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Introduction

• Which set of items (assortment) should you recommend?
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• Most common form of recommendations in practice
• Online retail: Amazon, Walmart, eBay, etc.
• Video streaming services: Netflex, Youtube, etc.
• News websites/feeds, web searches and many more

• Contextual information is readily available
• User profile, search keywords
• Features of items to be recommended

Multinomial Logit Contextual Bandits
“Combinatorial Contextual Bandit with User Choice”

• For each round t = 1, ..., T :
1. Context xti ∈ Rd and revenue rti revealed for all items i ∈ [N ]
2. Agent selects assortment St ⊂ [N ] (with |St| ≤ K)
3. Agent observes user choice yt ∈ {0, 1}|St|

• Choice given by multinomial logit (MNL) model pi(St, θ∗)
• Probability that user chooses i ∈ St [3]:

p(i|St, θ∗) =
exp(

utility︷︸︸︷
x>tiθ

∗)

1 +
∑

j∈St exp(x
>
tjθ
∗)

• θ∗ ∈ Rd unknown true parameter

• Expected revenue for assortment St: Rt(St, θ
∗) =

∑
i∈St rtip(i|St, θ

∗)

• Goal: minimize total regret

Regret(T ) = E
[ T∑

t=1

Rt(S
∗
t , θ
∗)︸ ︷︷ ︸

optimal total revenue

−
T∑
t=1

Rt(St, θ
∗)︸ ︷︷ ︸

agent’s total revenue

]

where S∗t = argmaxS Rt(S, θ
∗)
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1. sample 𝜃$ from posterior on 𝜃∗
2. choose 𝑆' based on 𝜃$
3. observe user choice
4. update posterior

TS-MNL
(Thompson sampling for MNL model)
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Theorem (Bayesian Regret)

The Bayesian regret of TS-MNL is: BayesRegret(T ) = Õ
(
d
√
T
)

• But, can we show the worst-case regret?

Challenges in Worst-Case Regret Analysis

• Decomposing worst-case immediate regret:

Regret(t) = E[Rt(S
∗
t , θ
∗)−Rt(St, θ̃t)]︸ ︷︷ ︸
(a)

+E[Rt(St, θ̃t)−Rt(St, θ
∗)]︸ ︷︷ ︸

(b)

• (b) controlled by concentration of θ̃t

• (a) controlled by ensuring optimism of sampled θ̃t
• In Bayesian regret, (a) = 0 since θ̃t and θ∗ are iid
• Probability each utility is optimistic: exponentially small in K

TS-MNL with Optimistic Sampling

• Sample from Gaussian distribution
• TS as generic randomized algorithm based on MLE θ̂t
• Sample θ̃t ∼ N

(
θ̂t, α

2
tV
−1
t

)
: αt = conf. radius, Vt =

∑
τ

∑
i∈Sτ

xτix
>
τi

• Optimistic sampling
• Draw M samples {θ̃(j)t }Mj=1 from N

(
θ̂t, α

2
tV
−1
t

)
• Define optimistic utility: ũti = max

1≤j≤M
{x>ti θ̃

(j)
t }

• Expected revenue of assortment S based on ũti:

R̃t(S) =

∑
i∈S rti exp {ũti}

1 +
∑

j∈S exp {ũtj}

Lemma (Ensuring Optimism)

Let αt = O
(√

2d log (1 + t/d)
)

and take M = d1 + C logKe samples for

some constant C. Then P
(
R̃t(St) > Rt(S

∗
t , θ
∗) | Ft

)
≥ 1

4
√
eπ

.

• Choose optimistic assortment at least with a constant frequency

• Cumulative regret due to random sampling can be bounded

Theorem (Worst-Case Regret)

The worst-case regret of TS-MNL + optimistic sampling with
M = d1 + C logKe samples is: Regret(T ) = Õ

(
d3/2
√
T
)

• Matches regret bound for linear TS bandits [1]

• Additional
√
d factor vs Bayesian regret: deviation of random

sampling addressed in worst-case regret analysis

• In case of a finite number of items (actions), i.e., N < ed,
O(d
√
T logN log T ) worst-case regret

• First worst-case regret guarantee of Thompson sampling for combi-
natorial contextual bandit

Numerical Experiments

• Dataset: MovieLens 1M dataset (https://movielens.org)

• 1M ratings of 4000 movies by 6000 users: ratings on 1-5 scale

• Comparison with UCB method [2] and TS-MNL variants

0 10000 20000 30000 40000 50000
Time (t)

0

200

400

600

800

1000

1200

To
ta

l R
eg

re
t

N = 256, K = 8
UCB
TS-MNL (Gaussian)
TS-MNL (optimistic)

0 10000 20000 30000 40000 50000
Time (t)

0

500

1000

1500

2000

To
ta

l R
eg

re
t

N = 512, K = 8
UCB
TS-MNL (Gaussian)
TS-MNL (optimistic)

References
[1] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In

International Conference on Machine Learning, pages 127–135, 2013.
[2] Xi Chen, Yining Wang, and Yuan Zhou. Dynamic assortment optimization with changing contextual

information. arXiv preprint arXiv:1810.13069, 2018.
[3] Daniel McFadden. Modeling the choice of residential location. Transportation Research Record, (673),

1978.


