

Scheduling Coflows in Datacenter Networks:
Improved Bound for Total Weighted Completion
Time

Mehrnoosh Shafiee and Javad Ghaderi

Abstract—Coflow is a recently proposed networking abstrac-
tion to capture communication patterns in data-parallel com-
puting frameworks. We consider the problem of efficiently
scheduling coflows with release dates in a shared datacenter
network so as to minimize the total weighted completion time
of coflows. Specifically, we propose a randomized algorithm with
approximation ratio of 3e¢ ~ 8.155, which improves the prior
best known ratio of 9 + 161/2/3 =~ 16.542. For the special
case when all coflows are released at time zero, we obtain a
randomized algorithm with approximation ratio of 2e ~ 5.436
which improves the prior best known ratio of 3 + 2v/2 ~ 5.828.
Simulation result using a real traffic trace is presented that shows
improvement over the prior approaches.

Index Terms—Scheduling Algorithms, Approximation Algo-
rithms, Coflow, Datacenter Network

I. INTRODUCTION

Many data-parallel computing applications (e.g. MapRe-

duce [1]) consist of multiple computation stages. Intermediate
parallel data is often produced at various stages which needs
to be transferred among servers in the datacenter network.
A stage often cannot start or be completed unless all the
required data pieces from the preceding stage are received.
Hence, the collective effect of the data flows between the
stages is more important for the performance (e.g. latency,
job completion time) than that of any of the individual flows.
Recently Chowdhury and Stoica [2] have introduced the coflow
abstraction to capture these communication patters. A coflow
is defined as a collection of parallel flows whose completion
time is determined by the completion time of the last flow in
the collection.
A Smallest-Effective-Bottleneck-First heuristic was introduced
in Varys [3] for the problem of coflow scheduling in order to
minimize the weighted sum of completion times of coflows
in the system. This problem has been shown [4], [5] to be
NP-complete through its connection with the concurrent open
shop problem [3], [4]. Table I summarizes the best known
approximation ratio results for this problem [4], [5]. We
propose a deterministic algorithm that gives the same bound as
the prior best known bound, however, our approach improves
the best known bound for the randomized algorithm in both
cases of with and without release dates.

2-page abstract of this work is published in SIGMETRICS 2017.
This work is supported by NSF Grants CNS-1652115 and CNS-1565774.

TABLE I: Performance Guarantees (Approximation Ratios)

Case Best known This paper
Deterministic, without release dates 8 [5] 8
Deterministic, with release dates 12 [5] 12
Randomized, without release dates 34+ 2v2 [5] 2e
Randomized, with release dates 9+ 16v2 /3 [4] 3e

II. MODEL AND PROBLEM STATEMENT

Similar to [3], [4], we abstract out the datacenter network
as one giant N x N non-blocking switch, with N input links
connected to N source servers and /N output links connected
to N destination servers. We assume all the link capacities are
equal and normalized to one.

We assume there is a set of K coflows denoted by K. Coflow
k € K can be denoted as an N x N matrix D*) which
is released (arrives) at time r; that means it can only be
scheduled after time . Every flow is a triple (4, j, k), where
i € T is its source node, j € J is its destination node, and
k is the coflow to which it belongs. The size of flow (4, j, k)
is denoted by dj;, which is the (i, j)-th element of the matrix
D). For a source node i and a coflow k € K, we define
df = 3 <<y df;, which is the aggregate flow that node i
needs to transmit for coflow k. d? is defined similarly for
destination node j € J and coflow k € K.

We use fj, to denote the completion time of coflow k, which,
by definition of coflow, is the time when all its flows have
finished processing. In other words, for every coflow k € K,
fr = maxi<; j<n fz-@, where fi’; is the completion time of
flow (i, j, k).

For given positive weights wy, k € K, the goal is to
minimize the weighted sum of coflow completion times, i.e.,
> kek Wrfr» subject to capacity and release dates constraints.

III. LINEAR PROGRAMING RELAXATION

In this section, we use linear ordering variables (see,
e.g., [6]-[9]) to present a relaxed linear program of coflow
scheduling problem. For any two coflows k, &/, we introduce
a binary variable dx € {0,1} such that dy = 1 if coflow
k is finished before coflow &, and it is 0 otherwise. In the
linear program relaxation, we allow the ordering variables to

be fractional. This yields the following relaxed LP:

K
(LP) min Y wyfx (1)
k=1

subject to: f, > df + Y d¥ o 1<i<Nkek

k'ek
(1b)
fr>dj + Zd;‘f/ék'k 1<j<Nkek
k'ex
(Ic)
o> W)+ kek (1d)
6k‘k’ —+ 5k'k =1 k,k/ S K (le)
S € [0,1] kK € K. (1

Where, W(k’) = max{maxlgiSN df, maxi<j<n d?} is de-
fined as the effective size of coflow k. The constraint (1b) (sim-
ilarly (Ic)) follows from the definition of ordering variables
and the fact that flows incident to a source node 7 (a destination
node j) are processed by a single link of unit capacity. The fact
that each coflow cannot be completed before its release date
plus its effective size is captured by constraint (1d). The next
constraint (le) indicates that for each two incident coflows,
one precedes the other.

We use fi, to denote the optimal solution to this LP for the
completion time of coflow k. Also we use OPT = Zk Wy fk
to denote the corresponding objective value. Similarly we use
f& to denote the completion time of coflow k in some optimal
scheduling, and use OPT =), wy f; to denote its optimal
objective value. The following lemma establishes a relation
between OPT and OPT.

K i K
Lemma 1. > " wifr <> 4 wiff.

Proof. Consider an optimal solution. We set ordering variables
so as Ogpr = 1 if coflow k precedes coflow k' in this
solution, and d, = 0, otherwise. If both coflows finish
their corresponding incident flows at the same time, we set
either one to 1 and the other one to 0. We note that this set
of ordering variables and coflow completion times satisfies
constraints (1b) and (1c) (as a result of capacity constraint on
communication links) and also constraint (1d). Furthermore,
the rest of (LP) constraints are satisfied by the construction
of ordering variables. Therefore, optimal solution can be
converted to a/_:fe/asible solution to (LP). Hence, the optimal
value of LP, OPT, is at most equal to OPT. O

IV. ALGORITHM DESCRIPTION AND MAIN RESULTS

Both deterministic and randomized algorithms have three
steps: (i) solve the relaxed LP (1), (ii) use the solution
of the relaxed LP to partition coflows into disjoint subsets
Cy,C4,--+,C for some L to be determined, and (iii) treat
each subset Cy, [= 0,--- , L, as a single coflow and schedule
its flows in a way that optimizes its completion time.
Partition Rule: We define v = min;;df; and T =
maxy vy + 2. 2 Zj dfj. Given 5 > 1 (to be optimized),
we choose L to be the smallest integer such that v+ > T,
where in the deterministic algorithm, @ = 0 and in the

randomized algorithm « is a number chosen uniformly at
random from [0, 1). Consequently, define a; = 3!, for [=
—1,0,1,--- , L. Then the [-th partition is defined as the
interval (a;_1, ;] in both algorithms and the set C; is defined
as the subset of coflows whose completion times fr (as the
result of solving the LP (1)) fall within the I-th partition, i.e.,
Cr={kek: fr€(q-1,q/]}; 1=0,1,---, L.
Scheduling Each Subset: To schedule coflows of each subset
C;,l=1,---, L, we construct a single coflow by aggregating
all the coflows of (', and then schedule its flows to optimize
the completion time of this aggregate coflow.

. N L
Suppose a single coflow D = (dij)i,jzl is given. Let
W (D) denote its effective size. We assign transmission rate
x;5 = d;j /W (D) to flow (¢,) until it is completed. Note that
this rate assignment respects the capacity constraints, since for
all source nodes 7 € I:

Yoowt)= >

1<j<N 1<j<N

di; W (D)

W(D) = WD) "

and similarly for all destination nodes j € J. Also, by this
rate assignment, all flows of D finish in W(D) amount of
time.

Now we state the main results in the following theorems.

Theorem 1. When B = 2, the described deterministic al-
gorithm is a 12-approximation algorithm for the problem of
total weighted completion time minimization of coflows with
release dates. Without release dates, it is an 8-approximation
algorithm.

Theorem 2. When 3 = e, the described randomized algorithm
is a (3e)-approximation algorithm. If all coflows are released
at time 0, then it is a (2e)-approximation algorithm.

V. ALGORITHM ANALYSIS

To prove Theorems 1 and 2, we need the following lemma
that characterizes the time to complete all the coflows in Cj.

Lemma 2. Let 7¢, be the amount of time spent on processing
all the coflows in C). Then

<
o S max T + W(C), 2

where, W (C}) is the effective size of the aggregate coflow
constructed from coflows in partition C;.

Proof. In order for all coflows of the set C; to be released,
we wait for at most maxy.zec, 7 amount of time. Also,
it is obvious that all corresponding flows are processed in
W(C}) amount of time as a result of rate allocation of
both deterministic and randomized algorithms. Thus, 7¢, <
maXg.keco, Tk + W(Cl) O]

The following lemma demonstrates a relationship between
completion time of coflows in C; obtained from (LP) and
w(C).

Lemma 3. maxy..cc, fk > 1/2W(C))

Proof. Variant versions of this lemma were used in other
scheduling problems (see e.g., [6]-[9]). We refer to these work
for the proof. O

We note that W(C}) is a lower bound on the time that all
coflows of partition C; complete in a feasible scheduling (as
a result of the capacity constraints). Lemma 3 asserts that by
allowing ordering variables to be fractional, completion time
of coflows in partition C; obtained from (LP) is still lower
bounded by half of W(C;). Combining this with Lemma 2,
we get the following inequality regarding the completion time
of each partition which helps us bound the completion time
of coflows under our algorithms.

Corollary 1. Let 7¢, be the amount of time spent on process-
ing all the coflows in Cy, and fi, be the optimal solution to
the LP (1). Then

7o, < 3 max fg.
! k:kele

Proof. Using Lemma 2, we have

< .
o < knklg)él re + W(C))

Constraint (1d) ensures that maxy.xec, " < MaXp:kec, fk.
Combining this with Lemma 3 gives the bound in the lemma’s
statement.]

A. Proof of Theorem 1

Proof of Theorem 1. Let fk denote the actual completion time
of coflow k under our deterministic algorithm. Also, let [} be
the index of the partition into which coflow k falls based on
fk. Then

7 € ch < Z3snsﬂeax i< 32%

p=0

3)

Inequality (a) bounds the completion time of coflow &k with
summation of the time the algorithm spends on previous
partitions plus the time it spends on Cj, . Corollary 1 implies
inequality (b), and inequality (c) follows from the fact that f’s
falls in (ap—_1, ap) for every coflow s € C),. By the partitioning
rule,

Uy (Ie+1) _ 1
> a,= 72/3? L 51T < ﬂflaz @)
p=0

Combining (3) with (4),
. 2 () .
fk<35€1alk=3ﬂ€1alk—1 <3%fk &)

Where (d) is because fk falls in (aj,—1, ar,]- This inequality
implies that

2 2
Y_opr <3 _opr
-1 -1

The last inequality follows from Lemma 1. 5 = 2 gives 12-
approximation ratio. When all coflows are released at time 0,
70, = W(C)) < 2maxy.kec, fr in Corollary 1. This only
changes the inequality (b) in (3) and the rest of the argument
is similar. O

B. Proof of Theorem 2

Now, we analyze performance of our randomized algorithm.
Note that, in this case, fk is a random variable, because as a
result of the random partitioning of the time horizon, lj, the
partition that coflow k belongs to, is a random variable. Also
ay, 1s a random variable.

Lemma 4. Denote by I, the partition that coflow k belongs
to under random partltlomng (av is uniformly distributed over
[0,1)), then E [a;,] = lnﬁ L.

Proof. A similar result was proved and used in [8] for some
other scheduling problem. We present an alternative proof
here. From the partitioning rule described in Section IV,
a,—1 < fr < ai,, where a;, = BT which implies
that I, = [logg(fx/v) — a]. We define y = logg(fr/v) —
Llogﬁ(fk/v)J and assume y > 0. Therefore,

_ [Nogs (/1)1
[logs(fr/v)] —1 otherwise

if a <y

Hence,

1 ~
/ B+ N0z (Fie /D11y

Yy .
E[a,] = / 3o+ 1085 (P /D) gy 4
0 Yy

zygﬂogg(fk/vﬂ /y Bda
y—1

_ Bl ghogsGTtu-t
Ing
= Bl
g
_B-1;

Equality (*) is implied by definition of y and its positivity.
When y = 0, the argument is similar. O

Proof of Theorem 2. From the first part of inequality (5), we
have the following bound on f.

7o

Lemma (4) together with linearity of expectation imply that,

S wE [fk} < S—Zwkfk < S—OPT ©)
k

The choice 8 = e gives 3e-approximation for the randomized
algorithm. For the case that all coflows arrives at time 0,
T, = W(C)) < 2maxg.kec, fx, and the result is followed
by replacing 3 with 2 in inequality (6). O

VI. EMPIRICAL EVALUATION

Now, we present our simulation result to evaluate the
performance of our algorithms.
Workload: The workload is based on a Hive/MapReduce
trace at Facebook that was collected from a 3000-machine
cluster with 150 racks and was also used in [3], [4]. Similar
to [4], we filter the coflows based on the number of their non-
zero flows which we denote by M. Apart from considering

all coflows (M > 1), we consider three coflow collections
filtered by the conditions M > 10, M > 30, and M > 50.
Furthermore, the original cluster had a 10 : 1 core-to-rack
oversubscription ratio with a total bisection bandwidth of
300 Gbps. Hence, each link has a capacity of 128 MBps.
To obtain the same traffic intensity offered to our network
(without oversubscription), for the case of scheduling coflows
with release dates, we need to scale down the arrival times
of coflows by 10. For the case of without release dates, we
assume that all coflows arrive at time 0.

Algorithms: We implement our deterministic and randomized
algorithms with and without backfilling policy. The backfilling
strategy works as follows: After assigning rates to aggregated
coflow, we increase x;;, rate of transmitting flows from source
node ¢ to destination node j, until either capacity of link %
or link j is fully utilized. We continue until for any node,
either source or destination node, the summation of rates
sum to one. We also transmit flows respecting coflow order
inside of each partition C;. When there is no more service
requirement on the pair of input ¢ and output j for coflows
of current partition, we backfill (transmit) in order from the
flows on the same pair of ports from the subsequent coflows.
We refer to this algorithm as ‘LP-OV-BR’, where OV stands
for ordering variables, and BR indicates that scheduling is
done by continuous rate control combined with backfilling.
When there is no backfilling, the algorithm is referred to
‘LP-OV-R’. We also simulate the algorithm in [4] combined
with backfilling strategy as described in [4] and refer to it
as ‘LP-II-B’. Varys [3] is the last algorithm simulated for the
means of performance comparison.

A. Performance of Our Algorithms

We report the ratios of the total weighted completion
time obtained from our deterministic algorithm, with and
without backfilling, and the optimal value of relaxed linear
program (1), to verify Theorems 1. We also simulate our
randomized algorithm with 10 random values of « for dif-
ferent cases, and present average ratio of the total weighted
completion time divided by the optimal value of relaxed
linear program (1) to verify Theorems 2. We also report the
best performance ratio among 10 runs for each case. We
only present results of the simulation in where we consider
all coflows of the real traffic trace with equal weights and
random weights. The results are more or less similar for
other collections and all are in consistence with our theoretical
results.

Table II shows the performance ratio of the deterministic

algorithm for the case that all coflows are released at time
0. All performances are consistent with our theoretical result
indicating that the approximation ratio is at most 8. In fact,
the ratios are much smaller than 8 and is at most 1.94, when
no backfilling is used and coflows have random weights. We
note that the effect of backfilling is less than 8%.
Tables IIT shows the results for the case of release dates. All
the ratios are less that 12 which verifies Theorem 1. The effect
of backfilling is more profound in this case and is in the range
of 10% to 18%.

TABLE II: Performance Ratio of Deterministic Algorithm,
Without Release Dates

Algorithm Equal weights ~ Random weights
LP-OV-R 1.91 1.94
LP-OV-BR 1.79 1.80

TABLE III: Performance Ratio of Deterministic Algorithm,
With Release Dates

Algorithm Equal weights ~ Random weights
LP-OV-R 1.53 1.59
LP-OV-BR 1.35 1.44

Average and the best performance ratio of our randomized
algorithm over 10 random choices of « for the case when all
coflows are released at time O and the case of general release
dates are presented in Tables IV and V, respectively. In each
cell, the first number is average performance ratio and the
second number is the best one. We note that, although the
best performance ratio (best choice of «) is always smaller
than performance ratio of the deterministic algorithm, this is
not true for the average ratio for all the cases.

B. Performance Comparison with Other Algorithms

Now, we compare performance of deterministic algorithm
combined with backfilling with LP-II-B and Varys. We ran
simulations for the four collections of coflows described. We
set all the weights of coflows to be equal to one, and normalize
the total completion time under each algorithm by the total
completion time under LP-OV-BR.

Figure 1 shows the performance of different algorithms for
different collections of coflows when all coflows are released
at time 0. LP-OV-BR outperforms Varys for 28 — 32% in
different collections. It also constantly outperforms LP-II-B
for about 6—7%. As we see appropriate ordering and grouping
of coflows are paramount in decreasing the completion times.
Figure 2 shows the performance of different algorithms for
different collection of coflows for the case of release dates.
LP-OV-BR outperforms Varys for about 5%, 7%, 16%, and 9%
for all coflows, M > 10, M > 30, M > 50, respectively. It
also outperforms LP-II-B for 9% when we consider all coflows
and about 4% in other cases.

TABLE IV: The Average and The Best Performance Ratio of
Randomized Algorithm, Without Release Dates

Algorithm Equal weights ~ Random weights
LP-OV-R 1.91/1.86 1.91/1.76
LP-OV-BR 1.83/1.74 1.79/1.73

TABLE V: The Average and The Best Performance Ratio of
Randomized Algorithm, With Release Dates

Algorithm Equal weights ~ Random weights
LP-OV-R 1.48/1.39 1.54/1.43
LP-OV-BR 1.42/1.34 1.48/1.33

2 —

E 1 1 M

2

=

2

@ 1

=3

£

O 0.8 I LP-OV-BR

2 [P8

S 6 [varys

=3

-

B o4

N

‘©

€ o2

=

o

= L1
All Coflows M= 10 M = 30 M = 50

Coflow Collection

Fig. 1: Performance of LP-OV-BR, LP-II-B, and Varys when
all coflows release at time 0, normalized with the performance
of LP-OV-BR, under real traffic trace.

I L P-OV-BR
118
Cvays

Normalized Total Completion Time

All Coflows

M= 10 M = 30
Coflow Collection

Fig. 2: Performance of LP-OV-BR, LP-II-B, and Varys in the
case of release dates, normalized with the performance of LP-
OV-BR, under real traffic trace.

VII. CONCLUDING REMARKS

In this paper, we studied the problem of scheduling of
coflows with release dates to minimize their total weighted
completion time, and proposed algorithms with improved
approximation ratio. We also conducted extensive experiments
to evaluate the performance of our algorithms, compared with
two algorithms proposed before, using a real traffic trace.
Our experimental results show that our algorithm combined
with backfilling strategy yields improvement over the prior
approaches.

As future work, other realistic constraints such as prece-
dence requirement or deadline constraints need to be con-
sidered. Also, theoretical and experimental evaluation of the
performance of the proposed online algorithm is left for future
work. While we modeled the datacenter network as a giant
non-blocking switch (thus focusing on rate allocation), the
routing of coflows in the datacenter network is also of great
importance for achieving the quality of service.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107—
113, 2008.

[2] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks. ACM, 2012, pp. 31-36.

[3] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with
varys,” in ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4. ACM, 2014, pp. 443-454.

[4] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted comple-
tion time of coflows in datacenter networks,” in Proceedings of the 27th
ACM symposium on Parallelism in Algorithms and Architectures. ACM,
2015, pp. 294-303.

[5] S. Khuller and M. Purohit, “Brief announcement: Improved approxima-
tion algorithms for scheduling co-flows,” in Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures. ACM, 2016,
pp. 239-240.

[6] C. Potts, “An algorithm for the single machine sequencing problem with
precedence constraints,” in Combinatorial Optimization II. Springer,
1980, pp. 78-87.

[7]1 L. A. Hall, D. B. Shmoys, and J. Wein, “Scheduling to minimize average
completion time: Off-line and on-line algorithms,” in SODA, vol. 96,
1996, pp. 142-151.

[8] R. Gandhi, M. M. Halldérsson, G. Kortsarz, and H. Shachnai, “Improved
bounds for scheduling conflicting jobs with minsum criteria,” ACM
Transactions on Algorithms (TALG), vol. 4, no. 1, p. 11, 2008.

[9] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan,
“Minimizing the sum of weighted completion times in a concurrent open
shop,” Operations Research Letters, vol. 38, no. 5, pp. 390-395, 2010.

