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Abstract

Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid

climate change is anticipated in tropical regions over the coming decades and, under a

warmer and drier climate, tropical forests are likely to be net sources of carbon rather

than sinks. However, our understanding of tropical forest response and feedback to cli-

mate change is very limited. Efforts to model climate change impacts on carbon fluxes

in tropical forests have not reached a consensus. Here, we use the Ecosystem Demog-

raphy model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under real-

istic climate change scenarios. We parameterized ED2 with species-specific tree

physiological data using the Predictive Ecosystem Analyzer workflow and projected the

fate of this ecosystem under five future climate scenarios. The model successfully cap-

tured interannual variability in the dynamics of this tropical forest. Model predictions

closely followed observed values across a wide range of metrics including aboveground

biomass, tree diameter growth, tree size class distributions, and leaf area index. Under

a future warming and drying climate scenario, the model predicted reductions in carbon

storage and tree growth, together with large shifts in forest community composition

and structure. Such rapid changes in climate led the forest to transition from a sink to

a source of carbon. Growth respiration and root allocation parameters were responsible

for the highest fraction of predictive uncertainty in modeled biomass, highlighting the

need to target these processes in future data collection. Our study is the first effort to

rely on Bayesian model calibration and synthesis to elucidate the key physiological

parameters that drive uncertainty in tropical forests responses to climatic change. We

propose a new path forward for model-data synthesis that can substantially reduce

uncertainty in our ability to model tropical forest responses to future climate.
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1 | INTRODUCTION

Tropical forests play a critical role in the global carbon cycle (Bonal,

Burban, Stahl, Wagner, & H�erault, 2016) by accounting for 33% of

terrestrial net primary production, 25% of stored terrestrial carbon,

and annually sequestering roughly 3 billion tons of carbon (Beer

et al., 2010; Bonan, 2008). However, with tropical estimates having

the largest uncertainties (Joetzjer, Douville, Delire, & Ciais, 2013;
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Pan et al., 2011), the locations and drivers of the terrestrial carbon

sink are still relatively poorly constrained. Indeed, our limited under-

standing of how tropical plant and soil carbon cycling will respond to

climate change is one of the greatest sources of uncertainty in mod-

eling future global carbon cycling and climate (Bonan & Levis, 2010;

Booth et al., 2012; Piao et al., 2013; Ziehn, Kattge, Knorr, & Scholze,

2011). The rapid change in climate expected to occur in tropical

regions over the coming decades (Anderson, 2011; Mora et al.,

2013) demands that we develop a better understanding of the

effects of climate change on tropical forests, and the potential feed-

back effect of changing tropical forest structure and function.

The most optimistic predictions from climate models indicate

that global mean temperatures will increase by 2°C within the next

couple of decades (Anderson, 2011; Diffenbaugh & Scherer, 2011).

Precipitation patterns are also expected to shift in future climate

scenarios (Dai, 2013; Feng, Porporato, & Rodriguez-Iturbe, 2013;

Mora et al., 2013; Neelin, M€unnich, Su, Meyerson, & Holloway,

2006), with many parts of the tropics getting drier. Although models

diverge on predictions of drought more so than on temperature

extremes (Good, Martin, & Rayner, 2013), most predict stronger

droughts in the Amazon (Joetzjer et al., 2013), Central America, and

the Caribbean (Neelin et al., 2006), West Africa, and peninsular S.E.

Asia (Zelazowski, Malhi, Huntingford, Sitch, & Fisher, 2010). Drought

and heat-induced tree mortality events could lead to large carbon

losses from tropical forests, reduced regional net primary productiv-

ity, and decreases in evaporative cooling, creating a positive feed-

back that exacerbates global warming (Bonal et al., 2016; Bonan,

2008; Zhao & Running, 2010). In short, if we ignore potential

changes in solar radiation that can accompany drought, under a war-

mer and drier climate, tropical forests are likely to become net

sources of carbon, rather than sinks (Corlett, 2016). However, our

understanding of tropical forests response to drought and warming

and their implications on the carbon and hydrological cycles are very

limited (Cavaleri, Reed, Smith, & Wood, 2015; Luo et al., 2011).

Tropical tree responses to drought and heat are complex (Meir,

Mencuccini, & Dewar, 2015a; Wood, Cavaleri, & Reed, 2012). Over

the past decade, considerable effort has gone toward improving our

understanding of the effects of drought on tropical forests and stud-

ies have demonstrated that by suppressing tree growth and increas-

ing tree mortality, droughts reduce carbon storage in tropical forest

(Chazdon, Redondo Brenes, & Vilchez Alvarado, 2005; da Costa

et al., 2010; Phillips et al., 2009; Uriarte, Lasky, Boukili, & Chazdon,

2016). However, constant NPP has also been observed during

drought due to shifts in carbon allocation (Doughty et al., 2015).

High tree mortality rates have been observed during extreme

drought events (Allen et al., 2010; da Costa et al., 2010; Phillips

et al., 2010). Early-successional species appear to be particularly vul-

nerable to drought (Markesteijn, Poorter, Bongers, Paz, & Sack,

2011; Phillips et al., 2010; Uriarte et al., 2016) because of their high

photosynthetic and respiration rates and low wood density. Studies

also have shown that larger trees suffer higher mortality rates than

small trees (Bennett et al., 2015; Phillips et al., 2010; Uriarte et al.,

2016), which could result in large carbon losses since these

individuals account for the majority of forest biomass. The physio-

logical mechanism underlying demographic responses to drought,

however, is the subject of intense debate (Meir et al., 2015a).

Our understanding of temperature effects on tropical forests is

even more limited than those of drought and represents a key

uncertainty that hinders our ability to predict feedbacks between

atmosphere and biosphere in a warming world (Slot & Winter,

2016). Recent reviews highlight the potential for increased tempera-

tures to reduce carbon storage in forest ecosystems (Corlett, 2011;

Wood et al., 2012; Wright, Muller-Landau, & Schipper, 2009), but

empirical observations are scant. Long-term studies in tropical for-

ests that span a broad range of temperatures have shown that high

temperatures reduce tree growth rates (Clark, Piper, Keeling, & Clark,

2003; Feeley, Joseph Wright, Nur Supardi, Kassim, & Davies, 2007;

Vlam, Baker, Bunyavejchewin, & Zuidema, 2014). These declines

have been attributed to temperature-induced increases in respiration

rates. Additional evidence of tropical tree species’ responses to

altered temperature also comes from diurnal temperature gradients

(Slot, Wright, & Kitajima, 2013), growth chamber experiments

(Cheesman & Winter, 2013; Cunningham & Read, 2003a, 2003b),

cut leaves in warmed chambers (Doughty & Goulden, 2008), or

branch warming experiments (Slot et al., 2014). While some of these

studies found that tropical tree species exhibit sharp declines in leaf-

level photosynthesis between 33 and 40°C (Doughty, 2011;

Doughty & Goulden, 2008) possibly as a result of temperature-

induced increases in vapor pressure deficit (Wu et al., 2017), others

have demonstrated enhanced growth at temperatures as high as

35°C (Cheesman & Winter, 2013) or even above 35°C as long as

stomata remains open (Slot & Winter, 2017). Previous studies also

highlight striking variation in species responses to high temperature.

For example, canopy whole leaf respiration for early-successional

species responded more to elevated temperature than mid- or late-

successional species (Slot et al., 2013) and relative growth rates of

seedlings of pioneer species increased under warming, while growth

rates for old-growth species were severely depressed (Cheesman &

Winter, 2013). These results were from leaf- or branch-level studies,

and it remains unclear whether leaf- and canopy-level observations

are quantitatively compatible (Doughty & Goulden, 2008), highlight-

ing the challenges of synthesizing data across leaf to canopy scales

(Reed, Wood, & Cavaleri, 2012).

Studies focusing on plant physiological responses have shown

that carbon dioxide (CO2) fertilization could reduce plant stomata

conductance and hence increase water-use efficiency (WUE) (Hol-

tum & Winter, 2010; Morgan, Lecain, Mosier, & Milchunas, 2001;

Robredo et al., 2007). Therefore, rising atmospheric CO2 concentra-

tion has potential to mitigate future drought-related stress on plant

carbon assimilation and growth. A recent pantropical tree ring study

has shown that although increases in CO2 over the past 150 years

led to 30%–35% increases in WUE, there was no concurrent acceler-

ation of tree growth (Van Der Sleen et al., 2015). However, we do

not know how elevated CO2 will change net ecosystem carbon

uptake. Because the capacity of tropical ecosystems to act as a car-

bon sink depends on the relative effects of elevated CO2, drought
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and warming, and their potential interaction on both plant and soil

processes (Roy et al., 2016), an integrated assessment of all carbon

fluxes under future climate scenario is important if we are to esti-

mate overall carbon balance.

Reliable predictions of interactions between tropical forests and

climate depend on well-developed and parameterized models. Efforts

to model the impacts of climate change on carbon fluxes in tropical

forests have not yet reached a consensus on the magnitude or even

the direction of these effects (Bonal et al., 2016; Malhi et al., 2008;

Rowland et al., 2015a; Vieilledent et al., 2016). This is in part because

most models that simulate the effects of climate on tropical forests

are simplistic, calling into question the reliability of their predictions

(McMahon et al., 2011; Rowland et al., 2015a). Small changes in the

sensitivity of tropical forests to shifts in temperature and rainfall dra-

matically affect model output (Zhou, Fu, Zhou, Li, & Luo, 2013), high-

lighting the need to improve the representation of tropical forests in

models in order to make robust predictions. The high diversity of tree

species with a potential for very different responses to climate

change within a single community (Cheesman & Winter, 2013; Phil-

lips et al., 2009; Uriarte et al., 2016) is one of the factors that compli-

cates model development (Mar�echaux et al., 2015). Nevertheless,

accurate representation of tropical forest responses to climate change

must move past notions of a single tropical plant functional type, and

will require identification of the physiological traits that best predict

tree responses to climate changes.

Both models and empirical data predict more intense droughts

over the Caribbean with a warming trend under future climate

change scenarios (Gamble & Curtis, 2008; Khalyani et al., 2016;

Neelin et al., 2006). Therefore, in this study, we use ECOSYSTEM

DEMOGRAPHY model (version 2.1, hereafter ED2) to predict carbon

fluxes of a tropical forest in Puerto Rico under realistic climate

change scenarios. ED2 is a cohort-based terrestrial ecosystem model

that predicts both ecosystem structure and corresponding ecosystem

fluxes from climate inputs (Medvigy, Wofsy, Munger, Hollinger, &

Moorcroft, 2009; Moorcroft, Hurtt, & Pacala, 2001). By coupling tree

physiology with stand dynamics via a size- and age-structure

approach, ED2 can capture the response of individual trees to cli-

mate variability and change. For this reason, ED2 offers a promising

template for a second generation of land surface models, which can

be incorporated in large-scale climate simulations.

With the goal of identifying the contribution of different parame-

ters to model uncertainty, we couple ED2 with the scientific work-

flow Predictive Ecosystem Analyzer (PEcAn 1.1) (LeBauer, Wang,

Richter, Davidson, & Dietze, 2013). PEcAn is an eco-informatic

workflow for model analysis (LeBauer et al., 2013) that addresses

the challenge of synthesizing available data in a way that accounts

for the different scales and sources of model uncertainty (i.e., uncer-

tainty in carbon stocks and fluxes). By streamlining the tracking, pro-

cessing and synthesis of data and model output, PEcAn addresses

information management issues that typically hinder model develop-

ment, utility and widespread adoption, lending greater accessibility,

transparency, and credibility to the models (LeBauer et al., 2013).

The specific objectives of the present study are to (i) parameterize

ED2 with species-level physiological tree trait data for predicting the

carbon cycle in a wet tropical forest of the Caribbean; (ii) compare

model performance to observations from field studies; (iii) reduce

model uncertainty in predictions of tropical forest responses to

future climate variability and change; and (iv) identify model parame-

ters that account for the majority of uncertainty in model outputs.

2 | MATERIALS AND METHODS

2.1 | Model description

The ECOSYSTEM DEMOGRAPHY model (ED2) is a cohort-based, terrestrial

biosphere model that couples age- and stage-structured plant com-

munity dynamics with physiological and biogeochemical modules.

ED2 incorporates an efficient and sophisticated scaling of ecosystem

dynamics from individual trees to landscapes (Medvigy & Moorcroft,

2012; Medvigy et al., 2009; Moorcroft et al., 2001). ED2 predicts

plant growth using established submodels of plant physiology, alloca-

tion, biogeochemistry, and hydrology. It calculates photosynthetic

rates using the enzyme kinetic model developed for C3 plants (Ball,

Woodrow, & Berry, 1987; Farquhar & Sharkey, 1982). In addition to

photosynthesis, ED2 also accounts for carbon allocation to growth,

respiration, and the turnover rate of carbon pools.

The ED2 predicts transient carbon, water, and energy fluxes

accounting for the fast, short-term physiological responses of plants

to changes in environmental conditions as well as responses to real-

istic, long-term successional changes in ecosystem structure and

composition (Moorcroft et al., 2001). ED2 provides information of

many details of ecosystem dynamics including community succession

and predictions of gross primary production (GPP), net primary pro-

ductivity (NPP), and aboveground carbon stocks. This feature of ED

enables us to predict aboveground biomass (AGB) of forests in tropi-

cal region as well as the carbon fluxes and their contribution to glo-

bal carbon cycling.

The ED2 has been previously tested to simulate regional carbon

fluxes (Desai, Moorcroft, Bolstad, & Davis, 2007; Medvigy & Moor-

croft, 2012) and net ecosystem productivity of tropical forests in the

Amazon basin (Kim et al., 2012; Moorcroft et al., 2001) and Central

America (Hurtt et al., 2004; Xu, Medvigy, Powers, Becknell, & Guan,

2016), and temperate (Albani, Medvigy, Hurtt, & Moorcroft, 2006)

and boreal forests (Trugman et al., 2016) in North America. These

simulations indicate that ED can accurately capture the community

dynamics and the different carbon pools in different types of forests

under both current and future climate conditions (Levine et al.,

2016; Powell et al., 2013).

2.2 | Model parameterization and calibration

Data were synthesized using a Bayesian meta-analysis, and the

meta-analysis posterior estimates of empirical data (i.e., sample

means, sample size, and sample error statistics for plant traits and

physiological measurements) were used as parameters in ED2 (Med-

vigy et al., 2009; Moorcroft et al., 2001). PEcAn (LeBauer et al.,
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2013) then carries out a set of ED2 model runs (model ensemble)

with parameter values drawn from the meta-analysis posterior distri-

butions of the data. Output from the ED2 model ensemble repre-

sents the posterior predictive distributions of ecosystem responses

that incorporate parameter uncertainty. The model ensemble pro-

duces a posterior distribution of ecosystem model outputs that can

be summarized with standard statistics (e.g., mean, standard error,

and credible intervals).

2.2.1 | Initial conditions and parameters

At the start of the simulations, initial stand density and stem diam-

eter at breast height (dbh) were set using values from census data

(See Section 2.3.2 below) collected in the Luquillo Forest Dynamics

Plot (LFDP) which is part of the Center for Tropical Forest

Science-Forest Global Earth Observatory (CTFS-ForestGEO) net-

work (Anderson-Teixeira et al., 2015). Eleven parameters were ini-

tially considered for parameterization based on our previous

experience (Dietze et al., 2014; LeBauer et al., 2013) with ED2

(Table 1). Available trait data were synthesized from the literature

and field observations at the site using a hierarchical Bayesian

meta-analytical model described by LeBauer et al. (2013). Briefly,

this approach generates posterior distributions by integrating prior

information and observations of parameter estimates. Each parame-

ter was assigned an informed prior functional form and parameter

specification that varies by parameter and Plant Functional Type

(hereafter PFT) for meta-analysis. These priors were specified by

fitting distributions to raw data collected from literature searches,

unpublished datasets, or from expert knowledge or default ED2

parameterization of tropical trees. When species-level data were

not available, the posterior distributions were set equivalent to the

priors. Detailed descriptions of meta-analysis procedures are pro-

vided in LeBauer et al. (2013). Calibration runs with default param-

eters of ED2 were also conducted (Fig. S1) for comparison to see

improvement of model performance with locally calibrated physio-

logical parameters.

TABLE 1 Prior distributions and data used in meta-analysis and model parameterization

Parameter Description Unit

Prior
Data

Posterior
Reference
for priorsDistribution a b n Mean LCL UCL

Dark respiration

factor

Coefficient for

leaf respiration

Ratio lnorm �3.90 0.40 10 0.02 0.01 0.03 Slot et al. (2013),

Atkin et al. (2015)

Leaf width Mean leaf width mm Gamma 12.80 0.18 4 139.01 94.72 179.50 Rozendaal, Hurtado,

and Poorter (2006)

Quantum

efficiency

Slope of the

relation between

light and carbon

assimilation rate (A)

mol CO2

mol�1

photon

Weibull 6.32 0.06 12 0.05 0.03 0.06 Skillman (2008)

SLA Specific leaf area m2 kg�1 Weibull 2.10 12.10 52 13.34 10.08 16.57 Wright

et al. (2004)

Stomatal slope Slope of the

relation between

stomatal conductance

and A

Ratio Weibull 7.11 6.29 10 5.40 4.87 5.95 LeBauer

et al. (2013)

Vcmax at 25°C Maximum

carboxylation rate

umol CO2

m�2 s�1

Weibull 2.72 40.60 12 25.23 15.54 35.03 Wullschleger

(1993)

Wood density Mass of wood contained

in a unit volume

103 kg m�3 lnorm �0.34 0.11 66 0.74 0.71 0.77 Reyes, Brown,

and Chapman

(1992)

Fineroot allocation Ratio of fine root to

leaf biomass

Ratio lnorm 0.14 0.37 0 1.24 0.56 2.37 Silver et al. (2005)

Growth respiration

factor

Proportion of daily carbon

gain lost to growth

respiration

Proportion Beta 7.24 11.40 0 0.39 0.19 0.61 Waring, Landsberg,

and Williams (1998),

Litton, Raich, and

Ryan (2007)

Photosynthesis

minimum

temperature

Photosynthesis begins to

rapidly decline below

this temperature

°C Norm 5.00 2.00 0 5.00 0.10 9.90 Allen and

Ort (2001)

Root turnover

rate

Rate of fine root loss year�1 Weibull 1.85 0.42 0 0.36 0.06 0.85 Gill and

Jackson (2000)

Columns a and b denote parameters of the prior distributions. Data column shows sample size of data collected from species at study site. Mean is the

mean of the posterior distribution. LCL and UCL are the lower and upper 95% confidence limits of posterior mean.
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The meta-analysis model was fitted in the computer program JAGS

run through the R package ‘RJAGS’ (version 4-6; Plummer 2016) using

standard Markov chain Monte Carlo (MCMC) methods with four par-

allel chains of length 105. The first half of each chain was discarded

as “burn-in”. Trace plots and Gelman–Rubin’s statistic were used to

assess model convergence (Gelman & Rubin, 1992). The resulting

posterior distributions of tree trait values were then sampled to gen-

erate an ensemble of 500 model runs. This ensemble was used to

estimate the predicted mean model outputs (e.g., AGB) and credible

intervals.

2.2.2 | Ensemble runs

To evaluate the effects of future climate scenarios on forest dynam-

ics and carbon fluxes, an ensemble of 500 runs were conducted

from 2002 to 2050. Ensemble runs between 2002 and 2016 were

used for validation (see Section 3.2 below). From 2017 to 2050, we

applied a gradual linear change in precipitation (50% reduction) and

temperature (2°C warming) (see Section 2.3.1 below) and then pro-

jected the fate of the forest under combined drought and warming,

drought-only, and warming-only scenarios, respectively. Parameter

uncertainty was propagated into model projections with an estima-

tion of a forecast confidence interval.

2.2.3 | Sensitivity analysis

In order to determine the magnitude of change in model output that

accompanies a change in each model parameter, we estimated sensi-

tivities using a global univariate sensitivity analysis. The sensitivity

analysis was conducted in PEcAn by running ED2 across the eleven

parameters of interest. Specifically, ED2 was evaluated for each

parameter at the posterior median and at six posterior quantiles

equivalent to � (1, 2, 3) r in the standard normal while holding all

the other parameters constant at their median. The relationship

between model output (e.g., AGB and NPP) and each model parame-

ter (pi) was then approximated by a natural cubic spline (gi(pi)) through

these seven evaluation points. The sensitivity to each parameter is

the derivative of the spline at the posterior median �pi. In order to

compare sensitivity among parameters, despite differences in units

and ranges of parameters, sensitivity was normalized by the ratio of

median model output to median parameter value as follows:

Sensitivity ¼ dgiðpiÞ
dpi

. �fi
�pi

(1)

where (dgi/dpi) is the derivative of the spline at the parameter median,
�fi is the median of model output and �pi is the median of a parameter.

2.2.4 | Variance decomposition

The variance in model output contributed by each input parameter

was quantified using variance decomposition analysis. We used

results from the meta-analysis and sensitivity analysis to estimate the

contribution of each parameter to uncertainty in modeled forest AGB

and NPP from the model ensemble. The approximation for decompo-

sition of the total variance in model output is formulated as:

VarðfðpÞÞ ¼
Xn

i¼1

VarðgiðpiÞÞ þ x (2)

where Var(f(p)) is the total variance of the model ensemble; gi(pi) is

the spline approximation of the model response (f) to each parame-

ter (pi) in the sensitivity analysis that transforms posterior variance

of pi obtained from the meta-analysis from the parameter to the

model domain; Var (gi(pi)) is the univariate contribution of each

parameter to variance of model output; and the final term x is the

closure between the right-hand side and the left-hand side of the

equation, representing unaccounted parameter interactions (Feng &

Dietze, 2013; Wright et al., 2004) in the variance decomposition.

The proportional contribution of each parameter (pi) to the total vari-

ance was calculated by dividing its partial variance by the total vari-

ance. A full description of this variance decomposition analysis is

available in LeBauer et al. (2013).

2.3 | Model validation and prediction

2.3.1 | Climate data

We evaluated the efficacy of ED2 in capturing forest responses to cli-

mate between 2002 and 2016 using hourly temperature, humidity,

radiation, precipitation, wind, and atmospheric pressure data collected

at Bisley and El Verde weather stations within El Yunque National For-

est (http://criticalzone.org/luquillo/data/datasets/#meteorology).

Weather data of Bisley station were used as primary meteorological

driver and weather data of El Verde station was used for periods with

gaps in weather data from the Bisley station. For long-term trends we

assumed that by 2050, mean annual precipitation will gradually decline

to 50% of 2002–2016 average rainfall and mean annual temperature

will gradually increase by 2°C. These projections were inferred based

on model projections that predict increasing drought and temperatures

for the Caribbean (Khalyani et al., 2016; Neelin et al., 2006). Climate

models derived from field and satellite data predicted a decrease in

rainfall of 5%–50% over the next few decades for the Caribbean (Kha-

lyani et al., 2016; Neelin et al., 2006). We used the most extreme sce-

nario in our model although lower declines in precipitation are

plausible. An increase in atmospheric carbon dioxide (CO2) concentra-

tion was also included in long-term climate change projections. We

assumed atmospheric CO2 concentration will gradually increase to

540 ppm by 2050 based on the RCP 8.5 scenario (Riahi et al., 2011).

In order to understand responses of tropical forest to climatic variabil-

ity, we applied three climatic scenarios in model projections including

drought-only, warming-only, and combined drought and warming. We

then added the elevated CO2 scenario to the drought-only and com-

bined drought and warming scenarios. The meteorological drivers

were generated at an hourly time step and were structured for driving

the ED2 model. To generate stochastic climate data for prediction of

forest responses between 2017 and 2050, we used a method based

on the decomposition of variability into trend, annual to decadal, and
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subannual components (Greene, Hellmuth, & Lumsden, 2012). In the

simulation process, a first-order vector autoregressive (VAR) model

was fitted to the detrended climate data series. The deterministic

response from observational data on which the simulation model is to

be trained was removed by a detrending procedure. The VAR model

was then used in the simulation step to project forward in time with

estimation of how the mean process level evolves in the future in

order to include trends in the simulated future climate data [see

Greene et al., (2012) for details].

2.3.2 | Tree data

To validate ED2, modeled PFT-level aboveground biomass (AGB) was

compared to AGB calculated from data collected in the Luquillo forest

dynamics plot (LFDP) between 2000 and 2016. The LFDP is a 16-ha

forest plot (SW corner 18°200N, 65°490W) located near El Verde Field

Station in the Luquillo Mountains of Puerto Rico. The plot was estab-

lished in 1990 and censused at approximately 5 year intervals starting

in 1990, 1995, 2000, 2006, 2011 and 2016 using standard protocols

(Condit, 1998). Briefly, all stems with diameter at breast height of

1.3 m from the ground (dbh) ≥1 cm) were mapped, measured and

identified to species. In each census, new stems were added, stems

were remeasured, and their status (alive/dead) was updated.

Large plots are required to cover local environmental variation,

include sufficient numbers of individuals of both the common and

rare species, and to determine plant spatial relationships. Population

monitoring over many years is required to elucidate forest response

to environmental changes and disturbance. The highly dynamic nat-

ure of the tree population in the LFDP makes this plot ideal for

model validation. For model validation, we used the 2000, 2006,

2011, and 2016 censuses. We were restricted to these censuses by

the availability of high-resolution climate data. For each census, we

calculated aboveground biomass from dbh using an allometric equa-

tion from Scatena, Silver, Siccama, Johnson, and Sanchez (1993) that

was formulated based on site-specific tree data from Luquillo forests

in Puerto Rico:

AGB ¼ e2:475½lnðdbh� 2:399Þ� (3)

All 154 species present in the LFDP census (2000–2002) were

assigned to three tropical PFTs (early-, mid-, or late-successional

tropical PFT) (Table 2) for model initialization and parameterization

based upon wood density data. When wood density data were lack-

ing, we assigned species to PFTs based on literature (Grau et al.,

2003; Ross, Carrington, Flynn, & Ruiz, 2001; Uriarte, Canham,

Thompson, & Zimmerman, 2004; Uriarte et al., 2009; Zimmerman,

Comita, Thompson, Uriarte, & Brokaw, 2010) and expert opinion.

We validated ED2 predictions using three metrics: AGB, forest size

structure and relative dbh growth. We calculated AGB for each PFT

and census period, for size structure, we calculated plant density for

several size classes: 0–10, 10–20, 20–40, 40–60, 60–80, 80–100,

and >100 cm (Fig. S2). We then calculated the ratio of large (≥10 cm

dbh) to small trees to examine how the size distribution of the forest

changes with time. The average dbh growth calculated from whole

plot censuses was not used for validation because calculating dbh

growth using the difference between average dbh of two censuses

would not capture the actual growth rate of live stems. This is

because mortality of large trees and new recruits between censuses

offset the increase in dbh due to growth of live stems resulting in

much slower changes in the average dbh of the whole community.

Therefore, the third metric we used was annual growth rate of 921

selected trees in LFDP collected between 2013 and 2015 using den-

drometers. Although these trees included fewer species (total of 58)

than those in the whole plot, they included the dominant species

and each PFT accounted for a similar proportion of trees as those in

the LFDP 2011 census with 11 species (127 trees) in the early-

successional, 24 species (288 trees) in the mid-successional, and 23

species (506 trees) in the late-successional PFT. However, the trees

measured with dendrometers had a higher average dbh than trees in

the whole LFDP census, which is dominated by small trees by tree

count (<10 cm dbh). For this reason, relative rather than absolute

dbh growth rate was used for model validation.

Abundance Early successional Mid successional Late successional

1 Palicourea riparia Casearia arborea Prestoea montana

2 Psychotria brachiata Casearia sylvestris Sloanea berteriana

3 Cecropia schreberiana Inga laurina Manilkara bidentata

4 Psychotria berteriana Cordia borinquensis Dacryodes excelsa

5 Schefflera morototoni Ocotea leucoxylon Hirtella rugosa

6 Piper glabrescens Alchornea latifolia Guarea guidonia

7 Miconia prasina Tabebuia heterophylla Trichilia pallida

8 Gonzalagunia spicata Myrcia deflexa Tetragastris balsamifera

9 Urera baccifera Byrsonima spicata Eugenia stahlii

10 Chionanthus domingensis Myrcia splendens Guarea glabra

The most abundant 10 species for each PFT are listed here. All of the species-level data to parameter-

ize ED2 were collected from this pool of species. The species are ranked by their abundance in the

studied forest over all censuses from 2002 to 2016. Within each PFT, these species accounted for

more than 80% of all trees.

TABLE 2 All tree species (with total of
154) in the forest were assigned to three
tropical plant functional types (PFTs)
including early-, mid-, and late-
successional PFTs
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3 | RESULTS

3.1 | Model parameterization and calibration

3.1.1 | Meta-analysis

Meta-analysis was conducted for 11 parameters selected based on

previous experience of model sensitivity to parameters (Dietze et al.,

2014; LeBauer et al., 2013). Species-level data were collated for the

abundant species in each PFT (Table 2) and were available for seven

parameters: leaf dark respiration rate, leaf width, quantum efficiency,

specific leaf area (SLA), stomatal slope, Vcmax, and wood density

(Table 1). Data to constrain seven parameters were available for all

three PFTs with the greatest amount of data available for the late-

successional PFT. Parameters with no empirical data including growth

respiration, fine root allocation, root turnover rate, and photosynthe-

sis minimum temperature, were constrained by prior distributions.

The majority of the trees and those with largest diameters belonged

to the late-successional PFT, making this group the most significant

contributor to aboveground biomass (AGB). For the late-successional

PFT priors, trait data, and meta-analysis posteriors are presented in

Figure 1 and for early- and mid-successional PFTs are shown in Sup-

porting Information (Figs S3, S4). Bayesian meta-analysis generally

reduced parameter uncertainty relative to the prior distributions (Fig-

ures 1, S3, S4), especially for traits with a large amount of empirical

data, such as specific leaf area (SLA) and wood density.

3.1.2 | Sensitivity analysis

Sensitivity analysis demonstrated that parameters varied widely in

their effects on AGB (Figure 2) and NPP (Fig. S5). Since the sensitiv-

ity analyses for all three PFTs showed similar patterns for AGB (Fig-

ure 2) and NPP (Fig. S5), we only elaborate results of sensitivity

analysis for AGB. The sensitivity analysis of mid- and late-succes-

sional tropical PFTs showed that model parameters exhibited a simi-

lar pattern in their effects on AGB (Figure 2c,d). For these two PFTs,

parameters associated with photosynthesis (including leaf dark respi-

ration, SLA, Vcmax and quantum efficiency) and carbon allocation

(growth respiration and root allocation) were relatively sensitive,

with parameters associated with carbon allocation having the highest

sensitivity. However, for the early-successional PFT, photosynthetic

parameters, especially Vcmax and quantum efficiency, had the highest
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F IGURE 1 Probability distributions of eleven ED2 parameters for late-successional PFT. Parameter values are shown on the x-axis and
probability on y-axis. Data used to constrain priors are depicted with black dots and are available for 7 of the 11 parameters. Priors for the
remaining four of eleven parameters were not informed by data, and thus the posterior distributions remain the same as prior distributions
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sensitivity. For all three PFTs, AGB was largely insensitive to root

turnover, minimum photosynthesis temperature, and leaf width.

3.1.3 | Variance decomposition

The variance decomposition analysis indicated that some parameters

contributed substantially more than others to uncertainty in modeled

AGB (Figure 2). For late-successional PFT, parameters controlling

photosynthetic processes (such as dark respiration and SLA), alloca-

tion (growth respiration and fine-root allocation), and belowground

processes (root turnover rate) contributed most to model uncertainty

(Figure 2). Parameters causing high model uncertainty, including

growth respiration and fine root allocation, tended to have both high

uncertainties in parameter values due to the scarcity of data avail-

able for these parameters and high sensitivities. Model uncertainty

contributed by parameters such as Vcmax and SLA was reduced by

greater availability of data, but their contribution to model variability

was still relatively high due to high sensitivity. The contribution of

root turnover rate to model uncertainty was mainly driven by high

meta-analysis posterior uncertainty, despite the low sensitivity of

AGB to this parameter (Figure 2e). On the other hand, stomatal

slope and wood density had a high sensitivity (Figure 2e) but
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F IGURE 2 Sensitivity analysis (left column) and variance decomposition (right column) for the three PFTs. Parameters are ranked by the
amount of uncertainty contributed to model output (AGB). Green denotes parameters associated with photosynthesis, orange represents
parameters associated with biomass allocation, and gray represents contributions of other parameters to the uncertainties in the model output.
Sensitivities are unitless measurements of the magnitude of change in model output that is effected by a change in a model parameter and are
scaled to 0–1. Negative sensitivity values indicate that AGB decreases with increase in parameters’ values. Variance decomposition quantifies
the proportional contribution of each parameter to the total variance in model output (AGB). The sum of all the bars in panels b, d, and f
equals 100
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contributed little to the model uncertainty (Figure 2f) because these

parameters were well constrained by data (Figure 1). Leaf width and

photosynthesis minimum temperature had very low sensitivity, and

thus contributed little to model variance despite having high parame-

ter uncertainty.

3.2 | Model validation

The mean of model ensemble runs was comparable to field observa-

tions. At the beginning of simulation period (2002), ED2 slightly under-

estimated biomass of early- and mid-successional PFT, but

overestimated biomass of the late-successional PFT. Mean AGB of

early-, mid-, and late-successional PFT in the first year were 19.83,

85.49, and 123.61 Mg/ha, respectively, while modeled AGB was

15.92, 76.37, 134.61 Mg/ha. However, this model-data mismatch

became smaller over time (Figure 3a). AGB calculated from census

data for all three tropical PFTs fell within the uncertainty range of

ensemble output for the simulation period (2002–2016) (Figure 3a).

Total aboveground forest carbon storage at the study site between

2002 and 2016 did not change significantly, with total observed AGB

ranging from 227.93 to 241.83 Mg/ha and predicted means ranging

from 225.58 to 240.94 Mg/ha. The late-successional PFT contributed

50%–60% of the total biomass. Total observed AGB of late-succes-

sional trees showed an increase from 123.61 to 144.68 Mg/ha (or

17.05%) during the study period (2002–2016) while modeled AGB of

this group showed a weaker increase from 134.61 to 145.82 Mg/ha

(8.33%). Observed early-successional PFT biomass also increased from

19.83 to 27.49 Mg/ha (38.63%), while modeled AGB was lower than

observed values but showed a similar increasing trend from 15.93 to

21.77 Mg/ha (36.70%). Biomass of the mid-successional PFT

decreased by 17.55% from 84.49 to 69.66 Mg/ha from 2002 to 2016.

However, the declining pattern of modeled AGB of mid-successional

PFT (from 76.37 in 2002 to 71.86 Mg/ha in 2011) was not as marked

as for observed AGB and remained relatively stable after 2011.
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The size structure of the modeled forest was also validated using

census data. There was an increase in the ratio of large diameter

(dbh ≥ 10 cm) to small (dbh < 10 cm) trees for all three PFTs with

the highest increase in the early-successional PFT group (Figure 3b).

This was due to the high mortality of small trees in this group. After

Hurricane Georges in 1998, the majority of new recruits recorded in

the 2000–2002 census belonged to the early-successional PFT while

very few individuals of the late-successional PFT recruited. However,

most posthurricane recruits died within a few years resulting in the

shift in the size structure of the forest recorded in the following cen-

suses. This increased recruitment in early-successional PFT trees

with the subsequent high posthurricane mortality led to an increase

in the proportion of large trees in the early-successional PFT over

the study period. Our model was initialized using the census data

and predicts a similar pattern to that observed in the census data.

Predictions of relative diameter growth were validated using

annual dendrometer data collected between 2013 and 2015. Diame-

ter (dbh) growth of the early-successional PFT was the highest

among the three PFTs while the late-successional PFT that repre-

sented the majority of trees in the plot had the lowest growth rate

(Figure 3c). A severe drought in 2015 (precipitation was ~50% of

average normal years) reduced observed dbh growth relative to typi-

cal years. ED2 model predictions showed the same pattern in growth

as the observed, with the mean modeled value falling within the

error range of observed values (Figure 3c).

Changes of predicted leaf area index (LAI) of early- and mid-suc-

cessional PFTs exhibited similar patterns as biomass, with an

increase for the early-successional PFT (0.81–1.12 m2/m2) and a

slight decrease (2.23–1.99 m2/m2) for the mid-successional PFT over

time. However, LAI of the late-successional PFT stayed relatively

constant with an average of 3.46 m2/m2 despite a slight increase in

biomass for this group over the validation period (2002–2016). Total

modeled mean LAI of this tropical forest was 6.45 m2/m2 (95% CI

was 4.62–8.27 m2/m2). These values were consistent with the num-

bers reported by other studies (Jordan, 1969; Zimmerman et al.,

1995). Mid-successional trees had the highest NPP among all three

PFTs (Figure 3d). NPP of the early-successional PFT rose along with

increases in biomass and the NPP of the late-successional PFT

remained relatively stable. These results correspond with our under-

standing of tropical tree physiology. Early-successional pioneer spe-

cies had high photosynthetic rates (Fig. S3) while late-successional

species had much lower photosynthetic rates (Figure 1). Mid-succes-

sional PFT had higher photosynthetic rates compared to late-succes-

sional PFT (Figures 1, S4) and higher biomass and LAI compared to

early-successional PFT (Figure 3a). Therefore, the high NPP of the

mid-successional PFT reflects the combination of its photosynthesis

and biomass.

3.3 | Long-term projections under combined
drought and warming

The combined drought and warming scenario modeled in ED2 was a

gradual linear change in precipitation and temperature over the

projection period (2017–2050). Under this scenario, ED2 predicted a

decline in biomass for mid-successional PFT (73.34 Mg/ha in 2016

to 56.53 Mg ha�1 in 2050, a decline of 22.92% from initial condi-

tions), and a more severe decline in biomass for the late-successional

PFT which went from 145.82 Mg/ha in 2016 to 98.02 Mg/ha in

2050 (�32.78%) (Figure 4a). However, the biomass of the early-

successional PFT consistently increased from 2016 to 2034 from

21.77 to 27.10 Mg/ha and declined only after 2034 down to

18.89 Mg/ha by 2050. By 2050, total forest biomass had decreased

by ~30% from 240.94 to 173.45 Mg/ha (Figure 4a).

The shift in predicted tree size structure paralleled the AGB

trends (Figure 4a,b). For all three PFTs, the proportion of large trees

decreased by 2050 with the highest decline in the late-successional

PFT (Figure 4b). Between 2002 and 2016, average dbh growth for

all PFTs increased with the highest increase in early-successional

PFT (Figure 4c). This increase in mean absolute dbh growth was

associated with an increase in the proportion of large trees from

2002 to 2016, and thus was not shown in relative dbh growth (Fig-

ure 3c). Between 2017 and 2050 the projected average dbh growth

of trees in all three PFTs declined (Figure 4c). This was driven by

the reduced proportion of large trees and lower NPP under drought

and warming (Figure 4b,c). By 2050, NPP had decreased to 50.02%

of the 2016 value (1.09 kg C m�2 year�1) while growth rates

decreased to 40.13% of 2016 value for early-, 42.21% for mid-, and

37.97% for late-successional PFT (Figure 4c). The greater declines in

dbh growth rates compared to NPP could be the result of reductions

in average tree dbh due to reduced proportion of large trees (Fig-

ure 4b). The altered forest structure was caused by reduced number

of large trees due to mortality and fewer trees entering the large

size category with suppressed growth. As a result of these predicted

changes in forest structure and growth, the model predicted that net

ecosystem productivity (NEP) was going to flip from positive to neg-

ative in 2036 (Figure 4d). Relative to 2016 conditions, precipitation

at this time point in 2036 was predicted to have reduced by ~30%

and temperature has increased by ~1.2°C, which is the threshold cli-

mate scenario that turns this tropical forest from a carbon sink to a

source.

3.4 | Carbon fluxes under different climate change
scenarios

Under combined drought and warming scenario, GPP and NPP

reduced by 45.72% and 49.98%, respectively, from 2016 to 2050;

NEP flipped from positive to negative (Figure 5a). Decreases in GPP,

NPP, and NEP under the drought-only and warming-only scenarios

were not as strong as those under the combined warming-drying

scenario and showed different patterns (Figure 5a). These differ-

ences were the result of variation among scenarios in the responses

of autotrophic and heterotrophic respiration. While total ecosystem

respiration decreased strongly under drought-only and the combined

drought and warming scenario due to reduction in primary produc-

tivity, the effects of warming-only scenario on ecosystem respiration

were far weaker (Figure 5b).
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Between 2016 and 2050, GPP decreased under all climatic sce-

narios with a concomitant decrease in plant respiration, which is

coupled with productivity (Figure 5). The greatest decline in GPP

was observed in the combined warming-drying scenario and the

least in the warming-only scenario. Since both foliar and root respi-

ration increased at high temperature, plant respiration initially exhib-

ited a slight increase under the warming-only scenario. Therefore,

the reduction in plant respiration by 2050 was not as great as the

reduction in GPP under the warming-only scenario (Figure 5a,b). The

effects of the three scenarios on NPP were similar to the effects on

GPP (Figure 5a). However, the differences in NPP among the three

scenarios were much less than the differences for GPP because the

differences in predicted GPP were offset by plant respiration.

Heterotrophic respiration exhibited a slight decline under the

drought-only scenario due to limited soil moisture (Figure 5b). How-

ever, the total amount of dead plant matter available increased due

to dieback of trees under drought. As a result, the decline of hetero-

trophic respiration was small despite much lower decomposition rate

under lower soil moisture level. Under the warming-only scenario,

heterotrophic respiration increased initially then stayed stable after

2040. Under the combined drought and warming, heterotrophic

respiration stayed relatively constant. Although higher temperature

caused greater decomposition rate under the combined scenario, this

effect was offset by limited moisture. Due to the different effects of

the three climatic scenarios on heterotrophic respiration, NEP trajec-

tories under the three scenarios differed from those of NPP and

GPP, with the combined warming-drying scenario having the

strongest effect on NEP and the drought-only scenario showing the

least.

Elevated CO2 alleviated the effects of drought and warming

stress. Under combined drought and warming scenario, GPP and

NPP increased accumulatively from 2017 to 2050 by 10.36% and

14.84%, respectively, with elevated CO2. As a result of the mitigat-

ing effect of CO2 enrichment, the turning point from carbon sink to

source was postponed to 2043 from 2036 (Figure 6a). Therefore,

even under elevated CO2, the forest still turns into a carbon source

under a drier and warmer climate.

The mitigating effect of CO2 elevation was stronger in the

drought-only scenario compared to combined drought and warming

scenario. Under drought-only scenario, GPP and NPP increased

accumulatively by 14.58% and 18.22% for 2017–2050 period with

elevated CO2. However, for both scenarios, the effects of CO2 were
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strongest during the middle period under moderate stress and

reached highest in 2037 with a 25.81% increase in GPP for com-

bined drought and warming scenario and peaked for drought-only

scenario in 2042 (GPP increased by 26.19%) (Figure 6a). CO2 fertil-

ization effects weakened with increasing water stress toward the

end of simulation period. Ecosystem respiration also showed an

increase under elevated CO2 (Figure 6b).

4 | DISCUSSION

Our study is the first effort to employ Bayesian model calibration

and synthesis to elucidate the key physiological parameters that

drive uncertainty in tropical forests responses to climatic change.

The Bayesian calibration synthesized available data and knowledge

about the parameter values with measures of uncertainty. This

approach provides probability distributions as output, instead of

point estimates, which enables propagation of parameter uncertainty

to subsequent analyses and forecast for both validation (2002–2016)

and prediction (2017–2050). Most importantly, the variance decom-

position identified the parameters that make the largest contribution

to model uncertainty, information that can be leveraged to target

future data collection efforts in tropical forest ecosystems.

Our results demonstrated that the ED2 model calibrated within

the PEcAn framework successfully captured interannual variability in

stand and carbon dynamics of a tropical forest in Puerto Rico. Mod-

eled values closely followed observed values across a wide range of

metrics including aboveground biomass, diameter growth, tree size

class distributions, and leaf area index. Under a future warming and

drying climate scenario, the model predicted reductions in carbon

storage and tree growth rates together with large shifts in forest

structure and community composition. These rapid changes in cli-

mate led the forest to transition from a carbon sink to a source by

2036 (Figure 4). Although the effects of drought-only and warming-

only scenarios were not as strong as the combined stressor scenario,

the results suggest either warming or drying alone could greatly

reduce the magnitude of the carbon sink in this tropical forest. Ele-

vated CO2 mitigated but did not completely offset the effects of

drought and warming stress.

4.1 | Community composition

Studies have demonstrated that larger trees suffer higher mortality

rates under drought (Bennett et al., 2015; Phillips et al., 2010; Uri-

arte et al., 2016). Consistent with these findings, our model pre-

dicted large declines in AGB under a drier and warmer climate with

the highest decline for late-successional trees with an average mor-

tality rate of 4.92% year�1 for large trees and 3.27% year�1 for small

trees from 2040 to 2050. Larger trees have shown higher mortality

toward the end of simulation period under extreme drought and

warming conditions within all three PFTS. Since late-successional

PFT had the highest proportion of large trees and made the greatest

contribution to forest biomass, mortality of large trees under drought

caused greatest declines in AGB of late-successional PFT accompa-

nied by a shift of size structure toward smaller statured trees. The

variation in the effects of drought on different tree sizes could lead

to variations in drought responses among different PFTs since size

composition differs among PFTs. Species within each PFT are also

likely to be differentially affected by drought due to variation in their

size distribution, structure, and physiology. Although shifts in
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precipitation are expected to differ across the tropics under a chang-

ing climate, species composition will be shaped by water availability

and can change rapidly in response in regions subject to increasing

drought (Bennett et al., 2015; Fauset et al., 2012; Feeley, Davies,

Perez, Hubbell, & Foster, 2011; Uriarte et al., 2016).

Tropical tree species are also likely to be particularly sensitive to

global warming because they are adapted to limited geographic and

seasonal variation in temperature (Wright et al., 2009). However,

species that have passed through warmth similar to 2,100 levels

(Dick, Lewis, Maslin, & Bermingham, 2013) may survive better in the

absence of other major environmental challenges. The large variation

in the response of species to warming will exacerbate the negative

effect of drought with higher growth rates observed in pioneer spe-

cies under warming, at least up to some temperature threshold

(Cheesman & Winter, 2013). These pioneer early-successional spe-

cies are also likely to colonize gaps created by the mortality of large

trees. This suggests that, together, long-term drought and warming

could lead to dramatic shifts in community composition and demog-

raphy of tropical forests (van Mantgem et al., 2009).

Tropical forests may be particularly vulnerable to a changing cli-

mate when subject to natural disturbances. Although ENSO events

are associated with lower frequency of hurricanes in the North

Atlantic (Gamble & Curtis, 2008), it is unclear how the frequency

and intensity of tropical storms will change under future climates

(Knutson et al., 2010). Nevertheless, it will be interesting to explore

the inclusion of hurricane regimes in model predictions. Our forest

site has experienced hurricanes on a recurring basis during past dec-

ades (Uriarte et al., 2009). Tree census data recorded before and

after hurricanes could be used to include hurricane regimes in the

modeling process.

4.2 | Carbon flux and storage

Modeled net ecosystem productivity (NEP) in this study shifted from

positive to negative in ca. 20 years under a gradual warming and dry-

ing scenario (Figures 4d and 5a), indicating the transition of this forest

from a carbon sink to a net source. Drought-only and warming-only

scenarios also reduced the carbon sink effects of the tropical forest

but not in such a marked and rapid manner. These changes in NEP

resulted from changes in gross primary productivity (GPP) and ecosys-

tem (autotrophic plus heterotrophic) respiration (ER).

Our model predicts a 33% decline of GPP under the drought-

only scenario. Tropical rainforest ecosystems are characterized by

high annual rainfall. Nevertheless, rainfall regularly fluctuates within

and across years and seasonal soil droughts do occur. Studies else-

where have shown that photosynthesis can decline due to limited

moisture availability under dry conditions (Doughty et al., 2015;

Rowland et al., 2015a, 2015b). However, an increase in GPP could

also be expected during dry periods if the drought is moderate. Such

an increase in GPP is caused by production of new leaves (Restrepo-

Coupe et al., 2013; Wu et al., 2016) and increased radiation due to

reduced cloud cover compared to wet periods (Dong et al., 2012;

Guan et al., 2015; Jones, Kimball, & Nemani, 2014). This potential

increase may be counterbalanced to some extent by the negative

effect of drought on photosynthesis for shallow-rooted trees when

the dry season is moderate, or for most trees if the drought is
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severe. Although photosynthesis declines if moisture availability is

limiting, leaf dark respiration is generally maintained, potentially

acclimating upwards in the longer term (Meir, Metcalfe, Costa, &

Fisher, 2008; Rowland et al., 2015b).

Our predictions show that the effects drought stress increased

over decades of constant and prolonged drying leading to continu-

ously declining forest productivity and growth. Severe and prolonged

drought events cause broad-scale mortality events during which the

capacity of forests to absorb CO2 was strongly reduced due to leaf

area loss. Large amounts of carbon can also be released into the

atmosphere as dead trees decompose (Clark et al., 2003; Potter,

Klooster, Hiatt, Genovese, & Castilla-Rubio, 2011). Although the

decomposition of this dead matter is slow and may take one to sev-

eral decades, biomass loss due to high mortality could change a

large, long-term carbon sink into net source as predicted by our

model. Past studies of Amazon forests response to the intense 2005

drought (Phillips et al., 2009, 2010) showed that forests lost bio-

mass, reversing a carbon sink, with the greatest effects observed

where the dry season was unusually intense. Tropical forests appear

vulnerable to increasing moisture stress, with the potential for large

carbon losses into the atmosphere to exert a feedback on climate

change (Phillips et al., 2009). This scenario can be viewed as a possi-

ble analog of future events, particularly in the Amazon, Central

America, and the Caribbean, West Africa, and peninsular S.E. Asia,

regions where drought is expected to be more frequent. However,

accurate characterization of plant hydraulic traits is essential to simu-

late forest growth and mortality for long-term projections. Two

recent studies have demonstrated that variation in plant hydraulic

traits explain the seasonal vegetation dynamics in dry tropical forests

(Xu et al., 2016) and drought tolerance of wet forest species (Powell

et al., 2017). Parameterization of plant hydraulic traits in this Puerto

Rican forest should be considered for future data collection and

modeling efforts.

Increases in temperature also have the potential to affect carbon

cycling in tropical forests. Climate warming is expected to decrease

primary production by increasing respiration rates in these ecosys-

tems (Doughty & Goulden, 2008), which may negatively affect the

carbon balance of tropical forests (Beer et al., 2010; Wood et al.,

2012). Increases in temperature have also been linked with declines

in wood production (Clark et al., 2003). On the other hand, previous

studies (Cheesman & Winter, 2013; Dong et al., 2012) have also

shown that increases in nighttime temperatures can increase tree

growth. However, this potential positive effect from nighttime tem-

perature increases were not incorporated in ED2. Under the warm-

ing-only scenario when water is not limiting, our model projects a

decline of primary productivity but only after 2034. High tempera-

tures during the growing season could cause a reduction of CO2

uptake and canopy conductance. Empirical studies elsewhere found

a 35%–40% reduction in gross CO2 exchange with a 3°C rise in air

temperature above 28.5°C (Doughty & Goulden, 2008). In our study,

warming accelerated the effect of drought and caused a 45% reduc-

tion of GPP and a shift of NEP from positive to negative. These

combined effects of warming and drying on NEP, which were not

evident when considering each stressor separately, can lead to a fun-

damental shift in the functioning and persistence of tropical rain-

forests.

In addition to reduced GPP under a warmer climate, carbon stor-

age of tropical forests will decrease owing to higher soil and plant

respiration rates associated with warming temperatures. The temper-

ature sensitivity of ecosystem respiration processes is a key determi-

nant of the interaction between climate and the carbon cycle (Beer

et al., 2010). In our study, heterotrophic soil respiration was posi-

tively affected by warming and negatively affected by drought, with

combined drought and warming stressors showing no significant

response (Figure 5b). These patterns are well aligned with field

experiment data of temperature and moisture effects on this large

CO2 flux (Meir et al., 2015b; Wood et al., 2012). Foliar respiration

varied with temperature and our projections matched expectations

based on the range of carbon sink vs. source behavior (Cavaleri,

Oberbauer, & Ryan, 2008). Our variance decomposition analyses

suggested that leaf dark respiration contributes a high amount of

uncertainty in the model output. Dark respiration and its tempera-

ture sensitivity varied among plant functional types, with higher tem-

perature sensitivities observed in early-successional tree species

compared to other functional types (Slot et al., 2013). However, Slot

et al. (2014) also suggested that leaf respiration of tropical forest

plants can acclimate to nighttime warming, thereby potentially

reducing the magnitude of the positive feedback between climate

change and the carbon cycle. Therefore, understanding leaf dark res-

piration and its temperature and moisture sensitivity are essential for

efforts to model carbon fluxes in tropical forests under current and

future temperature and precipitation regimes. However, we lack suf-

ficient data to make generalizations about dark respiration processes

and patterns in species-rich tropical forests, particularly in response

to climate variability and change (Atkin et al., 2015; Cheesman &

Winter, 2013; Rowland et al., 2015b). This data gap combined with

the complexity and diversity of tropical forests make it difficult to

determine the effects of warming with any certainty (Wood et al.,

2012). Given the major role tropical forests play in regulating global

carbon fluxes and stocks, resolving this uncertainty is a research pri-

ority. Improving our ability to quantify the role of ecosystem respira-

tion in regional scale carbon emissions will require long-term

experiments across a range of spatial scales and development of

robust moisture and temperature response functions. (Drake, Han-

son, Lowrey, & Sharp, 2017; Koutavas, 2013; Roy et al., 2016).

By restricting stomatal conductance and improving water-use

efficiency, one study showed that CO2 fertilization can enhance

resistance to drought, overcompensating for growth declines antic-

ipated under drier climate (Koutavas, 2013). Elevated CO2 can also

have negative impacts on NEP during extreme drought and heat

waves but at the same time, can compensate for these negative

impacts by speeding up recovery of ecosystem uptake after

short-term drought and heat events (Roy et al., 2016). Our

predictions show that under prolonged drought and warming, the

effect of elevated CO2 did not completely offset the effects of

drought and warming. In addition, the mitigating effect of elevated
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CO2 was strongest during moderate stress suggesting that the

alleviating effects of elevated CO2 depend on the intensity and

length of stress. Under chronic stress when stomata are fully

closed, the effect of elevated CO2 can be negligible (Franks et al.,

2013).

Ecosystem respiration was predicted to increase in our model

under elevated CO2 due to increases in autotrophic and hetero-

trophic respiration. Studies have reported that increase in soil respi-

ration could offset the increase in GPP since rising atmospheric CO2

is expected to stimulate plant growth and soil carbon input but may

also alter microbial decomposition (van Groenigen, Qi, Osenberg,

Luo, & Hungate, 2014). Although our model also predicts an increase

in ecosystem respiration, it is small compared to the increase in GPP

under elevated CO2. Soils contain the largest pool of terrestrial

organic carbon and are a major source of atmospheric CO2 (Scharle-

mann, Tanner, Hiederer, & Kapos, 2014). Thus, they may play a key

role in modulating climate change. Long-term studies are needed to

understand the combined effect of these responses on long-term

carbon storage.

4.3 | Tree diameter growth

Our results showed that under a drier and warmer climate, tree

growth strongly declined corresponding with the reduction in pre-

dicted GPP and NPP. Uncertainty analysis showed that the allocation

parameters made the largest contribution to uncertainty in modeled

NPP. More data are needed to improve the allocation scheme of

models to capture the seasonal and interannual variation of tree

growth rates in tropical forests (Bonal et al., 2016; da Costa et al.,

2010; Metcalfe et al., 2010; Phillips et al., 2009). Several studies

have showed that tropical forests display strong seasonal variation in

tree wood growth rates, which are largely explained by shifts in car-

bon allocation, and not by shifts in total productivity (Doughty et al.,

2014, 2015; Malhi et al., 2015). It has been proposed that changing

tree growth rates are more likely to reflect these shifts in carbon

allocation. Only a whole NPP allocation perspective will allow us to

correctly interpret the relationship between changes in growth and

productivity.

4.4 | Parameter uncertainty decomposition

Our approach provides a robust estimate of model uncertainty, and

identifies key data requirements to reduce predictive uncertainty in

tropical forest ecosystems. Results from the variance decomposition

can inform future targeted data collection required to efficiently con-

strain forecast uncertainty. Growth respiration was responsible for

the highest fraction of predictive uncertainty in modeled AGB. Previ-

ous work in temperate biomes has also observed the highest uncer-

tainty to be contributed by allocation parameters (Dietze et al.,

2014; LeBauer et al., 2013; Wang, LeBauer, & Dietze, 2013). Uncer-

tainty decomposition informs new measurements by targeting pro-

cesses and parameters with the biggest knowledge gap and the most

limiting effect on predictive capacity.

Previous modeling efforts have shown that correlations among key

functional traits can be important (Christoffersen et al., 2016; Xu et al.,

2016). We incorporated a closure term (x in Equation 2) in the uncer-

tainty decomposition analysis to account for parameter interactions

that are excluded from the univariate variance decomposition. This

coordination parameter accounted for ~15% of the predictive uncer-

tainty, suggesting that although parameter interactions are important,

univariate parameter uncertainty drives overall model variance.

Although the assumption of parameter independence in the Bayesian

meta-analysis and sensitivity analysis allows for a tidy decomposition

of the total variance, we could obtain stronger parameter constraints

by including parameter covariance. The absence of parameter interac-

tions could be improved by a multivariate meta-analysis and sensitivity

analysis accounting for parameter correlations which is planned for

future development of PEcAn (LeBauer et al., 2013).

There is a growing need to improve the predictive power of eco-

logical models. The availability of colossal amounts of data at many

scales opens up the possibility of model-data synthesis, and this syn-

thesis is of growing importance. Models can be thought of as scaffolds

that enable data at different scales to interact with each other through

our understanding of the underlying processes (Dietze, Lebauer, &

Kooper, 2013). The biggest challenge for data synthesis and prediction

is that data are recorded on different scales, such as leaf-level gas

exchange, eddy-flux measurements and remote sensing, and thus do

not inform each other directly. However, such datasets provide partial

information about the underlying biological mechanisms. These dis-

parate datasets, such as the ones used here, can be synthesized via

models that encapsulate our current understanding of a system by

representing processes at a hierarchy of spatial, temporal, phyloge-

netic, and organizational scales. A failure to properly take advantage of

the breadth of expertise and data from the ecological community has

been a fundamental impediment to improving the predictive capacity

of models (Dietze et al., 2013). Our study sets an example of model-

data synthesis in the tropical ecosystem by using plant trait data to

parameterize ED2 and demography data for validation.
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