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Summary

1. Recent studies have demonstrated a need for increased rigour in building and evaluating ecological niche

models (ENMs) based on presence-only occurrence data. Two major goals are to balance goodness-of-fit with

model complexity (e.g. by ‘tuning’ model settings) and to evaluate models with spatially independent data. These

issues are especially critical for data sets suffering from sampling bias, and for studies that require transferring

models across space or time (e.g. responses to climate change or spread of invasive species). Efficient implementa-

tion of procedures to accomplish these goals, however, requires automation.

2. We developed ENMeval, an R package that: (i) creates data sets for k-fold cross-validation using one of

several methods for partitioning occurrence data (including options for spatially independent partitions), (ii)

builds a series of candidate models using MAXENT with a variety of user-defined settings and (iii) provides multi-

ple evaluation metrics to aid in selecting optimal model settings. The six methods for partitioning data are n�1

jackknife, random k-folds ( = bins), user-specified folds and three methods of masked geographically structured

folds.ENMeval quantifies six evaluationmetrics: the area under the curve of the receiver-operating character-

istic plot for test localities (AUCTEST), the difference between training and testing AUC (AUCDIFF), two differ-

ent threshold-based omission rates for test localities and the Akaike information criterion corrected for small

sample sizes (AICc).

3. We demonstrateENMeval by tuningmodel settings for eight tree species of the genusCoccoloba in Puerto

Rico based on AICc. Evaluation metrics varied substantially across model settings, and models selected with

AICc differed from default ones.

4. In summary,ENMeval facilitates the production of better ENMs and should promote future methodolog-

ical research onmany outstanding issues.

Key-words: ecological niche model, species distribution model, overfitting, model complexity,

AIC, software, bioinformatics

Introduction

Correlative ecological niche models (ENMs, often termed spe-

cies distribution models, SDMs) have become an important

tool for research in ecology, conservation and evolutionary

biology (Guisan & Thuiller 2005; Elith et al. 2006; Kozak,

Graham & Wiens 2008; Dormann et al. 2012). These tools,

however, are subject to a number of methodological issues

including the challenge of balancing goodness-of-fit with

model complexity (Warren & Seifert 2011), and the need to

evaluate model performance with independent data (Veloz

2009; Hijmans 2012).

A number of recent studies have demonstrated the sensitiv-

ity of ENMperformance to model specification (e.g. Ara�ujo &

Guisan 2006; Elith, Kearney & Phillips 2010; Anderson &

Gonzalez 2011; Elith et al. 2011; Warren & Seifert 2011; Ara-

�ujo & Peterson 2012; Merow, Smith & Silander 2013; Shche-

glovitova & Anderson 2013; Syfert, Smith & Coomes 2013;

Radosavljevic & Anderson 2014; Warren et al. 2014). Two

main conclusions are that: (i) species-specific tuning of settings

(also called ‘smoothing’) can improve model performance, and

(ii) spatially independent training and testing (also called
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‘calibration’ and ‘evaluation’) data sets can reduce the degree

to which models are overfit (e.g. to biased sampling). These

issues are particularly critical for studies involving transfer

across space or time, especially those requiring extrapolation

into non-analog conditions (e.g. Elith, Kearney & Phillips

2010; Anderson 2013). In practice, however, these recommen-

dations are rarely implemented, largely because they can be

prohibitively laborious and time-consuming (Phillips &Dud�ık

2008). As a result, most empirical studies rely on default set-

tings of a given algorithm/software package and potentially

biased evaluationmethods.

We developed an R package (ENMeval) to help address

these issues. Specifically, the current version of ENMeval
facilitates construction and evaluation of ENMs with one of

the most commonly used presence-only methods, MAXENT

(Phillips, Anderson & Schapire 2006). The structure of EN-
Meval, however, will allow later expansion to other niche

modelling algorithms. Briefly, MAXENT quantifies statistical

relationships between predictor variables at locations where a

species has been observed versus ‘background’ locations in the

study region. These modelled relationships are constrained by

various transformations of the original predictor variables

(‘feature classes’ or FCs) – allowing more FCs enables more

flexible and complex fits to the observed data. Higher flexibil-

ity, however, can increase the propensity for model overfitting

(Peterson et al. 2011). By default, MAXENT determines which

FCs to allow based on the number of occurrence localities in

a data set. Regardless of which feature classes are permitted in

a model run, MAXENT provides protection against overfitting

via regularization, which penalizes the inclusion of additional

parameters that result in little or no ‘gain’ to the model (Me-

row, Smith & Silander 2013). Users can specify which FCs to

allow, and adjust the level of regularization via a single regu-

larization multiplier (RM; default = 1�0). The RM acts in

concert across all FCs as a coefficient multiplied to the indi-

vidual regularization values (bs in MAXENT) that correspond

to each respective FC (Phillips & Dud�ık 2008). Several exist-

ing studies provide additional details on the mathematical

underpinnings of MAXENT (Phillips, Anderson & Schapire

2006; Phillips & Dud�ık 2008; Elith et al. 2011; Merow, Smith

& Silander 2013; Yackulic et al. 2013).

Although the current default settings inMAXENT were based

on an extensive empirical tuning study (Phillips & Dud�ık

2008), recent work has shown that they can result in poorly

performing models (Shcheglovitova & Anderson 2013; Rado-

savljevic & Anderson 2014). Additionally, artificial spatial

autocorrelation between training and testing data partitions

(e.g. due to sampling bias) can inflate metrics used to evaluate

model performance (Veloz 2009;Wenger&Olden 2012; Rado-

savljevic & Anderson 2014). ENMeval should help address

these issues and facilitate increased rigour in the development

ofMAXENTmodels.

Package description

ENMeval provides a number of novel resources forMAXENT

users. First, it includes six methods to partition data for train-

ing and testing, including three designed to achieve spatially

independent splits. Secondly, it executes a series of models

across a user-defined range of settings (i.e. combinations of

FCs andRMvalues). Finally, it provides six evaluationmetrics

to characterize model performance. All of these operations can

be completed with a single call to the primary function of the

package, ENMevaluate, although supporting functions

are also available (Table 1). The evaluation metrics returned

can be used to compare models, and depending on the user’s

choice of evaluation criteria, select the optimally performing

settings. ENMeval specifically does not perform model

selection because it is not clear which optimality criteria are

most appropriate for evaluating ENMs (Fielding & Bell 1997;

Lobo, Jim�enez-Valverde & Real 2008; Peterson et al. 2011;

Warren & Seifert 2011). Rather, the various evaluation statis-

tics provided can be used to select settings based on recommen-

dations from current and future literature. Below, we briefly

outline the components of the package and demonstrate its

functionality by conducting species-specific tuning for eight

species of native trees in PuertoRico.

DATA PARTIT IONING AND MODEL EXECUTION

A run of ENMevaluate begins by using one of the six

methods to partition occurrence localities into testing and

Table 1. The functions included inENMeval. See themain text and packagemanual (Appendix S2) for additional details

Function name Description

calc.aicc Calculate theAkaike InformationCriterion corrected for small samples sizes (AICc) based onWarren&Seifert (2011)

calc.niche.overlap Compute pairwise niche overlap (similarity of estimated suitability scores) in geographic space forMaxent predictions. The

value ranges from 0 (no overlap) to 1 (identical predictions). Based on the ‘nicheOverlap’ function of the dismoRpackage

(Hijmans et al. 2011)

corrected.var Calculates variance corrected for non-independence of k-fold iterations (Shcheglovitova&Anderson 2013)

ENMevaluate The primary function ofENMeval, this function automatically executesMAXENT across a range of feature class and

regularizationmultiplier settings, providing several evaluationmetrics to aid in identifying settings that balancemodel

goodness-of-fit withmodel complexity

get.evaluation.bins A general title for six separate functions (‘get.randomkfold’, ‘get.jackknife’, ‘get.user’, ‘get.block’, ‘get.checkerboard1’,

‘get.checkerboard2’) that partition occurrence and background localities into separate bins for training and

testing (i.e. calibration and evaluation)

make.args Generate a list of arguments to pass toMAXENT and to use as labels in plotting

eval.plot A basic plotting function to visualize evaluationmetrics generated byENMevaluate
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training bins (folds) for k-fold cross-validation (Fig. 1; Field-

ing & Bell 1997; Peterson et al. 2011). The ‘random k-fold’

method partitions occurrence localities randomly into a user-

specified number of (k) bins (equivalent to the ‘cross-validate’

partitioning scheme available in the current version of the

MAXENT software). Primarily when working with small data

sets (e.g. < ca. 25 localities), users may choose a special case of

k-fold cross-validation where the number of bins (k) is equal to

the number of occurrence localities (n) in the data set (Fig. 1a;

Pearson et al. 2007; Shcheglovitova & Anderson 2013). Note

that neither of these methods accounts for spatial autocorrela-

tion between testing and training localities, which can inflate

evaluation metrics, at least for data sets that result from biased

sampling (Veloz 2009; Hijmans 2012; Wenger & Olden 2012).

As a third option, users can define a priori partitions, which

provides a flexible way to conduct spatially independent cross-

validationwith backgroundmasking (see below).

Three additional methods are variations of what Radosavlj-

evic & Anderson (2014) referred to as ‘masked geographically

structured’ data partitioning (Fig. 1). The ‘block’ method

partitions data according to the latitude and longitude lines

that divide the occurrence localities into four bins of (insofar as

possible) equal numbers (Fig. 1b). Both occurrence and back-

ground localities are assigned to each of the four bins based on

their position with respect to these lines. ENMeval also

includes two variants of a ‘checkerboard’ approach to parti-

tion occurrence localities. These generate checkerboard grids

across the study extent that partition the localities into bins

(Fig. 1c,d). In contrast to the block method, the checkerboard

methods subdivide geographic space equally but do not ensure

a balanced number of occurrence localities in each bin.

Choosing among the data partitioning methods depends on

the research objectives and the characteristics of the study

system. For example, the block method may be desirable for

Testing 
locality 

Training 
localities 

n(a) (b)

(c) (d)

Fig. 1. ENMeval provides six methods for partitioning data into bins (each of which implements a variation on k-fold cross-validation), four of

which are illustrated here. In all panels, different coloured occurrence localities represent different bins. (a)With the n�1 jackknife method, each of n

occurrence localities is used for testing once (e.g. white locality here), while all others are used for training in that iteration (coloured localities). A

total of nmodels are run, and evaluation metrics are summarized across these iterations. (b) The ‘block’ method partitions data into four bins based

on the lines of latitude and longitude that divide occurrence localities as equally as possible. The amount of geographic (and environmental) space

corresponding to each bin, however, is likely to differ. (c and d) The two ‘checkerboard’ methods involve aggregating the original environmental

input grids into either one or two checkerboard-like grids based on user-defined aggregation factors. For the ‘checkerboard1’ method (c), a single

grid is used to partition occurrence localities into two bins. The ‘checkerboard2’ method (d) is identical to ‘checkerboard1’ except that an additional

second level of spatial aggregation is specified (i.e. fine- and coarse-grain aggregation). Localities are first partitioned into two groups according to

the ‘fine’-grain checkerboard (as in ‘checkerboard1’). Then, these groups are further subdivided into two groups each based on the ‘coarse’-grain

checkerboard (with an aggregation factor specified by the user), yielding 4 bins. Note that, creating these grids to define bins does not affect the grain

size of the environmental predictor variables themselves. As opposed to the ‘block’ method, both ‘checkerboard’ methods result in an approximately

equal sample of geographic (and likely environmental) space in each bin. The numbers of occurrence localities, however, are likely to differ across

bins. A warning is given if fewer than four bins are created as a result of the spatial configuration of occurrence localities. For each of these last three

methods (b, c and d), kmodels are run iteratively using k�1 bins for training and the remaining one for testing. Evaluationmetrics are then summa-

rized across the k iterations.
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studies involvingmodel transfer across space or time, including

the possibility of encountering non-analog conditions (e.g.

native versus invaded regions, climate change effects; Wenger

& Olden 2012). In contrast, the checkerboard methods (which

are less likely to require extrapolation in environmental space)

may be more appropriate when model transferability is not

required. Nonetheless, we emphasize that evaluating models

with various combinations of data partitions and software

settings does not guarantee the reliability of models projected

across space or time. For applications that rely onmodel trans-

ferability, researchers should identify non-analog conditions,

illustrate extrapolated response curves, quantify uncertainty

based on the manner of extrapolation and interpret those

predictions with additional caution.

After data partitioning, the ENMevaluate function

iteratively builds k models for each combination of settings, s,
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Fig. 2. Occurrences and predictions of MAX-

ENT models shown in selected portions of

Puerto Rico for Coccoloba microstachya (a, b)

andC. pyrifolia (c, d).Models shown here cor-

respond to those producing the minimum

AICc (a, c), and those built with default set-

tings (b, d). Occurrence localities are indicated

with an x. Scale bars show MAXENT logistic

output (used here only for visualization pur-

poses); higher values (warmer colours) indi-

cate higher predicted suitability.

Table 2. The evaluationmetrics calculated byENMeval

Metric Description References

AUCTEST The threshold-independentmetric AUCbased on predicted values for the test localities (i.e.

localities withheld duringmodel training), averaged over k iterations. Higher values reflect a

better ability for amodel to discriminate between conditions at withheld (testing) occurrence

localities and those of background localities (by ranking the former higher than the latter

based on their predicted suitability values). The rank-basedAUCdoes not indicatemodel fit

Hanley&McNeil (1982),

Peterson et al. (2011)

AUCDIFF The difference between theAUCvalue based on training localities (i.e. AUCTRAIN) and

AUCTEST (AUCTRAIN � AUCTEST). If AUCTRAIN < AUCTEST, the returned value is zero.

Value of AUCDIFF is expected to be positively associated with the degree ofmodel overfitting

Warren&Seifert (2011)

ORMTP (‘Minimum

Training Presence’

omission rate)

A threshold-dependentmetric that indicates the proportion of test localities with suitability

values (MAXENT relative occurrence rates) lower than that associated with the lowest-ranking

training locality. Omission rates greater than the expectation of zero typically indicatemodel

overfitting

Fielding&Bell (1997),

Peterson et al. (2011),

Radosavljevic&

Anderson (2014)

OR10 (10% training

omission rate)

A threshold-dependentmetric that indicates the proportion of test localities with suitability

values (MAXENT relative occurrence rates) lower than that excluding the 10%of training

localities with the lowest predicted suitability. Omission rates greater than the expectation of

10% typically indicatemodel overfitting

Fielding&Bell (1997),

Peterson et al. (2011)

AICc The Akaike InformationCriterion corrected for small samples sizes reflects bothmodel

goodness-of-fit and complexity. Themodel with the lowest AICc value (i.e.DAICc = 0) is

considered the bestmodel out of the current suite ofmodels; all models withDAICc < 2 are

generally considered to have substantial support

Burnham&Anderson

(2004),Warren&Seifert

(2011)
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using k�1 bins for model training and the withheld bin

for testing. Importantly, for the geographically structured

partitioning methods, background localities in the same geo-

graphic area as the bin holding testing localities are not

included in the training phase (Phillips 2008; Phillips & Dud�ık

2008; Radosavljevic & Anderson 2014). A ‘full’ model (using

the entire, unpartitioned data set) is also made to calculate

AICc, resulting in a total of s 9 (k + 1) model runs.

EVALUATION METRICS

Because no consensus currently exists regarding the most

appropriate metric or approach to evaluate performance of

ENMs (Fielding & Bell 1997; Lobo, Jim�enez-Valverde & Real

2008; Peterson et al. 2011; Warren & Seifert 2011), ENMe-
val provides several metrics likely to be useful for presence-

background evaluations (Table 2). All calculations inENMe-

val are based onMAXENT raw output values (Merow, Smith

& Silander 2013; Yackulic et al. 2013). Note, however, that

any rescaling that preserves rank (e.g. cumulative or logistic)

will lead to the same evaluation values for the rank-based met-

rics used here (based on omission rates or AUC), but not for

AICc (Warren et al. 2009; Peterson et al. 2011) or Schoener’s

D (see below). First, ENMeval calculates a measure of the

model’s ability to discriminate conditions at withheld occur-

rence localities from those at background samples: the area

under the curve of the receiver operating characteristic plot

based on the testing data (AUCTEST). In this implementation,

AUCTEST is calculated with the full set of background locali-

ties (corresponding to all k bins) to enable comparison among

k-fold iterations (Radosavljevic & Anderson 2014). Secondly,

to quantify overfitting, ENMeval calculates the difference

between training and testing AUC (AUCDIFF), which is

expected to be high with overfit models (Warren & Seifert
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Fig. 3. Three evaluation metrics forCoccoloba microstachya (a–c) andC. pyrifolia (d–f) resulting fromMAXENT models made across a range of fea-

ture-class combinations and regularizationmultipliers. Left panels showDAICc, centre panels show the omission rate of testing localities at the 10%

training threshold (OR10), and right panels show AUCTEST. Dotted horizontal line in DAICc plots represents DAICc = 2, which delimits models

that are generally considered to have substantial support relative to others examined – that is those below the line (Burnham & Anderson 2004).

Default settings and settings that yielded minimum AICc are indicated with arrows. Legends denote feature classes allowed (L = linear, Q = qua-

dratic, H = hinge, P = product and T = threshold). Note that for these species, AICc-selected settings (based on all localities) resulted in substan-

tially lower omission rates (in the models run with the partitioned data; ‘checkerboard2’ method) than were achieved by the default settings.

However, maximal AUCTEST showed low correspondence with either the AICc-chosen or default settings. For these species, AICc consistently

selected regularization multipliers higher than the default value. Results for all eight species (including estimates of variance) are provided in

Appendix S1.
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2011). ENMeval also calculates two omission rates that

quantify model overfitting when compared with the respective

theoretically expected omission rates: the proportion of test

localities with MAXENT output values lower than that corre-

sponding to (i) the training locality with the lowest value (i.e.

the minimum training presence, MTP; = 0% training omis-

sion) or (ii) a 10% omission rate of the training localities

( = 10% training omission) (Pearson et al. 2007). ENMeval
provides the mean and variance (corrected for the non-inde-

pendence of the k iterations, Shcheglovitova & Anderson

2013) for each of these four metrics. The function also calcu-

lates the AICc value, DAICc and AICc weight for each full

model, providing information on the relative quality of a

model given the data (Burnham & Anderson 2004; Warren &

Seifert 2011). Because AICc is calculated using the full data set,

it is not affected by the method chosen for data partitioning.

We note that, following Warren & Seifert (2011), AICc is cal-

culated based on the number of non-zero parameters in the

MAXENT lambda file and that this value may not accurately

estimate the total degrees of freedom in themodel (Hastie, Tib-

shirani & Friedman 2009). Nonetheless, the relative perfor-

mance of AICc versus other model evaluation metrics is a

topic of ongoing research (e.g. Cao et al. 2013; Radosavljevic

& Anderson 2014; Warren et al. 2014), and ENMeval
should help advance this line of research. Finally, to quantify

how predictions differ in geographic space (e.g. Fig. 2),

ENMeval computes pairwise niche overlap between models

using Schoener’s D (Schoener 1968; Warren et al. 2009).

Finally, ENMeval includes a basic plotting function to

visualize evaluation statistics (see Fig. 3).

Recent work has demonstrated equivalency between the

MAXENT algorithm and loglinear generalized linear models

(Renner & Warton 2013), as well as close links to inhomoge-

neous Poisson process (IPP) models (Fithian & Hastie 2013).

These connections open numerous additional diagnostic tools

that are not readily available in the current MAXENT software

(e.g. using the data to determine the most appropriate spatial

resolution of predictor variables). Future work will benefit by

capitalizing on the connections among these approaches.

Case study

To demonstrate ENMeval, we tuned MAXENT models for

eight native tree species from the genus Coccoloba (Polygona-

ceae) in Puerto Rico (Table 3).We compiled occurrence locali-

ties (ranging from 24 to 71 across species) from herbaria at the

University of Puerto Rico, the US National Museum of Natu-

ral History and the New York Botanical Garden. As predictor

variables, we used a categorical map of soil parent material

(Bawiec 1999) and four climatic variables: log-transformed

mean annual precipitation (log [mm year�1]), coefficient of

variation of monthly mean precipitation, mean temperature of

the coldest month (°C) and mean daily temperature range (°C)
(Daly, Helmer & Qui~nones 2003). To reduce the influence of

spatial sampling bias, we applied a weighted-target group

approach (Anderson 2003) by using 22,858 tree species occur-

rence localities throughout Puerto Rico as background locali-

ties (Phillips et al. 2009). After partitioning occurrence data

using the checkerboard2 method (see Fig. 1, aggregation fac-

tor = 5), we built models with RM values ranging from 0�5 to
4�0 (increments of 0�5) and with six different FC combinations

(L, LQ, H, LQH, LQHP, LQHPT; where L = linear,

Q = quadratic, H = hinge, P = product and T = threshold);

this resulted in 1920 individual model runs.

Here, we summarize the relative performance of models

built with default settings versus those selected by AICc (i.e.

DAICc = 0; Fig. 2); comprehensive results are provided in

Appendix S1. Settings of AICc-selected models differed from

default settings for all species. Althoughwe did not find general

trends regarding FCs, AICc-selected models had higher RM

Table 3. Evaluationmetrics ofMAXENTENMs generated byENMeval for eight species ofCoccoloba trees in PuertoRico

Species n Model FC RM AUCTEST AUCDIFF ORMTP OR10 DAICc D

C. costata (C.Wright) 48 AICc LQHPT 1�5 0�823 0�070 0�039 0�175 0�0 0�932
Default LQH 1 0�829 0�069 0�062 0�175 20�9

C. diversifolia (Jacq.) 69 AICc LQ 3 0�760 0�080 0�081 0�222 0�0 0�807
Default LQH 1 0�776 0�078 0�056 0�250 95�8

C. krugii (Lindau) 24 AICc L 3 0�958 0�017 0�071 0�117 0�0 0�849
Default LQH 1 0�945 0�030 0�071 0�242 19�9

C. microstachya (Willd.) 58 AICc LQH 2 0�783 0�070 0�098 0�214 0�0 0�916
Default LQH 1 0�785 0�073 0�023 0�251 15�0

C. pyrifolia (Desf.) 71 AICc LQHP 4 0�692 0�053 0�022 0�150 0�0 0�871
Default LQH 1 0�690 0�083 0�010 0�170 36�4

C. sintenisii (Urb.) 27 AICc LQ 1�5 0�798 0�090 0�069 0�188 0�0 0�822
Default LQH 1 0�813 0�097 0�091 0�272 NA

C. swartzii (Meisn.) 42 AICc L 1�5 0�713 0�092 0�019 0�128 0�0 0�909
Default LQH 1 0�697 0�133 0�128 0�300 29�8

C. venosa (L.) 44 AICc LQH 2�5 0�712 0�113 0�095 0�312 0�0 0�860
Default LQH 1 0�707 0�145 0�115 0�312 53�9

Results are based on the ‘checkerboard2’ method for data partitioning and are shown for settings that gave minimumAICc values (i.e. DAICc = 0)

as well as forMAXENT default settings. Number of occurrence records used for each species is given by n. Schoener’sD statistic (Schoener 1968;War-

ren et al. 2009)– a measure of model similarity in geographic space– compares the predictions of AICc-selected models with those based on default

settings. Values ofD range from zero to one, with higher values indicatingmore similarmodels.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society,Methods in Ecology and Evolution, 5, 1198–1205
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values than the default of 1�0 (Table 3; Fig. 3). Because higher

regularization ‘smoothes’ response curves by imposing a

higher penalty for the inclusion of parameters, this result sug-

gests that default settings tended to result in more complex

models relative to AICc-selected models (Fig. 2). Overall,

AICc-selected models also had lower omission rates than

default models, indicating less overfitting (Fig. 3). However,

AICc-selected models generally showed slightly lower

AUCTEST values than thosemade by default, suggesting some-

what lower discriminatory ability (Table 3; Fig. 3). This preli-

minary analysis reinforces the importance of species-specific

tuning to build ENMswithMAXENT.

Conclusions

By relieving some of the logistic challenges associated with spe-

cies-specific tuning and model evaluation, ENMeval facili-

tates research in ecological niche modelling. For instance,

although beyond the scope of this software description, future

work based on both simulated data sets and a variety of real

species should help clarify the strengths and weaknesses of var-

ious data partitioning methods and evaluation metrics. Over-

all, we anticipate that ENMeval will help to advance

research in model evaluation and methods for extrapolating

ENMs in environmental space. Similar issues exist for algo-

rithms other than MAXENT, and the current structure of EN-
Mevalwill allow later incorporation of other algorithms.

ObtainingENMeval

ENMeval requires a current R installation (freely available

from http://cran.r-project.org/) and can be downloaded from

CRAN at: http://cran.r-project.org/web/packages/ENMeval/

index.html. The package manual is provided in Appendix S2.

ENMeval is under development and we welcome bug

reports and feedback, including suggestions for features that

could be included in future versions.
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