Lab Assignment 5 - Parallel Computing

Instructions

Please complete the exercises below. Submit your completed assignment as a PDF, HTML or Word document
outputted by knitr or compiled manually showing both the code and output. (It should be in a similar format
to this document).

Note that in this document code blocks are shown with a grey background and output from running the code
blocks is displayed with ## preceding the output.

There may be some packages used in this assignment that you have not yet installed. In many cases the
instructions are to “modify” the code provided, and it is implied in all cases that you should make sure the
modified code successfully runs on your computer.

In this lab assignment, you will implement and learn more about parallel computing. We’ll start by developing
some useful code that we can run in parallel.

The Central Limit Theorem (CLT) tells us that if we sample from a population many times and calculate
the mean each time, with a large enough sample size the distribution of means will approximate a normal
(Gaussian) distribution. This holds regardless of if the distribution of the population is normal or not. Let’s
run some simulations to see it in action.

#let's create a funky bi-modal population to sample from
population <- c(rnorm(le6), rnorm(le6,5,.6))
hist(population, 100)

Histogram of population

Frequency
30000
|

0
I

population

#now we create a function to sample and calculate the mean of each sample
sample_and_calculate_mean <- function()

{
x <- sample(population, size=1000)#N=1000 from the population
mean <- mean(x)
return(mean)

}
#do it 3,000 times

all_means <- replicate(3e3, sample_and_calculate_mean())
hist(all_means, 50)#visualize

Histogram of all_means

o —
S _
> ili
(@]
c _
0]
=
o 3
LT
o_l—!

I I I I I I I
22 23 24 25 26 27 28

all_means

Above we can see the simulated sampling distribution of the mean with sample size N=1,000. It does look
normally distributed, but we cannot know for sure with the naked eye. Let’s calculate the mean and sd of
the sampling distribution (in other words, the distribution of means) and draw a normal distribution with
those parameters on top of the histogram to see if it matches up.

mean <- mean(all_means)
standard_error <- sd(all_means)

hist(all_means, 50, freq = F)#visualize histogram
x <- seq(-10, 10,.001)#evenly spaced z values

normal_density <- dnorm(x, mean, standard_error)#dnorm returns density values at each
lines(x, normal_density, col="red", 1lwd=2)#add the curve to the plot

Histogram of all_means

] A
A

> ¥
=t

m —
o

a 7

o

I I I I I I I
22 23 24 25 26 27 28

all_means

That does appear to match up well. We can also assess normality with a Q-Q plot. The logic is that the
values at each quantile of the distributions should be almost the same if the observed distribution matches the
theoretical distribution. For example, the median is the 50% quantile, so the medians in both distributions
should be about the same value. We can assess the linear relationship more formally by calculating a
correlation coefficient.

observed_gs <- quantile(all_means, seq(0,1,.001))#eztract quantiles from all_means
theoretical_qs <- quantile(rnorm(le6, mean, standard_error), seq(0,1,.001))
plot(theoretical_gs, observed_gs); abline(0,1)

observed gs

22 24 26 28

I I I I
2.2 2.4 2.6 2.8

theoretical_gs

cor (theoretical_gs, observed_qgs)#calculate the correlation coefficient

[1] 0.998438

We can see through this visualization as well as the correlation we calculated that the observed sampling
distribution is indeed approximately normal. The CLT tells us that will be the case when the sample size is
large enough.

At N=1,000, the sample size is large enough. Let’s see what happens with N=2.

1. Adjust the code above to simulate drawing 100,000 samples of size N=2. Run the simula-
tions, show the correlation, and graph the density plot.

You should see that this distribution of means (i.e. the sample distribution) is not quite normally distributed
with this population at N=2. Let’s find out at what sample size the sampling distribution becomes
approximately normal by looking at the normality of the sampling distribution as sample sizes increase from
2 to 100. This is a fitting task to run in parallel.

To do this, you’ll first need to modify the sample and__calculate _mean() function so that there is a parameter
N that it requires as an input.

2. Modify the sample__and__calculate _mean() function to take a parameter N. Set N to 10
and run it once.

If you could use some documentation on creating and modifying functions in R, see here: https://rd4ds.had.co.nz
/functions.html. To explain the instructions in other words, you should modify sample and__calculate _mean()
so that a parameter N can be set to adjust the sample size taken from the population each time it is run.
Run it once with N set to 10.

https://r4ds.had.co.nz/functions.html
https://r4ds.had.co.nz/functions.html

3. Now use replicate() to run the sample _and__calculate__mean(N=10) function 50,000 times
to simulate a sampling distribution. Calculate the correlation between the theoretical and
observed quantiles as shown above.

4. Create a single function that takes N as an input, does everything specified in problem #3,
and returns the correlation coefficient.

To run code in parallel using the parallel package, we should combine it into a single function with one
parameter. Here is a basic framework for the function we can use here:

get_correlation <- function(N){
sample_and_calculate_mean <- function(N)
{
"input appropriate lines of code here"

}
all_means <- "input code here to run sample_and_calculate_mean() 50,000 times"

observed_gs <- quantile(all_means, seq(0, 1, .001))#eztract quantiles from all_means
theoretical_qs <- quantile(rnorm(le6, mean(all_means), sd(all_means)), seq(0,1,.001))
correlation_coef <- cor(theoretical_qs, observed_qgs)#calculate the correlation coef.
return(correlation_coef)

5. Evaluate how long it takes to run this function once at sample size N=2, and then at sample
size N=100.

Here is some example code that shows generally how to measure the run time of code:

start <- Sys.time() #record start time
"code to evaluate goes here"

run_time <- Sys.time() - start
run_time

Running on an Intel Corei7 processor they each take about five minutes. Your run times will differ somewhat
depending on your processor.

We are building up to running this function on integers from 2 to 100. To make it manageable, we can run it
in intervals of 2 instead of every consecutive integer. If the function takes about five minutes to run once,
then running it about 50 times will take about 250 minutes (~4 hours) on a single core. Let’s speed it up
by modifying it to run in parallel.

To help you get started, here is an example of running another function in parallel using parSapply():

#parSapply is just a parallel version of sapply
new_function <- function(x){x"2 + mean(population)}
#sapply(1:8, new_ function)

#to run in parallel we can use the parallel library
library(parallel)

#detectCores ()#show how many cores are avatilable on your machine
cl <- makeCluster(2)#then make a cluster of some number of cores
clusterExport(cl, "population")#ezport necessary object to cores
results <- parSapply(cl, 1:8, new_function)

stopCluster(cl)

Note the inclusion of the clusterExport() function. If the function you are running in parallel requires any
other functions or R objects to run, you need to export those to the cluster using clusterExport().

6. Modify the parallel code example above to run the get_ correlation() function from 2 to
1,000 in intervals of 20.

If you do not have multiple cores on your machine, just use cl <- makeCluster(1) to make a “cluster” with
one core (running on one core is not parallel, but the code can be used to run in parallel on machines with
more cores).

Hint: to create a sequential vector with multiples of five you can use:

Ns <- seq(2,100, by=2)
head (Ns)

[1] 2 4 6 8 10 12

7. Plot the results with sample size on the x axis and the correlation coefficient (the normality
assessment) on the y axis.

It should look something like this:

library(ggplot2)

plot_data <- data.frame(Ns, results)

ggplot(plot_data, aes(Ns, results)) + geom_point() + geom_smooth(method="loess") +
geom_hline(yintercept=.995)

1.000 -
° [
)
®
0.995
°
8 0.990 -
g
0.985-
0.980 -
)
0 25 50 75 100
Ns

8. At about what sample size does the sampling distribution approximate a normal distribu-
tion?

9. Modify the code to do the same simulations and calculations, but with the sampling
distribution of sums rather than the sampling distribution of means.

The Central Limit Theorem shows that when independent random variables are summed, the distribution of
sums approximates a normal distribution with large enough sample sizes. We usually think of the CLT in
terms of means (since we use means more often). Means also converge to normal distributions because means
are sums that have been rescaled.

OPTIONAL

Now let’s use parallel computing for a different problem. In the original Google Flu Trends model, they
searched over 50 million search terms for correlations with flu trends. A criticism of this approach is that it
substantially left open the possibility of finding spurious correlations (i.e. correlations due to chance rather
than evidence of a real relationship).

In this optional exercise, we’ll load in flu infection data and check for correlations with many completely
unrelated vectors of observations.

First let’s load in and prep the flu data:

#load in NY state flu data

data <- read.csv("https://query.data.world/s/phdseqcd4htyzkazklx7rr6677chyd",
header=TRUE, stringsAsFactors=FALSE);

#obtained from: https://www.kaggle.com/titustitus/hinl-new-york-2009

head(data)

#it Season Region County CDC.Week Week.Ending.Date Disease Count
1 2009-2010 NYC BRONX 3 01/23/2010 INFLUENZA_B 1
2 2009-2010 NYC BRONX 17 05/01/2010 INFLUENZA_A 7
3 2009-2010 NYC BRONX 17 05/01/2010 INFLUENZA_B 0
4 2009-2010 NYC BRONX 50 12/19/2009 INFLUENZA_A 62
5 2009-2010 NYC BRONX 50 12/19/2009 INFLUENZA_B 2
6 2009-2010 NYC KINGS 12 03/27/2010 INFLUENZA_A 3
#i# County.Centroid FIPS
1 (40.8448, -73.8648) 36005
2 (40.8448, -73.8648) 36005
3 (40.8448, -73.8648) 36005
4 (40.8448, -73.8648) 36005
5 (40.8448, -73.8648) 36005

6 (40.6782, -73.9442) 36047

#subset to only Manhattan (New York County) and one strain of influenza for simplicity
data <- data[data$County=="NEW YORK",]
data <- data[data$Disease=="INFLUENZA A",]

#create a clean day wvariable
data$day <- as.Date(data$Week.Ending.Date, format = "Vm/%d/%Y")

#visualize the flu infection data over time
library(ggplot2)
ggplot(data, aes(day, Count)) + geom_line() + geom_point()

500 -

400-
= 300-
>
@]
@)
200-
100-
0-
2010 2012 2014 2016 2018
day

#subset to only one year for simplicity
data <- data[data$day>="2018-01-01",]

Now let’s generate a vector of fake data of the same length and see if it’s correlated. To generate completely
unrelated but realistic data, we can simulate a “random walk”:

all_values <- c()

value <- 0

for(i in 1:nrow(data))

{

value <- value + rnorm(1)

all_values <- c(all_values, value)

}

plot(l:length(all_values), all_values, type="b")

O
_ o
n < | PP D
& I] P
= O
S 7] O P
O F%
© — o o
N O‘OO OCpo
T 00

0 10 20 30 40

1:length(all_values)

Next, let’s embed that random vector code inside a function that creates a random vector and checks for a
correlation with the real flu data.

#generate fake data and check correlation
gen_cor <- function(i){
#generate a random walk to use as fake data
all_values <- c()
value <- 0
for(i in 1:nrow(data))
{
value <- value + rnorm(1)
all_values <- c(all_values, value)
¥
data$fake_vector <- all_values
correlation <- cor(data$fake_vector, data$Count)
return(correlation)
}

gen_cor ()

[1] 0.3558608

Here is the code to check for correlations with 1,000 random vectors:

correlations <- sapply(l:1e3, gen_cor)
hist(correlations)

Histogram of correlations

Frequency

0O 40 80

I I I
-0.5 0.0 0.5

correlations

sum(abs(correlations)>.8) #how many correlations are above .8 (absolute value)

[1]1 O

Very few, if any, correlations are above 0.8 when looking at 1,000 random vectors. But what if we look at
many more?

10

10. (OPTIONAL) Make a parallel version of the code directly above to check for correlations
with 5 million random vectors. How many of these spurious correlations were above 0.8
(absolute value)?

11

	Instructions
	1. Adjust the code above to simulate drawing 100,000 samples of size N=2. Run the simulations, show the correlation, and graph the density plot.
	2. Modify the sample_and_calculate_mean() function to take a parameter N. Set N to 10 and run it once.
	3. Now use replicate() to run the sample_and_calculate_mean(N=10) function 50,000 times to simulate a sampling distribution. Calculate the correlation between the theoretical and observed quantiles as shown above.
	4. Create a single function that takes N as an input, does everything specified in problem #3, and returns the correlation coefficient.
	5. Evaluate how long it takes to run this function once at sample size N=2, and then at sample size N=100.
	6. Modify the parallel code example above to run the get_correlation() function from 2 to 1,000 in intervals of 20.
	7. Plot the results with sample size on the x axis and the correlation coefficient (the normality assessment) on the y axis.
	8. At about what sample size does the sampling distribution approximate a normal distribution?
	9. Modify the code to do the same simulations and calculations, but with the sampling distribution of sums rather than the sampling distribution of means.

	OPTIONAL
	10. (OPTIONAL) Make a parallel version of the code directly above to check for correlations with 5 million random vectors. How many of these spurious correlations were above 0.8 (absolute value)?

