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The notion that relationships between community-weighted mean (CWM)

traits (i.e. plot-level trait values weighted by species abundances) and environ-

mental conditions reflect selection towards locally optimal phenotypes is

challenged by the large amount of interspecific trait variation typically

found within ecological communities. Reconciling these contrasting patterns

is a key to advancing predictive theories of functional community ecology.

We combined data on geographical distributions and three traits (wood den-

sity, leaf mass per area and maximum height) of 173 tree species in Puerto Rico.

We tested the hypothesis that species are more likely to occur where their trait

values are more similar to the local CWM trait values (the ‘CWM-optimality’

hypothesis) by comparing species occurrence patterns (as a proxy for fitness)

with the functional composition of forest plots across a precipitation gradient.

While 70% of the species supported CWM-optimality for at least one trait,

nearly 25% significantly opposed it for at least one trait, thereby contributing

to local functional diversity. The majority (85%) of species that opposed CWM-

optimality did so only for one trait and few species opposed CWM-optimality

in multivariate trait space. Our study suggests that constraints to local func-

tional variation act more strongly on multivariate phenotypes than on

univariate traits.

1. Background
Determining how functional traits respond to environmental conditions to

mediate species distributions and patterns of community diversity is a central

question in ecology [1–3]. These links are critical for understanding ecosystem

functioning and community-level responses to environmental change. How-

ever, two prominent and contrasting patterns pose serious challenges for our

understanding of trait–environment relationships: strong community-level

trait–environment relationships and high amounts of local trait variation [1,4].

On one hand, a number of studies have demonstrated systematic variation of

community-weighted mean (CWM) trait values (i.e. plot-level trait values

weighted by species abundance) along abiotic gradients (e.g. [5–7]). When these

patterns are consistent with known physiological mechanisms (e.g. dominance of

traits associated with drought tolerance in arid sites), they imply environmentally

mediated fitness differences among species with different functional strategies

(‘environmental filtering’). For instance, CWM values of tree wood density (WD;

g cm23) and leaf mass per area (LMA¼ 1/specific leaf area (SLA); g m22) generally

decline with increasing precipitation [5,8]. Because these traits correspond to

resource acquisition and utilization strategies [9,10], these trait–environment

relationships can be interpreted in terms of physiological trade-offs related to

resource availability (i.e. drought resistance and resource conservation in dry con-

ditions versus rapid growth and resource acquisition when water is abundant).

Highlighting this concept, several trait-based models of plant community assembly

are built on the assumption that CWM trait values reflect the locally ‘optimal’ trait

strategy given the regional species pool and environmental conditions of a site

(figure 1a; e.g. [11–14] but see [4] for an approach based on intraspecific trait vari-

ation). In other words, species with trait values nearest to the CWM values in a

particular location are predicted have relatively high fitness, because they presum-

ably occur at relatively high abundance and thus contribute most strongly to
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Figure 1. (a) Variation of CWM traits suggests selection towards a locally
optimal trait value (inward-pointing arrows). However, local functional diver-
sity implies opposing mechanisms that promote local functional diversity
(outward-pointing arrows). We used ENMs to test the hypothesis that species
would be less likely to occur in areas where their trait values are more distant
from the local CWM values (the ‘CWM-optimality hypothesis’). See online
version for colour legend. For each species and trait, we calculated DCWM
as the absolute difference between the species-mean trait value and the
CWM value at each study plot. (b ) Summarized predictions of the CWM-
optimality hypothesis. (Online version in colour.)
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the CWM [14]. This ‘CWM-optimality’ hypothesis thus

emphasizes processes that constrain local functional diversity

(e.g. environmental filtering) and is consistent with (beta) niche

partitioning along resource gradients as a primary driver of

species distributions and community diversity patterns [15].

On the other hand, a high proportion of functional

diversity is typically reported within local communities and

among sites with similar abiotic conditions, e.g. [5,16,17]. For

instance, de Bello et al. [16] found that within-site variation of

SLA accounted for approximately 90% of the total observed

variation across regional climatic gradients. At a larger scale,

more than one-third of the total global variation in SLA

occurs within areas of similar abiotic conditions, as opposed

to among sites that vary with respect to climate variables [5].

Together, shifts of CWM trait values along abiotic gradients

and the substantial proportion of local trait variation represent

a major challenge for prediction in community ecology (and for

the CWM-optimality hypothesis in particular), because they

imply the combined action of mechanisms that constrain and

maintain local functional diversity [18–20]. Reconciling these

contrasting patterns is a key to advancing a predictive theory

of functional community ecology.

Several mechanisms that may promote or maintain local

functional diversity are at least partly consistent with the

CWM-optimality hypothesis. For instance, species with trait

values that diverge from the local CWM on one trait axis may

persist locally if environmental constraints act more strongly

on multivariate phenotypes than individual traits [3,21,22]. In

fact, Shipley et al.’s [11,23] maximum entropy model of
community assembly suggests that the ‘optimal’ local trait strat-

egy should be best reflected by the full vector of CWM values,

not necessarily the CWM value of any single trait. Additionally,

disequilibrium dynamics (e.g. source–sink populations) could

lead to the local occurrence of functional types with inferior fit-

ness [24]. Other mechanisms that could contribute to the

maintenance of local functional diversity are, however, not

entirely consistent with the CWM-optimality hypothesis. For

example, relatively fine-scale spatial or temporal resource het-

erogeneity could promote local (alpha) niche partitioning in

the context of regional (beta) niche partitioning. In general, a

better understanding of occurrence patterns and functional

characteristics shared by species that support and oppose the

CWM-optimality hypothesis could give valuable insight into

the mechanisms that promote local functional diversity.

A strict test of the CWM-optimality hypothesis requires

data on variation of fitness and functional traits of numerous

species in local communities across environmental gradients.

Combined with information on functional traits, however,

ecological niche models (ENMs) that characterize species

occurrence patterns across environmental gradients represent

an unexploited opportunity to examine whether the core pre-

diction of the CWM-optimality hypothesis (fitness is highest

in locations where a species trait value matches the local

CWM) holds true for patterns of species occurrence. Although

occurrence patterns may not directly reflect fitness (also see §4),

ENMs enable us to examine how species’ predicted potential

distributions (given the abiotic conditions of a site) relates to

the functional composition of local communities.

We combined data on geographical distributions and

three key functional traits (WD, LMA) and maximum

height) for 173 tree species in Puerto Rico. We compared pre-

dicted occurrence patterns with the functional composition of

forest plots across a precipitation gradient to address the

following questions:

(1) Are species more likely to occur in areas where their trait
values are more similar to the local CWM? If CWM trait

values reflect optimal functional strategies given local

abiotic conditions, we expect negative relationships

between the probability of occurrence and the difference

between a species trait value and the local CWM value.

Positive relationships between occurrence probability

and the difference between a species trait value and

the local CWM would oppose the CWM-optimality

hypothesis and reflect successful alternative strategies.

(2) To what extent do species support or oppose the CWM-optimality
hypothesis on single versus multiple univariate trait axes, and
in multivariate trait space? If environmental constraints on

fitness act more strongly on multivariate phenotypes than

on individual traits [3,20,25], we expect species that

oppose the CWM-optimality hypothesis will be most

likely do so for only a single univariate trait axis. Similarly,

we expect stronger support for CWM-optimality in the con-

text of multivariate trait space than for univariate trait axes,

and few species to oppose CWM-optimality in multivariate

trait space. In parallel, we expect that species will likely

support the CWM-optimality hypothesis for multiple

univariate trait axes and in multivariate trait space.

(3) Do the groups of species that support and oppose the
CWM-optimality hypothesis share particular trait values or
occurrence patterns? We predict that the strongest support

and opposition for the CWM-optimality hypothesis will
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be evident among species that typically occur in locations

subject to strong stabilizing selection for particular trait

axes (e.g. drought exerts stabilizing selection for high

WD and LMA, and sets a physiological limit to Hmax

[26]). Consequently, we expect that species with trait

values closely matching the CWM values in dry locations

will most strongly support the CWM-optimality hypoth-

esis, whereas species with divergent trait values in these

locations will provide the strongest opposition.

2. Material and methods
(a) Study system and tree census plots
We established 12, 0.25 ha (50 � 50 m) plots in four protected forests

of Puerto Rico that occur across a precipitation gradient ranging

from ca 800 to 2200 mm yr21 (electronic supplementary material,

table S1). All plots are located on limestone-derived soils, which con-

stitute about one-third of Puerto Rico’s land area [27]. Plots were

located randomly in mature stands that lacked signs of human

land-use and recent natural disturbance. In each plot, we identified

all woody stems (excluding lianas) of 1 cm or more diameter at

1.3 m above the ground (diameter at breast height, DBH), measured

their DBH and estimated their height to the nearest 0.5 m.

(b) Functional traits
We collected trait data from 1 to 32 (mean ¼ 9) individuals of 173

species from each forest where individuals were available. Elec-

tronic supplementary material, appendix S1 provides details on

trait measurements. Briefly, WD (g cm23) is related to a growth/

mortality trade-off; low WD confers rapid growth, high hydraulic

conductance and low investment in structural materials [8],

whereas high WD is associated with resistance to drought-induced

cavitation and low mortality [10,28]. LMA (g cm22) is positively

related to leaf lifespan and, more generally, to variation in life-

history strategies ranging from fast growth and high mortality by

rapid photosynthetic return on carbon investment (low LMA) to

slow growth and low mortality by retaining nutrients for a longer

time (high LMA) [5]. Maximum height (Hmax; m) is associated with

competitive ability in light-limited environments [29] but can be

constrained by water availability [26]. Prior to analysis, we log-

transformed LMA and Hmax values to correct for skewness. Here,

we use species-mean trait values because the diversity and spatial

extent of our study area precluded thorough measurement of intra-

specific variation (see §4). Our trait dataset represents 83% of the

observed species (accounting for 98% of the total basal area).

(c) Ecological niche models
We used Maxent v. 3.3.3 k [30] to quantify the statistical relationships

between predictor variables at locations where each species was

observed versus ‘background’ locations in the study region. Full

details on methods of ENM construction (including data processing

and model evaluation) are provided in the electronic supplementary

material, appendix S2. Briefly, we compiled georeferenced occur-

rence records from online databases, several herbaria and

georeferenced observations from other studies (e.g. [31]). The full

dataset contains 17 479 records, with 11–192 (mean¼ 54) obser-

vations for each focal species. Note that observations from the

plots used to calculate CWM values for this study were not included

in the occurrence dataset. We used one edaphic and four climatic

variables known to influence tree growth and mortality as predictor

variables: soil parent material [32], logarithm of mean annual pre-

cipitation (mm yr21), coefficient of variation of monthly

precipitation (unitless), the average temperature of coldest month

(8C) and mean daily temperature range (8C) [33].

Maxent generates a gridded surface of values proportional to

the expected number of occurrences per unit area for each species
(i.e. the ‘relative occurrence rate’, ROR) [34]. To facilitate compari-

son across species, we rescaled ROR values within species to range

from 0 to 1 across the study extent. To balance model fit and pre-

dictive ability, we conducted species-specific tuning using the R

package ENMeval [35]. We measured performance of ENMs

using test AUC values and the test point omission rate based on

the minimum training presence value (ORMTP) [36].

(d) Statistical analyses
To evaluate the relationship between ROR (output of ENMs)

and distance from the local CWM for each trait, we calcula-

ted the CWM values for each trait t and each plot p as:

CWMtp ¼
PS

i¼1 aip � ti; where aip is the relative basal area of

species i in plot p and ti is the mean trait value of species i. We

then calculated DCWMtip as the absolute difference between the

species-mean value of trait t for species i (ti) and the CWM value

of trait t for plot p (CWMtp). To facilitate comparison across

traits, we scaled the trait values prior to analysis by subtracting

the mean and dividing by the standard deviation of each trait,

across species. If CWM trait values simply reflect the trait values

of dominant species, our hypothesis may be trivial (i.e. species

are most likely to occur where they are most abundant). To

avoid this possibility, when calculating DCWMtip values for each

focal species, we excluded the focal species from the CWM calcu-

lations. In other words, we calculated the distance in trait space

between each focal species and the CWM value based on all
other species in each plot. Our results, however, were nearly identi-

cal if focal species were included in these calculations (electronic

supplementary material, appendix S3). Values of DCWM increase

from zero as ti becomes more different from the local CWM value.

To quantify DCWM in multivariate trait space, we measured the

Euclidean distance between the vector of scaled trait values for

each species and the multivariate centroid of each plot. Separately

for each species, we used regression to relate DCWM values (sep-

arately for each trait and the multivariate metric) with ROR values

at each plot. We refer to species with significantly negative [or posi-

tive] slopes as those that support [or oppose] the CWM-optimality

hypothesis (figure 1b).

To address Question 1 (below), we used a randomization pro-

cedure to determine whether the number of species with

significant slopes (positive and negative) for the relationship

between DCWM and ROR was greater than expected by chance.

Specifically, we shuffled ROR values among plots and within

species 999 times. During each iteration, we counted the number

of statistically significant ( p , 0.05) slopes across species. We

then compared the observed number of significant slopes to the

2.5 and 97.5% quantiles of these distributions. This approach main-

tains species traits values, CWMs, and the observed distribution of

RORs within species. We addressed Question 2 by counting the

number of univariate trait axes for which individual species

showed significant support or opposition to the CWM-optimality

hypothesis. Note that a single species could exhibit negative and
positive slopes for different trait axes.

To determine how species trait values are related to the con-

ditions where they most often occur, we extracted values of the

four climate variables included in the ENMs from the grid cell(s)

with maximum values of ROR for each species. These values cor-

respond to measures of niche position with respect to climate

gradients and below we refer to them as the conditions at maxi-

mum ROR (or, RORmax). Here we focus on occurrence patterns

with respect to mean annual precipitation based on our a priori
expectations about relationships between the functional traits

under consideration and water availability (see §§1 and 2). We

used linear regression to evaluate whether species-mean trait

values were related to their value of mean annual precipitation

at RORmax.

We also used a randomization procedure to determine whether

certain trait values or occurrence patterns are shared within the

http://rspb.royalsocietypublishing.org/
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groups of species that significantly supported and opposed the

CWM-optimality hypothesis (Question 3). For this, we calculated

the mean trait value and precipitation at RORmax for 9999 randomly

selected assemblages comprising the same number of species in

each of these groups, for each trait. We compared observed mean

values for each group with the 95%- and 90%-quantiles of these

distributions to determine whether the species that supported and

opposed the CWM-optimality hypothesis (i) have relatively high

or low trait values and (ii) tend to occur in relatively dry or wet

locations. All analyses were conducted in R v. 3.1.3 [37].
3. Results
For all three traits, CWM values varied strongly with respect

to mean annual precipitation (figure 2). Specifically, WD and

LMA declined, and Hmax increased, with increasing precipi-

tation (R2-values were all greater than or equal to 0.69). At the

same time, species-mean trait values showed a high degree of

within-plot variability (figure 2). Across species, ENMs had

moderate to good prediction accuracy (mean test AUC¼ 0.74)

and low values of ORMTP, indicating that models were generally

not overfit (mean ORMTP ¼ 0.06; electronic supplementary

material, appendix S2). Species-mean trait values were corre-

lated with their values of precipitation at RORmax in ways that

mirrored shifts in CWM traits across the precipitation gradient.

Specifically, species that tend to occur in relatively wet areas had

relatively low WD (R2 ¼ 0.24) and LMA (R2 ¼ 0.23), and higher

Hmax (R2¼ 0.23). All pairwise comparisons of species-mean

trait values were significantly correlated (Pearson’s r for WD–

LMA¼ 0.56; WD–Hmax ¼ 20.44; LMA–Hmax¼ 20.21), as

were CWM trait values (Pearson’s r for WD–LMA ¼ 0.97;

WD–Hmax ¼ 20.92; LMA–Hmax ¼ 20.86).

(a) Question 1. Are species more likely to occur in areas
where their trait values are more similar to the
local community-weighted mean?

Figure 3a–d shows histograms of species-specific regression

slopes between DCWM and ROR. The proportions of the 173

focal species with statistically significant slopes (i.e. p , 0.05)

were 51% for WD, 48% for LMA, 61% for Hmax and 57% for

the multivariate trait metric. These values were far higher

than the random expectation of 8% for each trait. Across

species, the mean R2 of the regression models between

DCWM and ROR was 0.36 for WD, 0.31 for LMA, 0.46 for

Hmax and 0.40 for the multivariate trait metric.
In support of the CWM-optimality hypothesis, there were

more species with significantly negative slopes than randomly

expected for all three univariate traits and the multivariate

trait metric (expected 97.5% quantile¼ 5%; observed for

WD ¼ 43%, LMA ¼ 39%, Hmax ¼ 48%, multivariate ¼ 51%).

When considering only the statistically significant slopes, more

than 79% were negative for each individual trait and 89%

were negative for the multivariate metric. To a lesser degree

(and contrary to the CWM-optimality hypothesis), there were

also more species with significantly positive slopes with respect

to univariate and multivariate trait axes than the 5% based on

random expectation (WD¼ 8%, LMA ¼ 9%, Hmax ¼ 13%,

multivariate trait¼ 6%).

(b) Question 2. To what extent do species support or
oppose the community-weighted mean-optimality
hypothesis on single, multiple and multivariate
trait axes?

Figure 4 shows the proportions of study species that significantly

supported [or opposed] the CWM-optimality hypothesis for

different numbers of trait axes. In total, 70% of the study species

supported CWM-optimality for at least one univariate trait axis.

Similar proportions of species supported CWM-optimality

along one (28%) and two (25%) trait axes, and somewhat fewer

species (17%) did so for all three traits. The proportion of species

showing significant support for CWM-optimality in multivariate

trait space (51%) was higher than the proportion for any one of the

univariate traits. By contrast, 25% of the studyspecies significantly

opposed CWM-optimality forat least one univariate trait axis, and

the majority (84%) of these did so only for a single trait. Moreover,

most species (69%) that opposed the CWM-optimality hypothesis

on one trait axis also showed significant support for CWM-

optimality with respect to at least one other trait (electronic

supplementary material, appendix S4). Only 6% of species (one

more than the random expectation) significantly opposed

CWM-optimality when considering multivariate trait space.

(c) Question 3. Do the groups of species that support
and oppose the community-weighted mean-
optimality hypothesis share particular trait values
or occurrence patterns?

We predicted that the strongest evidence both for and against

the CWM-optimality hypothesis would be among species

http://rspb.royalsocietypublishing.org/
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that typically occur in locations facing strong stabilizing selec-

tion for particular traits. Consistent with this prediction,

species that supported CWM-optimality for the univariate

traits and the multivariate trait metric had, on average,
relatively high WD and LMA, low Hmax (i.e. short stature)

and predominantly occurred in dry areas (figure 3e–h; elec-

tronic supplementary material, appendix S5). Species that

opposed the CWM-optimality hypothesis for WD and LMA
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had relatively low values, on average, for these traits and

tended to occur in relatively dry areas. Species that opposed

CWM-optimality with respect to Hmax, however, tended to be

short statured and to occur in relatively wet forests. Species

that opposed CWM-optimality in multivariate trait space

had, on average, relatively low values of LMA but were not

associated with particularly high or low values of WD,

Hmax or precipitation at RORmax.
4. Discussion
Overall, our results provide mixed evidence for the

CWM-optimality hypothesis, suggesting both broad-scale

environmental filtering and fine-scale niche partitioning as

important drivers of functional diversity across environ-

mental gradients. Below, we evaluate evidence for the

CWM-optimality hypothesis and highlight insight gained to

the mechanisms that promote local functional diversity in

this system. We then discuss the implications for our finding

that constraints to local functional variation appear to act

more strongly on multivariate phenotypes than univariate

trait axes.

(a) Evaluating the community-weighted mean-
optimality hypothesis

A prerequisite for the CWM-optimality hypothesis is that

CWM trait values vary with respect to environmental gradi-

ents. Indeed, we observed clear shifts of CWM traits that are

consistent with physiological trade-offs mediated by water

availability and competition for light [9,10,29]. These trends

imply different mechanisms of selection (e.g. environmental

filtering, competitive dominance hierarchies) that constrain

local trait diversity at different ends of the precipitation

gradient. Specifically, hydraulic safety appears to be particu-

larly important in dry forests, especially those on limestone

soils with low water-holding capacity [38]. Short stature in
these forests is likely the result of hydraulic limitation [26].

In wetter sites, a decline in hydraulic limitation is coupled

with an increased competitive advantage in terms of carbon

gain for rapid growth and tall stature [29].

Also consistent with the CWM-optimality hypothesis,

RORs were negatively related to DCWM values for more

species than randomly expected, for all three univariate

traits. In general, these results provide additional support

to the role of physiological constraints mentioned above

that appear to underlie broad-scale environmental filtering.

In our study in particular, the majority of species supporting

the CWM-optimality hypothesis tended to occur in dry

locations and have relatively high values of WD and LMA.

These species make large investments in wood and leaf con-

struction, which could limit their distributions to areas where

those costly strategies are most advantageous.

Our results are consistent with another recent study (invol-

ving tree seedlings in China and Puerto Rico) that examined

the relationship between local abundance and the deviation of

species trait values from the local CWM [24]. In that study, abun-

dance was higher for species whose trait values were closer to

the local CWM for a majority of univariate traits studied.

Notably, however, the relationship between abundance and

deviation from the CWM was only significant for one trait at

the Puerto Rico site, potentially reflecting site or regional differ-

ences in the degree to which univariate CWM values reflect

optimal phenotypes. This difference might suggest that differ-

ent traits (or multivariate phenotypes) exert a particularly

strong influence on local abundance in some sites.

Here, we focused on the absolute value of the difference

between species trait values and CWM values, because it pro-

vides a relatively straightforward answer to our central

question. However, future work examining the signed value

of this difference might provide additional insight. For instance,

significant slopes between fitness (or some fitness proxy) and

the signed value of DCWM might help to disentangle the

effects of directional versus stabilizing selection.

Additional evidence in support of the CWM-optimality

hypothesis comes from our observations that species-mean

trait values were correlated with values of precipitation at

RORmax (i.e. the level of precipitation where a species is

most likely to occur). Generally, these results offer additional

support for broad-scale environmental filtering (driven by

precipitation) as an important mechanism in determining

species geographical distributions and constraining local

functional diversity. On the other hand, the fairly low pro-

portion of explained variance in these relationships (less

than 25%) indicates a substantial amount of functional vari-

ation among species for which similar abiotic conditions

represent highly suitable habitat. One probable explanation

for these results is that while highly aggregated climatic vari-

ables capture coarse trends in community functional

composition, some combination of fine-scale habitat hetero-

geneity, temporal niche partitioning and recruitment

limitation is critical for the maintenance of local diversity.

Regions of karst topography, including our study system,

are noted for particularly high levels of microhabitat hetero-

geneity [27]. Environmental conditions including soil depth,

chemistry, water-holding capacity and exposure to sun and

wind vary dramatically at fine scales, thus providing the

potential for fine-scale niche partitioning as an important

mechanism for the maintenance of local functional diversity.

Temporal variability in the system could also promote local
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functional variation [39]. For instance, if dry and wet years

favour species with different trait values, species with ‘sub-

optimal’ traits could persist during ‘off’ years because of

temporal variation [22]. Finally, recruitment limitation (e.g.

dispersal limitation) of competitively dominant species can

facilitate coexistence of inferior competitors [40]. Future

work aimed at directly linking functional traits to mechan-

isms of species coexistence, therefore, will benefit by

incorporating data on fine-scale environmental heterogeneity

[18] and temporal variation in resource availability and

demographic performance.

Contrary to the CWM-optimality hypothesis, more species

than expected also had significantly positive relationships

between ROR and DCWM, reflecting the success of alternative

functional strategies and the high-dimensional nature of

species coexistence [17,25,41,42]. For instance, several species

with low WD that are particularly abundant in dry forests of

our study system (e.g. Bursera simarubra, Pisonia albida)

appear to cope with limited water availability via rapid water

uptake, water storage in the stem, and a deciduous habit to

reduce transpirational water loss [43]. In fact, most species

that deviated from the CWM-optimality expectations with

respect to WD and LMA have relatively low trait values and

tend to occur in dry locations. By allocating relatively few

resources to stem and leaf construction, it is possible that

these ‘renegade’ dry forest species free up resources to devote

towards construction of other materials (e.g. taproots or repro-

ductive output) that promote their ability to tolerate drought

conditions. By contrast, the majority of ‘renegade’ species

with respect to Hmax tend to be relatively short statured

shrubs and trees that occur most commonly in wetter forests.

These species are understory and gap specialists that are

capable of either regeneration in low light conditions or rapid

reproduction in ephemeral, high-resource conditions typical

of forest gaps. In general, we found strong evidence that the

traits examined here are linked to fitness differences along

the precipitation gradient. However, a high degree of local

functional variation also suggests that these trait axes reflect

important niche differences essential for maintaining local

biodiversity.

We reiterate that while correlative ENMs are useful tools for

predicting species’ potential occurrence patterns, they do not

necessarily correspond to local abundance [44–46] or demo-

graphic performance [47]. Future studies that incorporate

experimental manipulations (where possible) and dynamic

demographic data are essential to identify the ultimate fitness

consequences of functional variation as well as the particular

mechanisms underlying trait-mediated niche partitioning

[3,18,25,48,49]. Another limitation of our study is that

species-mean trait values obscure the contribution (and conse-

quences) of intraspecific variation to functional diversity

patterns [3,4,50]. However, we do not expect intraspecific

trait variation to change the overall conclusions reached here

for two main reasons. First, a high degree of species turnover

across our plots suggests that intraspecific trait variation

accounts for a relatively minor proportion of total trait vari-

ation in this study. Second, we expect trends in intraspecific

trait variation to mirror trends in interspecific variation. This

would reduce the range of DCWM values observed but

should not change the overall results. Nonetheless, work incor-

porating intraspecific trait variation will continue to yield

valuable insights to understanding fitness consequences of

trait–environment relationships [3,4,50].
(b) Trait correlations, trade-offs and the
multidimensional phenotype

As we predicted, most species that supported the CWM-

optimality hypothesis did so on multiple univariate trait

axes, and there was substantial support for CWM-optimality

when considering multivariate trait space. By contrast, most

species that exhibited a ‘renegade’ strategy did so for only

one univariate trait axis and the majority of these species sup-

ported CWM-optimality for at least one other trait axis

(electronic supplementary material, appendix S4). Moreover,

only one more species than randomly expected deviated from

CWM-optimality expectations when considering multivariate

trait space. This result is particularly striking given that our

measure of multivariate trait space is based on only three

moderately correlated traits. While we currently lack data to

examine them here, below-ground traits are undoubtedly

important for describing hydrological strategies in this

system [51] and would provide valuable additional insight

to the diversity of successful strategies.

Together, our results suggest that species with ‘alternative

strategies’ on one trait axis are more strongly constrained when

considering the multivariate phenotype. This has particular

relevance for methods designed to predict species abundances

based on functional traits (e.g. CATS; [11,13]). Specifically, our

study supports the idea that functional strategies are more

strongly constrained in multivariate trait space than with

respect to univariate trait axes [3,21,52]. While our results there-

fore support the use of multiple CWM trait values as the

optimal multidimensional phenotype, future work should

strive to directly link fitness components (e.g. survival,

growth and reproduction) to trait–environment interactions.

One of our central arguments is that resolving the contrast-

ing patterns of trait–environment relationships and high local

trait variation is critical for developing predictive models in

community ecology. This is especially important because local

functional diversity, in addition to the functional composition

of dominant species, may be crucial in terms of community-

and ecosystem-level responses to environmental change [53].

An analogous pair of contrasting patterns found in evolutionary

biology is the prevalence of genetic variation in the midst of

strong stabilizing and directional selection (which is expected

to deplete genetic diversity) [54]. In their review, Walsh &

Blows [54] argued that the apparent contradiction has emerged,

at least in part, through the examination of individuals traits that

may only be relatively weakly correlated with actual fitness. By

contrast, multivariate combinations of traits (that reflect various

components of fitness) may be more tightly correlated with total

fitness and thus more likely to be constrained by selective

pressure [3]. Fluctuating environmental conditions may also

contribute to local genetic diversity analogously to the ways

that temporal and fine-scale spatial environmental heterogen-

eity could promote functional diversity of ecological

communities [55]. Ultimately, we envision continued progress

on these questions through synthesis of related questions in

community ecology and population genetics (e.g. [3,56]).
5. Conclusion
The infusion of a functional perspective into community ecol-

ogy is providing valuable insight into both the physiological

mechanisms underpinning species’ broad-scale geographical

distributions and patterns of local diversity [57]. However,
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continuing to advance our understanding of the factors govern-

ing local functional diversity requires a stronger integration of

local processes and community context with species population

dynamics and geographical distributions [58]. Further develop-

ment of a functional perspective in community ecology will

help fill these gaps by providing mechanistic links between

abiotic gradients and diversity patterns.
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