, p) then sell

stock to reach the position x∗k(I + xb(s, p), s, p), otherwise remain at x.

Proof of Theorem 2:
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(1) The proof of concavity is similar to Theorem 1.

The concavity of V k() is easy to prove by expectation of concave function

Vk+1().

The concavity of Vk() for k < N can be proved by Lemma A.1.1, on the fact that

for given state (x, I,X, s), the reachable state is {(z, y, A, s) : x ≤ z ≤ x+ I/s, y =

I +(z−x)s, A = X +(z−x)s}, and the set {(z, y, A, x, I, X) : x ≤ z ≤ x+I/s, y =

I + (z − x)s, A = X + (z − x)s} is convex.

The concavity of VN() need more words as follows.

• for the NRL case,

VN(x, I,X, s) = U(I + xb(s, X/x)) = U(I + α min(X, xs) + βxs).

Given 2 states (x1, I1, X1, s) and (x2, I2, X2, s), for any λ ∈ [0, 1],

λX1 + (1− λ)X2 ≥ λ min(X1, x1s) + (1− λ) min(X2, x2s)

and

(λx1 + (1− λ)x2)s ≥ λ min(X1, x1s) + (1− λ) min(X2, x2s),

so

min(λX1+(1−λ)X2, (λx1+(1−λ)x2)s) ≥ λ min(X1, x1s)+(1−λ) min(X2, x2s).
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Hence VN(x, I,X, s) is concave in x, I and X by the following derivation.

VN(λx1 + (1− λ)x2, λI1 + (1− λ)I2, λX1 + (1− λ)X2, s)

= U(λI1 + (1− λ)I2 + β(λx1 + (1− λ)x2)s

+α min(λX1 + (1− λ)X2, (λx1 + (1− λ)x2)s))

≥ U(λI1 + (1− λ)I2 + β(λx1 + (1− λ)x2)s

+α(λ min(X1, x1s) + (1− λ) min(X2, x2s))

= U(λ(I1 + βx1s + α min(X1, x1s))

+(1− λ)(I2 + βx2s + α min(X2, x2s)))

≥ λU(I1 + βx1s + α min(X1, x1s))

+(1− λ)U(I2 + βx2s + α min(X2, x2s))

= λVN(x1, I1, X1, s) + (1− λ)VN(x2, I2, X2, s)

Where the first inequality follows by the fact that U(w) is increasing in w,

the second inequality by the concavity of U(w).

• for the RL case,

VN(x, I,X, s) = U(I + xb(s, X/x)) = U(I + αX + βxs)

VN(x, I,X, s) is concave in x, I and X from the concavity of U().

(2) From the concavity of V k(x, I,X, s) and the reachable states is a search

line with a linear relation between x, I and X, we know the optimal state must

be the unique local optimal in V k() along the search line, and the optimal policy
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is of the threshold type. The main points of the proof are: let

x∗k(x, I,X, s) = arg max
max{X/s−x,0}≤z≤I/s+x

V k(z, I + xs− zs,X − xs + zs, s),

and V k(z, I + xs − zs,X − xs + zs, s) is concave in z from the concavity of

V k(x, I,X, s).

Since only NT trading is allowed, the optimal policy for state (x, I,X, s) is:

if x < x∗k(x, I,X, s) then buy stock to reach the position x∗k(x, I,X, s), otherwise

remain at x.

Remark Lemma A.1.1 is very general. For our proofs to Theorem 1 and

Theorem 2, we only apply Lemma A.1.1 for cases where set P is defined by a

system of linear inequalities, i.e., it can be represented in form of Au + Bx ≤ b

where A and B are matrices, and b a vector.

However, for problem PCT, we cannot get the similar result for the concavity

of value functions for the all stages. Because for given state (x, I,X, s) the set

of reachable states is {(z, y, A, s) : z = x + u − d, y = I − us + db(s, X/x), A =

X + us − dX/x, 0 ≤ d ≤ x, 0 ≤ u ≤ xI+dX
xs

}, and due to the item X/x, the set

P = {(z, y, A, x, I, X) : z = x + u − d, y = I − us + db(s, X/x), A = X + us −

dX/x, 0 ≤ d ≤ x, 0 ≤ u ≤ xI+dX
xs

} may not be convex.

For example, let p1 = (z1, y1, A1, x1, I1, X1) = (z1, I1 + (x1 − z1)b(s, X1/x1),

X1 − (x1 − z1)X1/x1, x1, I1, X1) with z1 ∈ (0, x1), p2 = (z2, y2, A2, x2, I2, X2) =

(x2, I2, X2, x2, I2, X2), we can verify p1 ∈ P and p2 ∈ P , however p′ = (p1 + p2)/2

may not be ∈ P . To see this, let a1 = X1/x1, a2 = X2/x2 and s > a1 > a2, and
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define a set of new variables v′ by v′ = (v1 + v2)/2 with v being any symbol of

x, I,X, z, y and A. Condition p′ ∈ P requires that exist u, d ≥ 0 such that the

following conditions hold

z′ = x′ + u− d (A.1.1)

y′ = I ′ − us + db(s, X ′/x′) (A.1.2)

A′ = X ′ + us− dX ′/x′ (A.1.3)

d ≤ x′ (A.1.4)

u ≤ I ′ + dX ′/x′

s
(A.1.5)

Equations equations (A.1.1) and (A.1.3) can be simplified as

x1 − z1 = 2(d− u) (A.1.6)

(x1 − z1)a1 = 2(dX ′/x′ − us) (A.1.7)

Then

u =
(x1 − z1)(a1 −X ′/x′)

2(X ′/x′ − s)
.

From a1 > a2 and a1, a2 < s, we have X ′/x′ = a1x1+a2x2

x1+x2
< a1 and X ′/x′ < s, and

then we have u < 0, the condition u ≥ 0 is not satisfied, and p′ /∈ P .

A.2 The proofs of theorems for PCT

We obtained our results from studying the position relation between N-line and

T-line.

For simplicity, we study a certain time stage k, and neglect the subscript k. All

the following results are based on assuming that condition A’ holds at stage k.
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Since each state point (zN(K), C(zN(K), K)) or (zT (c), c) represent one char-

acteristic value K or c, so neither “N-line” nor “T-line” will cross itself, and each

of them separate state space (z, c) into two part.

For simplicity, we informally introduce “up” and “down” for direction of in-

creasing or decreasing z in state space (z, c) and then the relation “above” and

“under”. Because TN trading increases N/W ratio and NT trading decreases N/W

ratio, we know each target line separates space (z, c) into two parts: one is “above”

the line and one is “under” the line.

From Condition A’, we know

Fact 1: the value of H(z, c) will decrease for both NT trades from states “under”

N-line and TN trades from states “above” T-line.

Since T N(0) = T T (1) = {(z, 1) : 0 ≤ z ≤ 1}, the trading track for NT and TN

trading are the same line segment, but with different direction, hence we have

Fact 2: the two target lines must cross at c = 1, zN(0) = zT (1).

For brevity, denote H(zT (c), c) by HT (c), and H(zN(K), C(zN(K), K)) by

HN(K). From continuity of state and action space and distribution of assets’

process, HT (c) and HN(K) are continuous.

Lemma A.2.1. If condition A’ holds, then

(1) for segment of N-line above T-line, HN(K) is increasing with K if K > 0,

or is decreasing with K if K < 0;

(2) for the segment of T-line under N-line, HT (c) is increasing with c if c > 1,

or is decreasing with c if c < 1.



84

regular Target lines

irregular Target lines

Figure A.1: Illustration of N-line and T-line for proof of Lemma A.2.1.
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Proof:

We only study the states with c > 1, that also implies K > 0, on the following

two cases: (1) the segment of N-line which is above the T-line and (2) the segment

of T-line which is under the N-line. The results for other cases with c < 1 can be

derived similarly.

(1) The segment of N-line which is above the T-line

For two states on N-line, Y 1 = (z1, c1) = (zN(K1), C(zN(K1), K1)) and Y 2 =

(z2, c2) = (zN(K1+δ), C(zN(K1+δ), K1+δ)), with small δ > 0, there always exists

a path from Y 2 to Y 1 by NT trading first and then TN trading in case c1 < c2 (as

in the regular case, the upper graph of Fig. A.1 ) or by TN trading first and then

NT trading in case c2 < c1 (as in the irregular case, the lower part in Fig. A.1) or

just a simple TN trading for case c2 = c1 (not show in graph), because TN trading

decrease K value when c > 1.

When δ is small enough, the path will not cross T-line, i.e. keep in the area

above T-line, from Fact 1, we know H() is decreasing along this path, and then

H(Y 2) ≥ H(Y 1).

(2) The segment of T-line which is under the N-line

Similarly, for two states on T-line, Y 3 = ((zT (c3), c3) and Y 4 = (zT (c3+δ), c3+

δ) with small δ > 0, there always exists a path from Y 4 to Y 3 by TN trading first

and then NT trading in case K(Y 3) < K(Y 4) (as in the regular case in Fig. A.1)

or by NT trading first and then TN trading in case K(Y 3) > K(Y 4) (as in the

irregular case) or just a simple NT trading for case K(Y 3) = K(Y 4) (not show in
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graph), because NT trading decreased c value when K > 0.

When δ is small enough the path will not cross N-line, i.e. keep in the area

under N-line, from Fact 1, we know H() is decreasing along this path, and then

H(Y 4) ≥ H(Y 3).

Proof of Theorem 3:

Because of the local optimality of the optimal state on trading track, if the

optimal action is “to trade”, it cannot stop at the state that is not on target lines,

and must stop on one of target lines. Hence, we only need to prove that if the

optimal action is “to trade” then if it is to perform a compound trade it must stop

at a cross point.

Assume the optimal action for a state (z0, c0) is to perform a compound trade

that stops at (z2, c2) and (z2, c2) is not a cross point of two target lines.

If c2 = 1, the optimal state on line {(z, 1) : 0 ≤ z ≤ 1} is the cross point of the

two target lines, then it contradicts the assumption. Hence we consider the case

c2 > 1 or c2 < 1.

Since any compound trade can be looked as a series of two simple trades: a TN

trade first and then a NT trade, we let the compound trade from (z0, c0) to (z2, c2)

be made of a TN trade from (z0, c0) to (z1, c1) and then a NT trade from (z1, c1)

to (z2, c2). We know (z2, c2) must be on the N-line and above T-line, otherwise

it can be improved more. We also know c1 = c0 because c1 6= c0 is possible only

when (z1, c1) = (1, 1) and that will cause c2 = 1.
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Now we consider a new path: a TN trade from (z0, c0) to (z1 − δ, c0) and then

a NT trade to state (z3, c3) on N-line.

Because any trade keeps state variable c on the same side of 1, i.e., if c0 > 1

then c2 > 1, and if c0 < 1 then c2 < 1. We study the following two cases of the

initial state: c0 > 1 and c0 < 1.

In case c0 > 1, K(z1, c0) < K(z1 − δ, c0), thus K(z2, c2) < K(z3, c3). When δ

is small enough, (z3, c3) is still above T-line, we know H(z2, c2) ≤ H(z3, c3) from

Lemma A.2.1, hence the new path is better than optimal, and contradicts the

assumption.

Similarly, in case c0 < 1, K(z1, c0) > K(z1 − δ, c0), thus K(z2, c2) > K(z3, c3).

When δ is small enough, (z3, c3) is still above T-line, we know H(z2, c2) ≤ H(z3, c3)

from Lemma A.2.1, hence the new path is better than optimal, and contradicts

the assumption.

Proof of Theorem 4:

From Theorem 1 and 2, we know V N−1(x, I,X, s) is concave in all NT and TN

trading tracks, so Condition A holds at stage N − 1.

A state in (z, c) is corresponding to a state in space (x, I,X, s) with wealth

w = I + b(xs,X) = 1 given a certain s. For the RL case, all states in (z, c) are

in the plane of I + (1 − α)xs + αX = 1, for the NRL case, all states with c ≥ 1

are in the plane of I + (1 − α)xs + αX = 1 and all states with for c ≤ 1 are in

the plane of I + xs = 1; all the target lines are in these planes. From Theorem 2
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we know that V N−1(x, I,X, s) is concave in x, I and X, hence V N−1(x, I,X, s) is

concave on the two linear planes of I + (1− α)xs + αX = 1 and I + xs = 1, and

is concave on the tangent line on any point of the target lines which are in one

of these planes. Hence there are no local minimals on target lines in whole space

0 < c < ∞ for the RL case and in half space of c < 1 or c > 1 for the NRL case.

For the RL case, from an analysis similar to Lemma A.2.1, we can know that

besides at c = 1 there is at most one cross point in whole space, the cross point

on c = 1 is not minimal on target lines, and there are only the five cases of the

relation of target lines as in list L, other cases would cause a cross point being

minimal on target lines.

For the NRL case, from Proposition 2 we know that for c ≤ 1, value on T-line

is decreasing in c and the relation between two target lines must be the case that

N-line is above T-line and two lines converge as c → 0. When the cross point at

c = 1 is local minimal, we can know that there are only two possible cases in the

half space c > 1 as in List L’, otherwise there would exist a cross point which is

minimal in target lines in half space c > 1.

A.3 Derivation of optimal policy at time just be-

fore terminal time

Here we derive the optimal target N/W ratio for two trading direction, given the

state (x(t), I(t), a(t), s) is (x, I, p, s). It is easy to represent the result for each

trading track characterized by c or K.



89

For short writing, we let β = 1− α.

Given s(t) and i(t), random variables s(t+ dt) and i(t+ dt) can be represented

as:

s(t + dt) = s(t) + ds = s(t) + s(t)(µsdt + σs

√
dtz) (A.3.1)

and

i(t + dt) = i(t) + di = i(t) + i(t)(µidt + σi

√
dtv) (A.3.2)

where z and v are random variables with standard normal distribution and corre-

late with parameter ρ.

To prove the results for the NRL case in both PNT and PTN problems, we

need the following lemma about some limits related to normal distribution.

Lemma A.3.1. For any integer i ≥ 0, real number d, σ > 0, and real number µ,

lim
dt→0

∫ −d−µdt

σ
√

dt
−∞ (

√
dtz)ie−z2/2dz

dt
= 0

Proof:

There exists η > 0 such that if dt < η then dt < 1 and −d−µdt

σ
√

dt
< −1. For

example, η = min{1, d2

σ2} if µ = 0, or η = min{1, ( d
2σ

)2, σ2

µ2} if µ 6= 0.

When dt < η, there are the following three cases to analyze:

• for i = 0 or 1,

|
∫ −d−µdt

σ
√

dt
−∞ (

√
dtz)ie−z2/2dz| ≤ |

√
dt

i ∫ −d−µdt

σ
√

dt
−∞ ze−z2/2dz| < e

−dµ

σ2 e
−d2

2σ2dt .

• for i = 2,



90

|
∫ −d−µdt

σ
√

dt
−∞ (

√
dtz)2e−z2/2dz| ≤ dt(d+µdt

σ
√

dt
e
−dµ

σ2 e
−d2

2σ2dt + |
∫ −d−µdt

σ
√

dt
−∞ e−z2/2dz|)

≤ d+|µ|+σ
σ

e
−dµ

σ2 e
−d2

2σ2dt .

• for i > 2,

|
∫ −d−µdt

σ
√

dt
−∞ (

√
dtz)ie−z2/2dz| ≤

√
dt

i|
∫ 0

−∞ zie−z2/2dz| = Ci

√
dt

i
.

for given i, Ci is a certain number.

Calculating the limit and using the fact that limdt→0
e
−b
dt

dt
= 0, for b > 0, we get our

result.

A.3.1 Problem PTN

Assume at time t = T − dt, the state (x(t), I(t), s(t)) is (x, I, s) with wealth

w = I + xb(s, p), let u shares of stock are sold to index, and no trade be made

thereafter, then the final wealth at time T is

w(T ) = (x− u)b(s(t + dt), p) + (I + ub(s, p))i(t + dt)/i(t)

= w(t) + (x− u)(b(s(t + dt), p)− b(s, p))

+(I + ub(s, p))(i(t + dt)− i(t))/i(t)

In the following, we will present the analytical results about how to choose

feasible u to maximize the growth rate of expected utility, Q(u), for RL and NRL

case respectively. Q(u) is defined as Q(u) = limdt→0
E[U(w(T ))−U(w(t))]

dt
if the limit

exists.
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The RL case

In the RL case , b(c, p) = βc + αp, for any c, then b(s(t + dt), p)− b(s, p) = βds.

Applying Ito Lemma, we have the growth rate of expected utility

Q(u) = lim
dt→0

E[U(w(T ))− U(w(t))]/dt

= U ′(w(t))[(x− u)βsµs + (I + ub(s, p))µi]

+
1

2
U ′′(w(t))[β2s2σ2

s(x− u)2 + (I + ub(s, p))2σ2
i

+ 2ρβs(I + ub(s, p))(x− u)σiσs]

Since U(w) is concave, U ′′(w(t)) < 0, Q(u) is concave. To maximize Q(u), let

dQ/du = 0, i.e.

0 = U ′(w(t))(−βsµs + b(s, p)µi)

+U ′′(w(t))[β2s2σ2
s(u− x) + b(s, p)(I + ub(s, p))σ2

i

+ ρβs(xb(s, p)− I − 2ub(s, p))σiσs]

Using w(t) = xb(s, p) + I, and U ′(w)/U ′′(w) = w/(γ− 1), we know that the above

is equivalent to

(x− u)(β2s2σ2
s + b(s, p)2σ2

i − 2ρb(s, p)βsσiσs) =

w(t)((βsµs − b(s, p)µi)/(1− γ) + b(s, p)σ2
i − ρβsσiσs)

Therefore, the optimal policy is to sell some stock (if possible) so that the

N/W ratio, the portion of the nontaxable asset value in the total wealth, reach the

following ratio

I + ub(s, p)

w
=

β2s2σ2
s − ρb(s, p)βsσiσs − b(s, p)(βsµs − b(s, p)µi)/(1− γ)

β2s2σ2
s + b(s, p)2σ2

i − 2ρb(s, p)βsσiσs
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truncated in range [0, 1] if this ratio is out of the range.

The NRL case

In the NRL case, b(s, p) = s − α(s − p)+. We have b(s(t + dt), p) − b(s, p) =

ds + α((s− p)+ − (s + ds− p)+).

Define dw = w(T )− w(t), that is dw = (x− u)(b(s(t + dt), p)− b(s, p)) + (I +

ub(s, p))di/i(t), then

Q(u) = lim
dt→0

E[U(w(T ))− U(w(t))]/dt

= lim
dt→0

U ′(w(t))E[dw] + 1
2
U ′′(w(t))E[dw2] + h(dt)

dt

where h(dt) represents all the items of E[dwi], for i > 2, in the Taylor series for

E[U(w(T ))] expanded from w(t).

dw = w(T )−w(t) = (x−u)(b(s(t+ dt), p)− b(s, p))+ (I +ub(s, p))di/i(t), and

all the expectations E[dwi], for i > 0, can be calculated with representing (dw)i as

the function of normal distributed random variables of z and v, which determine

s(t + dt) and i(t + dt) as defined in (A.3.1) and (A.3.2).

Denote δ = s− p, we derive the optimal ratios for the following three cases.

1. If δ > 0, b(s(t + dt), p)− b(s, p) = βds + α(ds + δ)1{ds < −δ}.

• If σs 6= 0, the indicator 1{ds < −δ} = 1{z < −δ/s−µsdt

σs

√
dt

}. Using Lemma

A.3.1, we have

– limdt→0
E[dw]

dt
= (x− u)βsµs + (I + ub(s, p))µi,
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– limdt→0
E[dw2]

dt
= β2s2σ2

s(x − u)2 + (I + ub(s, p))2σ2
i + 2ρβs(I +

ub(s, p))(x− u)σiσs,

– and limdt→0
E[dwn]

dt
= 0, for all n > 2.

• If σs = 0, limdt→0 1{ds < −δ} = 0, same results will be derived easily.

So we have the same equation of Q(u) and then have the same optimal target

ratio as that for the RL case.

2. If δ < 0, b(s(t + dt), p) − b(s, p) = ds − α(ds + δ)1{ds > −δ}, similarly, we

can derive that the optimal target ratio is the same as that for RL case but

with the tax rate is zero or say without tax.

3. If δ = 0, i.e., s = p, we have b(s(t + dt), p)− b(s, p) = ds− αds+

• If σs = 0,

if µs > 0, b(s(t + dt), p) − b(s, p) = βµsdt, and then we have the same

optimal ratio as that for the RL case.

if µs ≤ 0, b(s(t + dt), p)− b(s, p) = µsdt, and then we have the optimal

ratio the same as that for the RL case without tax.

Therefore the optimal policy is the same as that for above case δ > 0

or δ < 0, depending on µs > 0 or not.
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• If σs 6= 0,

E[ds+]/p =

∫ ∞

−µs

√
dt/σs

(µsdt + σs

√
dtz)(1/

√
2π)e−z2/2dz

=

∫ 0

−µs

√
dt/σs

(µsdt + σs

√
dtz)(1/

√
2π)e−z2/2dz

+µsdt/2 + σs

√
dt/2π

Since limdt→0[
∫ 0

−µs

√
dt/σs

(µsdt + σs

√
dtz)(1/

√
2π)e−z2/2dz]/dt = 0 , we

have limdt→0
E[ds+]

dt
= ∞, limdt→0

E[b(s(t+dt),p)−b(s,p)]
dt

= −∞, and then

lim
dt→0

E[dw]

dt
= (x− u)(−∞) + (I + ub(s, p))µi.

Similarly, we can have limdt→0
E[dw2]

dt
= c, with c is a constant, and

limdt→0
E[dwn]

dt
= 0, for n > 2.

So the growth rate of expected utility is

Q(u) = U ′(w(t))[(x− u)(−∞) + (I + ub(s, p))µi] +
1

2
U ′′(w(t))c

Since U ′() > 0, maximizing Q(u) needs to minimize x− u, the optimal

policy is to sell out all the stock. The N/W ratio at point s = p is 1.0.

Remark: The intuition behind the mathematical result is: when s(t) > p, as

t is extremely close to terminal time T , it is unlikely that s(T ) < p, so the optimal

N/W ratio should be the same as that for the RL case; similarly when s(t) < p, it

is unlikely that s(T ) > p, and the realized price b(s, p) = s, the optimal N/W ratio

should be the same as that without tax. When s(t) = p and σs 6= 0, b(s(T ), p)− p,
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the earning on realized value of stock, is not symmetric for s(T ) on both side of p:

specifically, for small δ > 0, [b(p− δ, p)− p] + [b(p + δ, p)− p] < 0, so any holding

of stock will cause the loss of expected value, and the optimal policy is not to hold

any stock.

A.3.2 Problem PNT

Assume at time t = T − dt, the state (x(t), I(t), a(t), s) is (x, I, p, s) with wealth

w = I + xb(s, p), let u share of stock is bought from index fund, and no trade be

made thereafter, the final wealth at time T is

w(T ) = (x + u)b(s(t + dt),
xp + us

x + u
) + (I − us)i(t + dt)/i(t)

= w + (x + u)b(s(t + dt),
xp + us

x + u
)− xb(s, p)− us

+(I − us)[i(t + dt)− i(t)]/i(t)

Similar to the problem PTN, the optimal policy is choosing feasible u to max-

imize the growth rate of expected utility, which is defined as:

Q(u) = limdt→0
E[U(w(T ))−U(w(t))]

dt
if the limit exists.

The RL case

In the RL case, b(c, a) = βc + αa for any c and a.

w(T ) = w + (x + u)βs(t + dt) + α(xp + us)− x(βs + αp)− us

+(I − us)(i(t + dt)− i(t))/i(t)

= w + (x + u)βds + (I − us)di/i(t)
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Applying Ito Lemma, we have

Q(u) = lim
dt→0

E[U(w(T ))− U(w(t))]/dt

= U ′(w(t))[(x + u)βsµs + (I − us)µi]

+
1

2
U ′′(w(t))[β2s2σ2

s(x + u)2 + (I − us)2σ2
i

+ 2ρβs(I − us)(x + u)σiσs]

Since U(w) is concave, U ′′(w) < 0, Q(u) is concave. To maximize Q(u), let

dQ/du = 0, i.e.

0 = U ′(w)(βsµs − sµi)

+U ′′(w)[β2s2σ2
s(u + x) + s(us− I)σ2

i + ρβs(I − xs− 2us)σiσs]

From U ′(w) = wU ′′(w)/(γ − 1), above equation is reduced to

w(βµs − µi)/(1− γ) = (x + u)s(β2σ2
s + σ2

i − 2ρβσiσs) + (I + sx)(ρβσiσs − σ2
i )

Using I − us = I + sx − (x + u)s, we have that the optimal policy is to buy

some stock (if possible) so that the N/W ratio reaches the following ratio

I − us

w
=

(I + sx)/w)(β2σ2
s − ρβσiσs)− (βµs − µi)/(1− γ)

β2σ2
s + σ2

i − 2ρβσiσs

With characteristic K = xs−X
I+X

,

I + sx

w
=

I + sx

I + xb(s, p)
=

(K + 1)(I/X + 1)

I/X + βs/p + α
=

K + 1

1 + βK

The optimal N/W ratio is

K+1
1+βK

(β2σ2
s − ρβσiσs)− (βµs − µi)/(1− γ)

β2σ2
s + σ2

i − 2ρβσiσs

which is determined by K, the characteristic value of trading track.
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The NRL case

In the NRL case, b(s(t + dt), xp+us
x+u

) = s(t + dt)− α max{s(t + dt)− xp+us
x+u

, 0}, and

(x+u)b(s(t+dt), xp+us
x+u

) = (x+u)s(t+dt)−α max{(x+u)s(t+dt)− (xp+us), 0}.

Similar to problem PTN, let dw = w(T )− w(t)

Q(u) = lim
dt→0

E[U(w(T ))− U(w(t))]/dt

= lim
dt→0

U ′(w(t))E[dw] + 1
2
U ′′(w(t))E[dw2] + h(dt)

dt

There are three cases to analyze: s > p, s = p and s < p. Because when x = 0,

after buying u > 0 share of stock, the new basis price is s, we can think in this

case p = s.1 Therefore when we consider the cases of s > p and s < p, we assume

x > 0, and the three cases is equivalent to x(s− p) >, = or < 0,

1. If s > p, b(s, p) = βs + αp.

dw = (x + u)ds− α max{(x + u)ds,−x(s− p)}+ (I − us)di/i(t)

= β(x+u)ds+α[(x+u)ds+x(s−p)]1{(x+u)ds < x(p−s)}+(I−us)di/i(t)

• If σs 6= 0, the indicator 1{(x+u)ds < x(p−s)} = 1{z< x(p−s)−(x+u)sµsdt

(x+u)sσs

√
dt

}.

Using Lemma A.3.1 and x(s− p) > 0, we have

– limdt→0
E[dw]

dt
= (x + u)βsµs + (I − us)µi,

– limdt→0
E[dw2]

dt
= β2s2σ2

s(x + u)2 + (I − us)2σ2
i + 2ρβs(I − us)(x +

u)σiσs,

– and limdt→0
E[dwn]

dt
= 0, for all n > 2.

1It is also the reason why we define APP a(t) = s(t) when x(t) = 0 in Section 2.1.
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• If σs = 0, limdt→0 1{(x + u)ds < x(p − s)} = 0, same results will be

derived easily.

So we have the same equation of Q(u) and then have the same optimal target

ratio as that for the RL case.

2. If s < p, b(s, p) = s.

dw = (x+u)ds−α[(x+u)ds+x(s−p)]1{(x+u)ds > x(p−s)}+(I−us)di/i(t)

similarly, we can derive that the optimal target ratio is the same as that for

RL case but with the tax rate is zero or say without tax.

3. If s = p,

dw = (x + u)ds− α(x + u)ds+ + (I − us)di/i(t)

• If σs = 0, ds = µsdt,

if µs > 0, dw = β(x + u)µsdt + (I − us)di/i(t), and then we have the

optimal policy the same as that for the RL case.

if µs ≤ 0, dw = (x + u)µsdt + (I − us)di/i(t), and then we have the

optimal policy the same as that for the RL case without tax.

Therefor the optimal policy is the same as that for above case δ > 0 or

δ < 0, depending on µs > 0 or not.

• If σs 6= 0,

like in problem PTN, limdt→0
E[ds+]

dt
= ∞, and then

lim
dt→0

E[dw]

dt
= (x + u)(−∞) + (I − us)µi.
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Similarly, we can have limdt→0
E[dw2]

dt
= c, with c is a constant, and

limdt→0
E[dwn]

dt
= 0, for n > 2.

So the growth rate of expected utility is

Q(u) = U ′(w(t))[(x + u)(−∞) + (I − us)µi] +
1

2
U ′′(w(t))c

Since U ′() > 0, maximizing Q(u) needs to minimize x + u, the optimal

policy is not to buy any amount of stock. The N/W ratio at point s = p

is 1.
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