
Ant Local Search and its Efficient Adaptation to

Graph Colouring

Matthieu Plumettaz1, David Schindl2 and Nicolas Zufferey3

Abstract

In this paper, we propose a new kind of ant algorithm called Ant

Local Search. In most ant algorithms, the role of each ant is to build a

solution in a constructive way. In contrast, we propose to consider each

ant as a local search, where at each step and in concordance with all

ant algorithms, each ant modifies the current solution by the use of the

greedy force and the trail systems. We also propose ways to reduce the

computational effort associated with each ant decision. Such a new and

general ant methodology is then applied to the well-known k-colouring

problem, which is NP-hard. Computational experiments give evidence

that our algorithm is competitive with the best colouring methods.

Keywords: heuristics, networks and graphs, artificial life, optimization.

Introduction

Local search heuristics operate in a search space S, also called a solution space.

The elements of this space are called solutions even if not all elements are

solutions to the initial problem. For every solution s ∈ S, a neighbourhood

N(s) ⊂ S is defined. A local search method starts at an initial solution, and

then moves repeatedly from the current solution to a neighbour solution in order

1Department of Industrial Engineering and Operations Research, Columbia University,
New York, United States, mp2761@columbia.edu

2Geneva School of Business Administration (HEG), Geneva, Switzerland,
david.schindl@hesge.ch

3Corresponding author, Faculty of Economics and Social Sciences, HEC - University
of Geneva, Uni-Mail, 1211 Geneva 4, Switzerland, nicolas.zufferey@fsa.ulaval.ca

1

to try to find better solutions, measured by an appropriate objective function.

The passage from one solution to the next is called a move. State-of-the-art

local search methods are simulated annealing, tabu search and variable neigh-

bourhood search.

Ant colonies were introduced in (Dorigo et al., 1991) and in (Dorigo, 1992), and

are derived from the observation of ants in the nature. In these methods, a cen-

tral memory is modeled by a trail system. In the usual ant system, a population

of ants is used, where each ant is a constructive heuristic able to build a solu-

tion step by step. Often, in order to get competitive results, it is unavoidable to

apply a local search method, such as tabu search, to the solutions provided by

such constructive ants (Dorigo & Stuetzle, 2002). In such a case, ant colonies

and tabu search are successively but not simultaneously used. In contrast, we

propose in this paper a new and general ant methodology, called Ant Local

Search, where each ant is considered as a local search. At each iteration of Ant

Local Search, and as it is the case in all ant algorithms, each decision is based

on two elements: the greedy force and the trails.

The proposed Ant Local Search method will be tested on the famous graph

colouring problem, which consists in assigning a color to each vertex of the

considered graph, such that any two adjacent vertices have different colors,

while minimising the number of colors. In such a context, each ant will be a

tabu search derived from PartialCol (Bloechliger & Zufferey, 2008), which is a

state-of-the-art colouring heuristic. The greedy force will be derived from the

objective function used in PartialCol, and the trail system will be built on the

following idea: if the ants give the same colour to two vertices, such an infor-

mation should be transmitted to the ants of the next generations.

The paper is organised as follows. We first briefly describe tabu search and the

classical ant algorithms. Secondly, we formally present the Ant Local Search

2

method, which can be adapted to any optimization problem. Thirdly, we de-

scribe the graph colouring problem and mention some well-known methods to

solve it. Then, we adapt the proposed Ant Local Search algorithm to the graph

colouring problem. Finally, computational experiments are reported and we end

up the paper with a general conclusion.

Tabu search and classical ant algorithms

A basic version of tabu search can be described as follows. Let f be an objec-

tive function which has to be minimised over the solution space S. First, the

method needs an initial solution s0 ∈ S as input. Then, the algorithm generates

a sequence of solutions s1, s2, . . . in the search space S such that sr+1 ∈ N(sr).

When a move is performed from sr to sr+1, the inverse of that move is stored

in a tabu list L. For the following t iterations, where t is the tabu tenure (also

called tabu list length), a move stays tabu and cannot be used (with some ex-

ceptions) to generate a neighbour solution. The solution sr+1 is computed as

sr+1 = arg min
s∈N ′(sr)

f(s), where N ′(sr) is a subset of N(sr) containing all so-

lutions s′ which can be obtained from sr either by performing a move that is

not in L (i.e. not tabu) or such that f(s′) < f(s⋆), where s⋆ is the best solu-

tion encountered along the search so far. The process is stopped for example

when an optimal solution is found (when it is known), or when a fixed number

of iterations have been performed. Many variants and extensions of this basic

algorithm can be found for example in (Glover & Laguna, 1997).

In most ant algorithms (Dorigo & Stuetzle, 2002) (also called Ant Colony Op-

timization), the role of each ant is to build a solution step by step. At each

step, an ant adds an element to the current partial solution. Each decision or

move m is based on two ingredients: the greedy force GF (m) (short term profit

for the considered ant) and the trails Tr(m) (information obtained from other

ants). Let M be the set of all possible decisions. The probability pi(m) that

3

ant i chooses decision m is given by pi(m) = GF (m)α·Tr(m)β

∑

m′∈Mi(adm)

GF (m′)α·Tr(m′)β , where

α and β are parameters and Mi(adm) is the set of admissible decisions that ant

i can perform. When each ant of the population has built a solution, the trails

are generally updated as follows: Tr(m) = ρ ·Tr(m)+∆Tr(m), ∀m ∈ M , where

0 < ρ < 1 is a parameter representing the evaporation of the trails, which is

usually close or equal to 0.9, and ∆Tr(m) is a term which reinforces the trails

left on decision m by the ant population. That quantity is usually proportional

to the number of times the ants performed decision m, and to the quality of the

obtained solutions when decision m was performed. More precisely, let N be the

number of ants, then: ∆Tr(m) =
N
∑

i=1

∆Tri(m), where ∆Tri(m) is proportional

to the quality of the solution provided by ant i if it has performed decision m.

Note that in some elitist ant algorithms, the summation is only performed over

the N⋆ best ants, where N⋆ ≤ N is a parameter. In some systems, the trails are

updated more often (e.g. each time a single ant has built its solution (Dorigo

& Gambardella, 1997)). In hybrid ant systems, the solutions provided by some

ants may be improved using a local search technique. In the max-min ant sys-

tems (Stuetzle & Hoos, 1997), the authors proposed to normalise GF (m) and

Tr(m) in order to better control these ingredients and thus the search process.

Recent overviews of ant algorithms can be found in (Blum, 2005) and (Dorigo

et al., 2006).

The Ant Local Search algorithm

As previously mentioned, in most ant algorithms, the role of each ant is to build

a solution from scratch. At each step of the construction, the considered ant

takes a decision according to the greedy force and the trails. Often, in order to

get competitive results, it is unavoidable to apply a local search method (e.g. a

descent method, tabu search, simulated annealing) to the solutions provided by

such constructive ants (Dorigo & Stuetzle, 2002). In contrast, we propose to give

a more important role to each ant by considering each of them as a local search.

4

More precisely, at each step of the local search and as in every ant algorithm,

the considered ant takes a decision according to the greedy force and the trails.

The resulting general method is called Ant Local Search and is summarised in

Algorithm 1, where N is the number of used ants. The main difference between

the proposed heuristic and the classical ant algorithms relies in step (1.a): in

our algorithm, each ant makes one solution evolve by performing an arbitrary

number of modifications on it, instead of only building step by step a single

solution from scratch. Notice that the idea of considering each ant as a local

search first appears in (Zufferey, 2002) and (Shawe-Taylor & Zerovnik, 2002),

where there is however no generalization of their ant colouring methods which

could lead to a new and general Ant Local Search algorithm able to tackle other

optimization problems.

Algorithm 1 Ant Local Search Algorithm

While no stopping condition is met, do:

1. for i = 1 to N , do:

(a) apply the local search associated with ant i;
let si be the resulting solution;

(b) locally update the trails by the use of si (optional);

2. globally update the trails by the use of a subset of {s1, . . . , sN};

3. perform some actions that can not be performed by the ant system (op-
tional);

We can remark that such an algorithm could be easily parallelised by the use

of N processors, where each processor would perform the job of a single ant. A

generation consists in performing steps (1) to (3). Thus, a stopping condition

can be a maximum number of generations or a maximum time limit. Note that

in step (3), local search can for example be applied on some solutions provided

by the ants of the current generation, or a specific diversification/intensification

mechanism can be triggered. Such a heuristic can of course be adapted to any

optimization problems. In order to do it, we have to:

5

• choose the nature of the local search associated with each ant (e.g. tabu

search, simulated annealing, hill climbing) and a stopping condition for

the chosen local search (e.g. a maximum number of iterations);

• define the neighbourhood structure(s) used within the local search, i.e.

the nature of the moves which can be performed during the local search;

• define the key parameters of the considered local search; for example,

if each ant is a tabu search procedure, we have to define the tabu list

structure and the way to manage it;

• define the greedy force GF (m) and the trail Tr(m) of any move m;

• define the way to use the greedy force and the trails in order to select a

move at each iteration of the local search;

• define a way to update the trails: this is always performed at the end of

each generation (global update of the trails), and optionally each time a

single ant provides its solution (local update of the trails).

All these elements will be defined below for the k-colouring problem. However,

we would like to mention here that in most ant algorithms, it is very time

consuming to make a single decision according to the probability distribution.

Therefore, we propose the following general way to select a move based on the

greedy forces and the trails. At each iteration, let A be the set of moves with

the largest greedy force (resp. trail) value. Then, the selected and performed

move is the one in A with the largest trail (resp. greedy force) value (we break

ties randomly). Of course, this process is only interesting if | A |> 1 (i.e. if

we can have an interesting number of ties), otherwise the trails (resp. greedy

forces) will have no impact on the heuristic. Such a way of selecting each move

at each iteration leads to several advantages over most classical ant algorithms:

it is not required anymore to: (1) compute the trails (resp. greedy forces) of

all possible moves; (2) normalise the greedy forces and the trails of the possible

moves; (3) compute the probability pi(m) associated with each possible move

m; (4) consider the parameters α and β. In other words, in contrast with most

6

classical ant algorithms, we successively (instead of jointly) use the greedy forces

and the trails to make a decision. Therefore, a lot of computing time is saved,

and the tuning phase of the heuristic is significantly reduced. We would like to

mention that this is only a possible way to reduce the computing time needed

for an ant to make a decision. One can of course propose other ways to manage

the selection of a decision.

The graph colouring problem

The graph colouring problem (GCP for short) can be described as follows. Given

a graph G = (V, E) with vertex set V and edge set E, and given an integer k, a

k-colouring of G is a function col : V −→ {1, . . . , k}. The value col(x) of a ver-

tex x is called the colour of x. Vertices with a same colour define a colour class.

If two adjacent vertices x and y have the same colour, then vertices x and y are

called conflicting vertices and the edge linking x with y is called a conflicting

edge. A colour class without conflicting edge is called a stable set. A k-colouring

without conflicting edges is said to be legal and corresponds to a partition of

the vertices into k stable sets. The GCP is to determine the smallest integer k

(called the chromatic number of G and denoted by χ(G)) such that there exists

a legal k-colouring of G. The GCP is NP-hard (Garey & Johnson, 1979). Cur-

rently, no known exact solution method is able to solve all instances with up to

100 vertices (e.g. (Mehrotra & Trick, 1996) and (Herrmann & Hertz, 2002)).

For larger instances, upper bounds on the chromatic number can be obtained

by using heuristic algorithms. The GCP and the k-GCP (described below) have

many practical applications such as the creation of timetables, frequency assign-

ment, scheduling, design and operation of flexible manufacturing systems, bag

rationalisation for food manufacturers (e.g. (Leighton, 1979), (Stecke, 1985),

(Gamst & Rave, 1992), (Glass, 2002), (Zufferey et al., 2008)).

Given a fixed integer k, we consider the optimization problem, called k-GCP,

7

which aims to determine a legal k-colouring of G by minimizing the number of

conflicting edges in the k-colouring solution space. If the optimal value of the

k-GCP is zero, this means that G has a legal k-colouring. Starting at most with

k = |V |, an upper bound on the chromatic number of G can be determined by

solving a series of k-GCPs with decreasing values of k until no legal k-colouring

can be obtained. Many local search methods were proposed to solve the k-GCP:

tabu search ((Hertz & de Werra, 1987), (Bloechliger & Zufferey, 2008)), sim-

ulated annealing ((Chams et al., 1987), (Johnson et al., 1991)), and variable

space search ((Hertz et al., 2008)). In (Glass & Prugel-Bennett, 2005), the au-

thors proposed, for the GCP, a first adaptation of a new kind of local search

where a polynomial time sub-procedure is used for finding an optimal neighbour

in an exponential sized neighborhood. Hybrid evolutionary heuristics were also

successfully applied to this problem (e.g., (Fleurent & Ferland, 1996), (Galinier

& Hao, 1999)). For a recent survey, the reader is referred to (Galinier & Hertz,

2006). Note that some ant heuristics for the GCP already exist in the literature

((Costa & Hertz, 1997), (Shawe-Taylor & Zerovnik, 2002), (Hertz & Zufferey,

2006)). Their performances are however very poor when compared with the

best colouring algorithms. We describe these ant colouring algorithms below.

The first ant colouring algorithm was proposed in (Costa & Hertz, 1997). In

their method, each ant is a constructive heuristic derived from Dsatur (Brélaz,

1979) or from RLF (Leighton, 1979). A move always consists in selecting a

vertex and giving a colour to it. The trail system is modeled using a matrix

Tr(x, y) proportional to: (1) the number of times vertices x and y have the

same colour in the solutions provided by the ants; (2) the quality of the solu-

tions where col(x) = col(y).

Another ant colouring method was proposed in (Shawe-Taylor & Zerovnik,

2002), where each ant can be considered as a heuristic close to the one pro-

posed in (Petford & Welsh, 1989). The trail system is modeled by the use

of an auxiliary graph G′ = (V, E′) obtained from the original graph G =

8

(V, E) by adding edges. The set of added edges can evolve during the search

and is based on the following idea: if many ants give a different colour to

x and y such that edge [x, y] /∈ E, then [x, y] is added to E′. Note that

the authors mainly tested their method on a few benchmark instances from

ftp://dimacs.rutgers.edu/pub/challenge/graph/, namely le450 5a, le450 5b,

le450 5c, le450 5d, le450 15a and le450 15b, known to be optimally colourable

by exact algorithms within a few seconds. Then, they tested their algorithm on

non standard random graphs they generated with a very small number of edges.

However, no result is given for standard random graphs.

A third ant colouring heuristic was recently proposed in (Hertz & Zufferey,

2006). In this method, the role of each single ant is minor: it only helps choos-

ing a colour for a single vertex. Only one solution evolves using a population of

ants. A colour in {1, . . . , k} is associated with each ant and k ants are associated

with each vertex. From a distribution of the ants on the vertices, a k-colouring

of the graph is built, using a greedy procedure which is derived from Dsatur

(Brélaz, 1979). At each step of the method, the distribution of the ants over

the graph is modified, and therefore the associated k-colouring is modified.

Ant Local Search applied to the k-GCP

The proposed Ant Local Search colouring method is derived from the quick and

efficient tabu search algorithm proposed for the k-GCP in (Bloechliger & Zuf-

ferey, 2008), where the authors consider the set of partial legal k-colourings which

are defined as legal k-colouring of a subset of vertices of G. Such colourings can

be represented by a partition of the vertex set into k + 1 subsets V1, . . . , Vk+1,

where V1, . . . , Vk are k disjoint stable sets (i.e. legal colour classes) and Vk+1

is the set of non coloured vertices. The objective is to minimise the number

of vertices in Vk+1. A neighbour solution s′ can be obtained from the cur-

rent solution s by moving a vertex v from Vk+1 to a colour class Vc, and by

moving to Vk+1 each vertex in Vc that is adjacent to v. Such a move m is

9

denoted m = (v; Vc). When it is performed, it is then tabu to move v back

to Vk+1 during wnc · NC(s) + RANDOM(i1, i2) iterations, where NC(s) is the

number of non colored vertices in solution s, and RANDOM(i1, i2) (with i1, i2

integers such that i1 < i2) is a function providing a uniform random integer

in the set {i1, i1 + 1, . . . , i2 − 1, i2}. Preliminary experiments confirmed that

(wnc, i1, i2) = (0.6, 0, 9) is a reasonable parameter setting (which confirms the

parameter setting proposed in (Galinier & Hao, 1999) and (Bloechliger & Zuf-

ferey, 2008)). In our experiments, NC(s) is initially the number |V | of vertices of

the considered graph (no vertex is coloured in the initial solution), and then de-

creases very quickly to a much smaller value, generally below |V |
10 after less than

3000 iterations (which corresponds to a few seconds of computation). Then,

the procedure needs more effort to assign a colour to every vertex. Such a

behaviour is illustrated in Figure 1, where the variation of of the objective func-

tion is showed on an experiment performed on graph DSJC1000.5 with 86 colors.

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

iteration

va
lu

e
of

 th
e

ob
je

ct
ive

 fu
nc

tio
n

Figure 1: Variation of the objective function on graph DSJC1000.5 with 86
colors

In our Ant Local Search algorithm for the k-GCP (denoted ALS-COL), we

propose to define a move m as above. Hence, it is straightforward to define

the greedy force GF (m) of a move m = (v; Vc) as the inverse of the number of

10

adjacent vertices to v that are in colour class Vc. A main challenge is of course

to define a relevant trail value Tr(m) associated with move m. We propose to

build and use a global trail system as follows. Let x and y be two vertices,

and let si = (V1, . . . , Vk; Vk+1) be a solution provided by a single ant i of the

population at a specific generation. If ant i gives the same colour c to x and y in

solution si (i.e. x, y ∈ Vc 6= Vk+1), such an information should be transmitted to

the ants of the next generation, and this information should be more important

if x and y are in a large colour class. Formally, let

∆Tri(x, y) =











|Vc|
2 if x and y have the same colour c in si;

0 if x and y have different colours in si.

Then, as in many ants algorithms, we set ∆Tr(x, y) =
N
∑

i=1

∆Tri(x, y). At

the end of each generation and as in any classical ant algorithm, we globally

update the trails as follows: Tr(x, y) = ρ · Tr(x, y) + ∆Tr(x, y), where ρ = 0.9.

We are now able to define the trail of a single move m = (v; Vc) as follows:

Tr(v; Vc) =
∑

x∈Vc

Tr(v, x).

In contrast with the classical ant algorithm, we propose to manage an iteration

in order to avoid too much computational effort. At each iteration, the consid-

ered ant first chooses the set A of non tabu moves which have the largest greedy

force values. Because of the definition of the greedy force, A will very often con-

tain more than one element (this was confirmed by preliminary experiments).

The chosen move m is then the one in A which has the largest trail value Tr.

Ties are broken randomly.

We have now all the ingredients to formulate ALS-COL in Algorithm 2. Note

that each ant i starts with the solution where all the vertices are in Vk+1, i.e.

no vertex is coloured.

11

Algorithm 2 Ant Local Search for the k-GCP (ALS-COL)

While a maximum time limit is not reached, do:

1. for i = 1 to N , do:

(a) apply the tabu search associated with ant i during I iterations;
let si be the resulting solution;

2. update the trails by the use of {s1, . . . , sN};

Obtained results

Our algorithm was implemented in C++ and run on a computer with the fol-

lowing properties: Processor Intel Core2 Duo Processor E6700 (2.66GHz, 4MB

Cache, 1066MHz FSB), RAM 2GB DDR2 667 ECC Dual Channel Memory

(2x1GB). Two important parameters of ALS-COL are N (number of ants) and

I (number of iterations performed by each single ant). Preliminary experiments

showed that N ∈ {5; 10} and I ∈ {50, 000; 500, 000} are reasonable values. Usu-

ally, the best results are obtained with (N ; I) = (10; 500, 000), but there are

some exceptions: N = 5 on graphs with 1000 vertices (i.e. the large graphs),

and I = 50, 000 on the Leighton graphs and the graphs with 1000 vertices and

a density of 0.5. It is probably possible to choose a better setting of parameters

for each graph, but our goal is to have generic parameters which use only general

characteristics of the graphs, and not to propose a specific set of parameters for

each instance.

We made two series of tests with two maximal computational times, which are

1 hour and 10 hours. We ran our algorithm on 16 graphs from the DIMACS

Challenge (see ftp://dimacs.rutgers.edu/pub/challenge/graph/). After a pre-

liminary set of experiments, and in line with the literature (e.g. (Bloechliger &

Zufferey, 2008), (Galinier et al., 2008)), we selected those graphs because they

are the most challenging ones. The considered graphs are described below.

• Six DSJCn.d graphs: the DSJC’s are random graphs with n vertices and

12

a density of d
10 . It means that each pair of vertices has a probability of

d
10 to be adjacent. We use the DSJC’s graphs with n ∈ {500, 1000} and

d ∈ {1, 5, 9}.

• Two DSJRn.r graphs: the DSJR’s are geometric random graphs. They

are constructed by randomly choosing n points in the unit square and two

vertices are connected if they are distant by less than r. Graphs with an

added end letter ’c’ are the complementary graphs. We use two graphs

with n = 500 and, respectively, r = 1 and r = 5.

• Four flatn χ 0 graphs: the flat graphs are constructed graphs with n ver-

tices and a chromatic number χ. The end number ’0’ means that all

vertices are incident to the same number of vertices.

• Four len χx graphs: the Leighton graphs have n vertices and a chromatic

number χ equal to the size of the largest clique (i.e., the largest number of

pairwise adjacent vertices). The end letter ’x’ stands for different graphs

with similar settings.

We first report the results obtained by using ALS-COL on these 16 graphs, and

then compare our algorithm with TabuCol (Hertz & de Werra, 1987), PartialCol

(Bloechliger & Zufferey, 2008), as well as with three graph colouring algorithms

which are among the most effective today: the GH algorithm in (Galinier & Hao,

1999), the MOR algorithm in (Morgenstern, 1996), and the MMT algorithm in

(Malaguti et al., 2008). GH, MOR and MMT are all population based methods

which use local search procedures. GH uses TabuCol to improve offspring solu-

tions, whereas MMT uses a procedure close to PartialCol. MOR works in the

same search space as PartialCol, but uses simulated annealing instead of tabu

search, and much more sophisticated moves. Note that the three ant colour-

ing heuristics previously described will not be considered because they are not

competitive at all with the best colouring methods.

Table 1 reports the results obtained with ALS-COL with a time limit of one

hour. The first two columns respectively indicate the name and the number of

13

vertices of the graph. The third column contains two numbers, the first one be-

ing the chromatic number (we put a ”?” when it is not known), and the second

one the best upper bound ever found by a heuristic. We ran ALS-COL 10 times

on each graph and each value of k. The fourth column reports various values of

k ranging from the smallest number for which we had at least one successful run,

to the smallest number for which we had 10 successful runs. The next columns

respectively contain the number of successful runs and the number of tries, the

average number of iterations in thousands (i.e., the total number of performed

moves divided by 1000) on successful runs, and the average CPU-time used (in

seconds).

Table 2 gives the same information as for ALS-COL, but for PartialCol (Bloech-

liger & Zufferey, 2008). The authors of PartialCol provided us with the code

of their algorithm and we were able to run it on our computer, thus there may

be a few very minor differences with the results described in (Bloechliger &

Zufferey, 2008). Note that we omit some results for some values of k which are

not relevant for the comparison.

Table 3 gives the same information as for PartialCol, but for PartialCol which

is restarted from scratch every I iterations (using the same I as the one used in

ALS-COL for the same graph). This will allow to better measure the contribu-

tion of the ingredients added to PartialCol to derive ALS-COL.

If we have a look at Tables 1, 2 and 3, we can first easily remark that PartialCol

with restarts is not competitive at all when compared to the usual Partial-

Col and to ALS-COL. Thus, it confirms that we add relevant ingredients to

PartialCol to derive ALS-COL. There is now no need to focus farther on this

method. If we compare ALS-COL with PartialCol, we observe that ALS-COL

finds a smaller number of colors on 8 graphs (namely DSJC1000.1, DSJC1000.5,

DSJC1000.9, DSJC500.5, DSJR500.5, flat1000 76 0, le450 25c, and le450 25d),

the same number on 7 graphs (namely DSJC500.1, DSJC500.9, DSJR500.1c,

flat1000 50 0, flat1000 60 0, le450 15c, and le450 15d), and a larger number on

14

one graph (namely flat300 28 0). This is denoted by Score(ALS-COL; Par-

tialCol) = (8, 7, 1). For the 7 graphs for which both algorithms find similar

k-colourings, we can observe that: (1) ALS-COL has a better success rate on 2

graphs (namely DSJC500.9 and DSJR500.1c), the same success rate on 4 graphs

(namely DSJC500.1, flat1000 50 0, flat1000 60 0, and le450 15c), but a worse

success rate on 1 graph (namely le450 15d); (2) on the graphs where the suc-

cess rate is the same, both algorithms quickly find the associated k-colourings.

Therefore, we can securely conclude that ALS-COL has a better performance

than PartialCol.

In Table 4, we compare ALS-COL with PartialCol, TabuCol, GH, MMT and

MOR. For every algorithm, we report the smallest k such that a legal k-colouring

could be found. The results for GH, MMT and MOR are taken from (Bloech-

liger & Zufferey, 2008). Comparisons must therefore be done carefully because

the conditions of experimentation are not the same. For example, our algorithm

has a 1 hour time limit, while MMT uses a limit of 100 minutes. In addition,

the performances of the computers are different, and on the contrary to GH and

MMT, we do not adjust the parameters of ALS-COL on each instance.

We can observe that Score(ALS-COL; TabuCol) = (7, 9, 0), Score(ALS-COL;

MOR) = (7, 6, 3), Score(ALS-COL; MMT) = (1, 10, 5), and Score(ALS-COL;

GH) = (1, 9, 4). In summary, if we allow a time limit of one hour to ALS-COL,

it is better than PartialCol and MOR, but not as good as MMT and GH, which

are the current best graph colouring heuristics. The two latter methods are

based on a specialized recombination operator, which builds any offspring so-

lution colour class by colour class, while trying at each step to put as many

vertices as possible in any colour class. Such a way of transmitting the infor-

mation during the search seems to be slightly better than using the trail system

we have proposed in this paper. However, ALS-COL is the first ant algorithm

which is competitive with the best colouring algorithms!

We finally report in Table 5 the obtained results with a time limit of 10 hours

15

(with the use of (N ; I) = (10; 500, 000), except for the Leighton graphs where

I = 50, 000), but only for graphs for which ALS-COL could find better colour-

ings when compared to Table 1. We can observe that we save one colour

on graphs DSJC1000.9, DSJC500.9 and le450 25d, and two colours on graphs

DSJC1000.5 and flat1000 76 0. Therefore, with such a time limit, the gap be-

tween ALS-COL and MMT and GH is significantly reduced.

Conclusion

We have proposed a new general optimization methodology, called Ant Local

Search, that, in contrast with the other ant algorithms, uses each ant as a local

search procedure, and where each decision made by each ant can be quickly

computed. We have also presented an adaptation of the Ant Local Search to

the k−GCP . The computational experiments, carried out on a set of the most

challenging DIMACS graphs, show that ALS-COL is more effective than Par-

tialCol, which is the local search from which we derive ALS-COL by adding

a powerful trail system, as well as a quick and efficient way to make a choice

between the possible moves at each iteration. ALS-COL appears to be also com-

petitive with the current best hybrid evolutionary graph colouring algorithms.

Therefore, we think that the Ant Local Search methodology is a new interesting

and challenging approach for the solution of complex optimization problems.

References

Bloechliger, I., & Zufferey, N. 2008. A Graph Coloring Heuristic Using Partial

Solutions and a Reactive Tabu Scheme. Computers & Operations Research,

35, 960 – 975.

Blum, C. 2005. Ant colony optimization: Introduction and recent trends.

Physics of Life Reviews, 2(4), 353–373.

16

Brélaz, D. 1979. New Methods to Color Vertices of a Graph. Communications

of the Association for Computing Machinery, 22, 251–256.

Chams, D., Hertz, A., & de Werra, D. 1987. Some Experiments with Simulated

Annealing for Coloring Graphs. European Journal of Operational Research,

32, 260–266.

Costa, D., & Hertz, A. 1997. Ants can colour graphs. Journal of the Operational

Research Society, 48, 295–305.

Dorigo, M. 1992. Optimization, learning and natural algorithms (in italian).

Ph.D. thesis, Politecnico di Milano, Dipartimento di Elettronica, Italy.

Dorigo, M., & Gambardella, L.M. 1997. Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transactions

on Evolutionary Computation, 1(1), 53–66.

Dorigo, M., & Stuetzle, T. 2002. Handbook of metaheuristics. In F. Glover and

G. Kochenberger (Eds). Chap. The Ant Colony Optimization Metaheuris-

tic: Algorithms, Applications, and Advances, pages 251 – 285.

Dorigo, M., Maniezzo, V., & Colorni, A. 1991. Positive feedback as a search

strategy. Tech. rept. 91-016. Politecnico di Milano, Dipartimento di Elet-

tronica, Italy.

Dorigo, M., Birattari, M., & Stuetzle, T. 2006. Ant colony optimization – arti-

ficial ants as a computational intelligence technique. IEEE Computational

Intelligence Magazine.

Fleurent, C., & Ferland, J. A. 1996. Genetic and hybrid algorithms for graph

coloring. Annals of Operations Research, 63(3), 437–461.

Galinier, P., & Hao, J.K. 1999. Hybrid Evolutionary Algorithms for Graph

Coloring. Journal of Combinatorial Optimization, 3(4), 379–397.

Galinier, P., & Hertz, A. 2006. A Survey of Local Search Methods for Graph

Coloring. Computers & Operations Research, 33, 2547–2562.

17

Galinier, P., Hertz, A., & Zufferey, N. 2008. An Adaptive Memory Algorithm

for the Graph Coloring Problem. Discrete Applied Mathematics, 156, 267

– 279.

Gamst, A., & Rave, W. 1992. On the frequency assignment in mobile automatic

telephone systems. In: Proceedings of GLOBECOM’92.

Garey, M., & Johnson, D.S. 1979. Computer and Intractability: a Guide to the

Theory of NP-Completeness. San Francisco: Freeman.

Glass, C. 2002. Bag rationalisation for a food manufacturer. Journal of the

Operational Research Society, 53, 544 – 551.

Glass, C.A., & Prugel-Bennett, A. 2005. A polynomial searchable exponential

neighbourhood for graph colouring. Journal of the Operational Research

Society, 56, 324 – 330.

Glover, F., & Laguna, M. 1997. Tabu search. Kluwer Academic Publishers,

Boston, MA.

Herrmann, F., & Hertz, A. 2002. Finding the chromatic number by means of

critical graphs. ACM Journal of Experimental Algorithmics, 7(10), 1–9.

Hertz, A., & de Werra, D. 1987. Using Tabu Search Techniques for Graph

Coloring. Computing, 39, 345–351.

Hertz, A., & Zufferey, N. 2006. A new ant colony algorithm for the graph coloring

problem. Pages 51 – 60 of: Proceedings of the Workshop on Nature Inspired

Cooperative Strategies for Optimization, NICSO 2006, June 29 – 30.

Hertz, A., Plumettaz, M., & Zufferey, N. 2008. Variable space search for graph

coloring. Discrete Applied Mathematics, 156, 2551 – 2560.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., & Schevon, C. 1991. Optimiza-

tion by Simulated Annealing: an Experimental Evaluation, Part II Graph

Coloring and Number Partitioning. Operations Research, 39, 378–406.

18

Leighton, F. T. 1979. A graph coloring algorithm for large scheduling problems.

Journal of Research of the National Bureau Standard, 84, 489–505.

Malaguti, E., Monaci, M., & Toth, P. 2008. A Metaheuristic Approach for the

Vertex Coloring Problem. INFORMS Journal on Computing, 20 (2), 302

– 316.

Mehrotra, A., & Trick, M.A. 1996. A column generation approach for graph

coloring. INFORMS Journal on Computing, 8, 344–354.

Morgenstern, C. 1996. Distributed Coloration Neighborhood Search. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, 26, 335–

357.

Petford, A., & Welsh, D. 1989. A randomised 3-colouring algorithm. Discrete

Mathematics, 74, 253–261.

Shawe-Taylor, J., & Zerovnik, J. 2002. Ants and graph coloring. Pages 593–597

of: Proceedings of ICANNGA’01.

Stecke, K. 1985. Design planning, scheduling and control problems of flexible

manufacturing. Annals of Operations Research, 3, 3–12.

Stuetzle, T., & Hoos, H. 1997. Improving the ant system: a detailed report on

the max-min ant system. Tech. rept. Department of Computer Sciences -

Intellectics Group, Technical University of Darmstadt.

Zufferey, N. 2002. Heuristiques pour les Problèmes de la Coloration des Sommets

d’un Graphe et d’Affectation de Fréquences avec Polarités. Ph.D. thesis,

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

Zufferey, N., Amstutz, P., & Giaccari, P. 2008. Graph Colouring Approaches

for a Satellite Range Scheduling Problem. Journal of Scheduling, 11 (4),

263 – 277.

19

Graph |V | χ, k⋆ k succ./run 103 iter. Time
DSJC1000.1 1000 ?,20 20 2/10 226284 3056

21 10/10 388 5
DSJC1000.5 1000 ?,83 86 1/10 41734 1535

87 8/10 34951 1231
88 10/10 37156 1286

DSJC1000.9 1000 ?,224 225 1/10 93617 2759
226 8/10 70203 2442
227 10/10 42044 1591

DSJC500.1 500 ?,12 12 10/10 45964 304
DSJC500.5 500 ?,48 48 8/10 103496 1177

49 10/10 61934 675
DSJC500.9 500 ?,126 127 9/10 63364 802

128 10/10 9027 149
DSJR500.1c 500 ?,85 85 4/10 39787 372

86 10/10 18778 180
DSJR500.5 500 ?,122 125 2/10 184949 1934

126 7/10 331381 1543
127 9/10 27177 313
128 10/10 16010 181

flat1000 50 0 1000 50,50 50 10/10 113 15
flat1000 60 0 1000 60,60 60 10/10 383 46
flat1000 76 0 1000 76,82 85 2/10 40966 1487

86 5/10 42707 1473
87 9/10 27060 927
88 10/10 26716 897

flat300 28 0 300 28,28 29 1/10 2931 30
30 1/10 6602 57
31 10/10 17423 111

le450 15c 450 15,15 15 10/10 390 7
le450 15d 450 15,15 15 9/10 669 10

16 10/10 320 5
le450 25c 450 25,25 26 10/10 220007 1847
le450 25d 450 25,25 26 9/10 204560 1728

27 10/10 32469 253

Table 1: Detailed results of ALS-COL with a time limit of 1 hour

20

Graph |V | χ, k⋆ k succ./run 103 iter. Time
DSJC1000.1 1000 ?,20 21 10/10 388 1
DSJC1000.5 1000 ?,83 89 5/10 141919 2047
DSJC1000.9 1000 ?,224 226 3/10 59994 1572

227 9/10 67305 1629
228 10/10 16988 422

DSJC500.1 500 ?,12 12 10/10 41404 104
DSJC500.5 500 ?,48 50 10/10 22748 164
DSJC500.9 500 ?,126 127 3/10 169134 2033

128 10/10 5957 67
DSJR500.1c 500 ?,85 85 1/10 32789 249

86 3/10 39701 323
DSJR500.5 500 ?,122 126 8/10 126638 888

127 10/10 121043 931
128 10/10 5957 67

flat1000 50 0 1000 50,50 50 10/10 113 10
flat1000 60 0 1000 60,60 60 10/10 383 30
flat1000 76 0 1000 76,82 88 5/10 89058 1278
flat300 28 0 300 28,28 28 4/10 83895 624

29 8/10 317044 2056
30 10/10 205835 1153
31 10/10 141841 685

le450 15c 450 15,15 15 10/10 287 1
le450 15d 450 15,15 15 10/10 3659 9

16 10/10 1521 4
le450 25c 450 25,25 27 10/10 14509 5
le450 25d 450 25,25 27 10/10 8643 3

Table 2: Detailed results for PartialCol with a time limit of 1 hour

Graph |V | χ, k⋆ k succ./run 103 iter. Time
DSJC1000.1 1000 ?,20 21 10/10 361 2
DSJC1000.5 1000 ?,83 93 1/10 110645 3180
DSJC1000.9 1000 ?,224 233 1/10 78975 3138
DSJC500.1 500 ?,12 12 10/10 45964 1928
DSJC500.5 500 ?,48 50 9/10 142833 1147
DSJC500.9 500 ?,126 128 3/10 109894 1500
DSJR500.1c 500 ?,85 85 10/10 129355 1178

86 10/10 11922 108
DSJR500.5 500 ?,122 128 8/10 194655 1943
flat1000 50 0 1000 50,50 50 10/10 113 10
flat1000 60 0 1000 60,60 60 10/10 383 30
flat1000 76 0 1000 76,82 92 1/10 263001 3231
flat300 28 0 300 28,28 28 5/10 124130 931

29 6/10 242786 1598
30 8/10 202857 1166
31 10/10 209899 1038

le450 15c 450 15,15 15 10/10 1786 16
le450 15d 450 15,15 15 10/10 3660 10

16 10/10 1521 4
le450 25c 450 25,25 27 10/10 24034 117
le450 25d 450 25,25 27 10/10 36665 178

Table 3: Detailed results for PartialCol with restarts with a time limit of 1 hour

21

Graph |V | χ, k⋆ ALS-Col PartialCol TabuCol MMT GH MOR
DSJC1000.1 1000 ?,20 20 21 20 20 20 21
DSJC1000.5 1000 ?,83 86 89 89 83 83 88
DSJC1000.9 1000 ?,224 225 226 227 226 224 226
DSJC500.1 500 ?,12 12 12 12 12 12 12
DSJC500.5 500 ?,48 48 49 49 48 48 49
DSJC500.9 500 ?,126 127 127 127 127 126 128
DSJR500.1c 500 ?,85 85 85 85 85 - 85
DSJR500.5 500 ?,122 125 126 126 122 - 123
flat1000 50 0 1000 50,50 50 50 50 50 50 50
flat1000 60 0 1000 60,60 60 60 60 60 60 60
flat1000 76 0 1000 76,82 85 88 88 82 83 89
flat300 28 0 300 28,28 29 28 31 31 31 31
le450 15c 450 15,15 15 15 16 15 15 15
le450 15d 450 15,15 15 15 15 15 15 15
le450 25c 450 25,25 26 27 26 25 26 25
le450 25d 450 25,25 26 27 26 25 26 25

Table 4: Comparisons between ALS-COL and state-of-the-art algorithms

Graph |V | χ, k⋆ k succ./run 103 iter. Time
DSJC1000.5 1000 ?,83 84 9/10 567131 16059

85 10/10 461330 12734
DSJC1000.9 1000 ?,224 224 1/10 119838 4292
DSJC500.9 500 ?,126 126 1/10 1112960 12681
flat1000 76 0 1000 76,82 83 10/10 643137 17130

84 10/10 526522 14341
le450 25d 450 25,25 25 2/10 85487 22908

Table 5: Additional results of ALS-COL with a time limit of 10 hours

22

