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Introduction

» Which set of items (assortment) should you recommend?
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» Most common form of recommendations in practice
o Online retail: Amazon, Walmart, eBay, etc.
» Video streaming services: Netflex, Youtube, etc.
» News websites/feeds, web searches and many more

» Contextual information is readily available
» User profile, search keywords
» Features of items to be recommended

Multinomial Logit Contextual Bandits

“Combinatorial Contextual Bandit with User Choice”

o Foreachroundt¢t=1,...,T":
1. Context z;; € R? and revenue r,; revealed for all items i € [N]
2. Agent selects assortment S; C |[N| (with |S;| < K)
3. Agent observes user choice y; € {0, 1}

» Choice given by multinomial logit (MNL) model p;(.S;, 0*)
» Probability that user chooses i € S; [3]:
utility
=

exp(m tze*)

pi| 5y, 07) =
L+ s, exp(z,;0*)

o 0" € RY unknown true parameter
» Expected revenue for assortment S;: Ri(S;, 6%) = > .. s, rip(1|St, 0%)

o Goal: minimize total regret
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Regret(T') =

where S; = argmaxg Ry(S, 0%)
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(Thompsonsampling for MNL model)
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Theorem (Bayesian Regret)

The Bayesian regret of TS-MNL is: BayesRegret(T') = O(dv'T)

» But, can we show the worst-case regret?

Challenges in Worst-Case Regret Analysis

» Decomposing worst-case immediate regret:

U[RA(S;,0%) — Ri(St, 0:)] + E[Ri(Sy, 6:) — Ry(S;, 67)]
N—————— N ——————— e’
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» (b) controlled by concentration of 0,

Regret(t) =

» (a) controlled by ensuring optimism of sampled 0,
» In Bayesian regret, (a) = 0 since ¢, and 6* are iid
» Probability each utility is optimistic: exponentially small in K

TS-MNL with Optimistic Sampling

» Sample from Gaussian distribution
o T5 as generic randomized algorithm based on MLE 6,
» Sample 6; ~ N ((9,5, a,%v,;l): o = conf. radius, V; = > >J L%

T 1E€S5;

» Optimistic sampling
» Draw M samples {ng)}jj‘i | from NV (6;, a2V, 1)

» Detine optimistic utility: u,; = 1211%\4 {x); 9( )}

» Expected revenue of assortment S based on wy;:
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Lemma (Ensuring Optimism)

Let a; = O(/2dlog (1 +t/d)) and take M = [1 + C'log K| samples for

~ 1
] * S > .
some constant C. Then P(R,(S;) > Ri(S;,07) | Fr) > e

» Choose optimistic assortment at least with a constant frequency

o Cumulative regret due to random sampling can be bounded

Theorem (Worst-Case Regret)

The worst-case regret of TS-MNL + optimistic sampling with

M = |1+ C'log K| samples is: Regret(T") = O (d?’/ Qﬁ)

» Matches regret bound for linear TS bandits [1]

» Additional v/d factor vs Bayesian regret: deviation of random
sampling addressed in worst-case regret analysis

» In case of a finite number of items (actions), i.e., N < €7,
O(d+/T log N log T') worst-case regret

» First worst-case regret guarantee of Thompson sampling for combi-
natorial contextual bandit

Numerical Experiments

» Dataset: MovieLens 1M dataset (https://movielens.org)
» 1M ratings of 4000 movies by 6000 users: ratings on 1-5 scale
» Comparison with UCB method [2] and TS-MNL variants
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