
An Efficient Population-based Extension of the

PartialCol Algorithm

Matthieu Plumettaz1, David Schindl2 and Nicolas Zufferey3

Abstract

The PartialCol algorithm is a tabu search method that has shown to

be among the state-of-the-art graph coloring heuristics. In this paper, we

use PartialCol as a subprocedure of a population-based algorithm, namely

an ant colony system. In contrast with usual ant methods, we consider

each ant as a local search guided by greedy forces and a trail system.

Computational experiments show that this extension to PartialCol leads

to better performances.

Keywords: graph coloring, local search, ant colony

Introduction

Local search heuristics operate in a search space S, also called a solution space.
The elements of this space are called solutions even if they do not satisfy all
problem constraints. For every solution s ∈ S, a neighborhood N(s) ⊂ S is
defined. A local search method starts at an initial solution, and then moves re-
peatedly from the current solution to a neighbor solution in order to try to find
better solutions, measured by an appropriate objective function. The passage
from one solution to the next solution is called a move. State-of-the-art local
search methods are simulated annealing, tabu search and variable neighborhood
search.

Population-based methods deal with a set of solutions that cooperate in order
to generate new improved solutions. Ant colonies methods, introduced in [4],
belong to this class and are derived from the observation of ants in the nature.
In these methods, a central memory is modeled by a trail system. In the usual
ant system, a population of ants is used, where each ant is a constructive heuris-
tic able to build a solution step by step. In contrast, we consider each ant as
a local search. At each step of the local search and as in every ants algorithm,

1Institut de mathématiques, École Polytechnique Fédérale de Lausanne (EPFL), Switzer-
land, matthieu.plumettaz@epfl.ch

2Corresponding author, Département de mathématiques et de génie industriel, École
Polytechnique de Montréal, Canada, david.schindl@gerad.ca

3Faculté des Sciences de l’Administration, Université Laval, Québec (QC), G1K 7P4,
Canada, nicolas.zufferey@fsa.ulaval.ca

1

the considered ant takes a decision according to the greedy force and the trails.

The paper is organized as follows. We first briefly describe tabu search and the
classical ants algorithms. Secondly, we define the graph coloring problem and
mention some well-known heuristic approaches. Then we describe the Partial-
Col heuristic, and how we incorporated it in an ant colony method to obtain
our algorithm, called Ant-PartialCol (APC for short). Finally, computational
experiments are reported, and we end up the paper with a conclusion containing
some ongoing research directions.

Tabu search and classical ant algorithms

A basic version of tabu search can be described as follows. Let f be an objec-
tive function which has to be minimized over the solution space S. First, the
method needs an initial solution s0 ∈ S as input. Then, the algorithm generates
a sequence of solutions s1, s2, . . . in the search space S such that sr+1 ∈ N(sr).
When a move is performed from sr to sr+1, the inverse of that move is stored
in a tabu list L. For the following t iterations, where t is the tabu tenure (also
called tabu list length), a move stays tabu and cannot be used (with some ex-
ceptions) to generate a neighbor solution. The solution sr+1 is computed as
sr+1 = arg min

s∈N ′(sr)
f(s), where N ′(s) is a subset of N(s) containing all solu-

tions s′ which can be obtained from s either by performing a move that is not
in L (i.e. not tabu) or such that f(s′) < f(s?), where s? is the best solution
encountered along the search so far. The process is stopped for example when
an optimal solution is found (when it is known), or when a fixed number of
iterations have been performed. Many variants and extensions of this basic al-
gorithm can be found for example in [7].

In most ant algorithms, the role of each ant is to build a solution step by step. At
each step, an ant adds an element to the current partial solution. Each decision
or move m is based on two ingredients: the greedy force (short term profit for the
considered ant) GF (m) and the trails Tr(m) (information obtained from other
ants). Let M be the set of all possible decisions. The probability pi(m) that

ant i chooses decision m is given by pi(m) = GF (m)α·Tr(m)β

P

m′∈Mi(adm)

GF (m′)α·Tr(m′)β , where

α and β are parameters and Mi(adm) is the set of admissible decisions that ant
i can perform. When each ant of the population has built a solution, the trails
are generally updated as follows: Tr(m) = ρ ·Tr(m)+∆Tr(m), ∀m ∈ M , where
0 < ρ < 1 is a parameter representing the evaporation of the trails, which is
generally close or equal to 0.9, and ∆Tr(m) is a term which reinforces the trails
left on decision m by the ant population. That quantity is usually obtained

by: ∆Tr(m) =
N
∑

i=1

∆Tri(m), where ∆Tri(m) is growing with the quality of the

solution si provided by ant i if it has performed decision m. Recent overviews

2

of ant algorithms can be found in [2] and [3].

The graph coloring problem

The graph coloring problem (GCP for short) can be described as follows. Given
a graph G = (V, E) with vertex set V and edge set E, and given an integer k, a
k-coloring of G is a function col : V −→ {1, . . . , k}. The value col(x) of a vertex
x is called the color of x. Vertices with a same color define a color class. If two
adjacent vertices x and y have the same color, then vertices x and y are called
conflicting vertices and the edge linking x with y is called a conflicting edge. A
color class without conflicting edge is called a stable set. A k-coloring without
conflicting edges is said to be legal and corresponds to a partition of the vertices
into k stable sets. The GCP is to determine the smallest integer k (called the
chromatic number of G and denoted by χ(G)) such that there exists a legal
k-coloring of G. The GCP is NP-hard [6]. Current exact solution methods can
only solve problems of relatively small size (roughly not more than 100 vertices)
[8].

Given a fixed integer k, we consider the decision problem, called k-GCP, which
aims to determine whether or not G admits a legal k-coloring. This problem
can be approached with an optimization heuristic by minimizing the number of
conflicting edges in the k-coloring solution space. If the value of the obtained
solution is zero, this means that G has a legal k-coloring. An upper bound on
the chromatic number of G can then be obtained by finding a smallest possible
number k such that our heuristic could obtain a legal k-coloring. For a recent
survey, the reader is referred to [5].

The Ant-PartialCol algorithm

The proposed APC coloring method is derived from the quick and efficient Par-
tialCol algorithm proposed for the k-GCP in [1], where the authors consider
the set of partial legal k-colorings which are defined as legal k-colorings of a
subset of vertices of G. Such colorings can be represented by a partition of the
vertex set into k + 1 subsets V1, . . . , Vk+1, where V1, . . . , Vk are k disjoint stable
sets (i.e. legal color classes) and Vk+1 is the set of non colored vertices. The
objective it to minimize the number of vertices in Vk+1. A neighbor solution s′

can be obtained from the current solution s by moving a vertex v from Vk+1 to
a color class Vc, and by moving to Vk+1 each vertex in Vc that is adjacent to
v. Such a move m is denoted m = (v; Vc). When it is performed, as proposed
in [1], it is then tabu to move v back to Vk+1 during 0.6 · nc + RANDOM(0, 9)
iterations, where nc is the number of vertices in Vk+1 of s, and RANDOM(0, 9)
is a function providing a random integer in the set {0, 1, . . . , 9}.

3

In APC, we propose to define a move m as above. Hence, it is straightforward
to define the greedy force GF (m) of a move m = (v; Vc) as the inverse of the
number of vertices adjacent to v that are in color class Vc. A main challenge
is of course to define a relevant trail value Tr(m) associated with move m. We
propose to build and use a global trail system as follows. Let x and y be two
vertices, and let si = (V1, . . . , Vk; Vk+1) be a solution provided by a single ant
i of the population at a specific generation. If ant i gives the same color c to
x and y in solution si (i.e. x, y ∈ Vc 6= Vk+1), such an information should be
transmitted to the ants of the next generation, and in addition this information
should be more important if x and y are in a large color class. Formally, let

∆Tri(x, y) =

{

|Vc| if x and y have the same color c in si;
0 if x and y have different colors in si.

Then, as in lots of ants algorithms, we set ∆Tr(x, y) =
N
∑

i=1

∆Tri(x, y), where

N is the number of ants. At the end of each generation and as in any classical
ant algorithm, we globally update the trails as follows: Tr(x, y) = ρ ·Tr(x, y)+
∆Tr(x, y), where ρ = 0.9. We are now able to define the trail of a single move
m = (v; Vc) as follows: Tr(v; Vc) =

∑

x∈Vc

Tr(v, x).

At each iteration, the considered ant first chooses the set A of non tabu moves
which have the largest greedy force values. Because of the definition of the
greedy force, A will very often contain more than one element (this was con-
firmed by preliminary experiments). The chosen move m is then the one in A

which has the largest trail value Tr. Ties are broken randomly.

We have now all the ingredients to formulate APC in Algorithm 1.

Algorithm 1 Ant-PartialCol for the k-GCP (APC)

While a maximum time limit is not reached, do:

1. for i = 1 to N , do:

(a) apply tabu search associated with ant i during I iterations;
let si be the resulting solution;

2. update the trails by the use of {s1, . . . , sN};

Note that each ant i starts with the solution where all the vertices are in Vk+1,
i.e. no vertex is colored.

Obtained results

Our algorithm was implemented in C++ and run on a 2GHz Pentium 4 with
512MB of RAM. Two important parameters of APC are N (number of ants)

4

and I (number of iterations performed by each single ant). Preliminary experi-
ments lead us to the following parameter setting: N = 10 and I = 500′000. It
is probably possible to choose a better setting of parameters for each graph, but
our goal is to have generic parameters which use only general characteristics of
the graphs, and not to propose a specific set of parameters for each instance.

The time limit has been fixed to one hour. After a preliminary set of experi-
ments, and in adequation with the literature (e.g. [1]), we selected the 16 graphs
we considered the most challenging, from the DIMACS Challenge. These graphs
as well as their description can be found at [10].

Name |V | d k(opt) k(best) APC PartialCol
DSJC500.1 500 0.1 ? 12 12 12
DSJC500.5 500 0.5 ? 48 48 49
DSJC500.9 500 0.9 ? 126 127 127
DSJC1000.1 1000 0.1 ? 20 20 20
DSJC1000.5 1000 0.5 ? 83 88 89
DSJC1000.9 1000 0.9 ? 224 228 228
DSJR500.1c 500 0.9 ? 85 85 85
DSJR500.5 500 0.5 ? 122 125 126
flat300 28 0 300 0.5 28 28 31 28
flat1000 50 0 1000 0.5 50 50 50 50
flat1000 60 0 1000 0.5 60 60 60 60
flat1000 76 0 1000 0.5 76 82 87 88

le450 15c 450 0.17 15 15 15 15
le450 15d 450 0.17 15 15 15 15
le450 25c 450 0.17 25 25 26 27
le450 25d 450 0.17 25 25 26 27

Table 1: Ant-PartialCol versus PartialCol.

For APC as well as for PartialCol, we performed 10 runs for each considered
value of k on each instance. Table 1 reports the best results obtained by APC
and PartialCol. The first three columns indicate respectively the name of the
graph, the number of vertices and edge density. The fourth column contains
the chromatic number (we put a ”?” when it is not known) and the fifth one
contains the best upper bound ever found by a heuristic. The last two columns
contain the best coloring obtained by APC and PartialCol, respectively.

As can be seen, APC is strictly better on 6 instances and worse on only one, and
both methods provide the same results on the rest. Concerning the differences
between the column “k(best)” and “APC”, we observe that APC reaches the
best known value on half of the instances. However, there are some where the
difference is quite important.

Conclusion and perspectives

The computational experiments, carried out on a set of the most challenging
DIMACS graphs [10] show that APC, obtained by adding to PartialCol a pow-
erful trail system, with a quick and efficient way to make a choice between the

5

possible moves at each iteration, is in average more efficient than PartialCol
alone.

Our current research directions are the following. First, as mentioned above,
there are several instances where APC failed to reach the chromatic number or
the best known bounds. Thus, it may be interesting to analyze its behavior
with larger time limits. Second, in order to improve APC, other trail systems
and greedy forces should be developed. Third, we shall compare APC with all
state-of-the-art coloring heuristics. Finally, the idea of considering each ant as
a local search can lead to a new and general ant algorithm applicable to further
optimization problems [9].

References

[1] I. Bloechliger and N. Zufferey. A Graph Coloring Heuristic Using Partial
Solutions and a Reactive Tabu Scheme. Computers & Operations Research
(to appear), 2007.

[2] C. Blum. Ant colony optimization: Introduction and recent trends. Physics
of Life Reviews, 2(4):353–373, 2005.

[3] M. Dorigo, M. Birattari, and T. Stuetzle. Ant colony optimization – arti-
ficial ants as a computational intelligence technique. IEEE Computational
Intelligence Magazine, 2006.

[4] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search
strategy. Technical Report Technical Report 91-016, Politecnico di Milano,
Dipartimento di Elettronica, Italy, 1991.

[5] P. Galinier and A. Hertz. A Survey of Local Search Methods for Graph
Coloring. Computers & Operations Research, 33:2547–2562, 2006.

[6] M. Garey and D.S. Johnson. Computer and Intractability: a Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[7] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers,
Boston, MA, 1997.

[8] F. Herrmann and A. Hertz. Finding the chromatic number by means of crit-
ical graphs. ACM Journal of Experimental Algorithmics, 7/10:1–9, 2002.

[9] M. Plumettaz, D. Schindl, and N. Zufferey. Ant local search for graph
coloring. In ”Graph and Optimization VI”, Cademario, Switzerland, 2007.

[10] DIMACS Website. ftp://dimacs.rutgers.edu/pub/challenge/graph/.

6

