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Destructive fires in Amazonia have occurred in the past decade,
leading to forest degradation, carbon emissions, impaired air quality,
and property damage. Here, we couple climate, geospatial, and
province-level census data, with farmer surveys to examine the
climatic, demographic, and land use factors associated with fire
frequency in the Peruvian Amazon from 2000 to 2010. Although
our results corroborate previous findings elsewhere that drought
and proximity to roads increase fire frequency, the province-scale
analysis further identifies decreases in rural populations as an
additional factor. Farmer survey data suggest that increased burn
scar frequency and size reflect increased flammability of emptying
rural landscapes and reduced capacity to control fire. With rural
populations projected to decline, more frequent drought, and
expansion of road infrastructure, fire risk is likely to increase in
western Amazonia. Damage from fire can be reduced through
warning systems that target high-risk locations, coordinated fire
fighting efforts, and initiatives that provide options for people to
remain in rural landscapes.
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Fire has been used in tropical agriculture for clearing debris,
recycling nutrients, and reducing pests for millennia. The po-

tential dangers of agriculture-related fires, however, have gained
greater importance within the context of global climate variability
and change. Severe droughts in the Amazon in 2005 and 2010
confirmed that agriculture-related fires in the tropics has become
a major and growing problem on a global level (1, 2). Throughout
the tropics, a number of initiatives have been put into place to
avoid or minimize the negative impacts of agricultural fires (e.g.,
refs. 3 and 4). These policies, however, will only be effective if they
address the factors that promote fires. The biophysical and so-
cioeconomic factors associated with fires and how they interact
with climate variability are poorly understood. In part, this is
because increased hazard and devastation caused by fire reflect
not only changing patterns of drought and humidity but also
broad shifts in many aspects of development around the tropics,
including rapidly changing types and scales of land clearing and
management, road construction, rapid urbanization, and shifts in
the size and distribution of human populations (5–7).
Studies of fire in Amazonia have highlighted a number of prox-

imate causes for the recent steep rise in fire incidence including
physical factors such as drought (1), increased flammability of for-
ests due to timber extraction (8) and repeated burning (9, 10), and
extension and improvement of road access to forest areas (11).
We consider here the additional influence of rapid demographic
changes leading to increasing urban populations throughout the
Amazon and declines in rural populations in many areas (Fig. S1).
We consider these demographic factors because fire is the proxi-
mate result of activities of rural population even if these are ul-
timately driven by other factors (e.g., shifts in prices of crops) and
there has been a large increase in the size of urban populations
in the region along with considerable declines in rural pop-
ulations in many areas (Fig. 1). We explore the links between

outmigration and fire frequency at two scales: at the province
level in the Peruvian Amazon and at the local scale, relying on
farmer survey data.
This research focuses on the Peruvian Amazon where there

has been far less research on fire use and damage than in the arc
of deforestation along the southern and eastern fringe of the
Amazon basin. The wetter conditions and less marked seasonality
that generally prevail in the western Amazon could be expected
to limit the danger of spreading fires (12). Extensive clearing of
humid forests for cultivation and pasture especially along the
eastern slope of the Andes has, however, undoubtedly increased
the vulnerability of the region to escaped fires. The severe drought
of 2005 set in motion conflagrations that burned more than
300,000 ha of forests in the neighboring Brazilian state of Acre
(13). In the same year, according to government estimates more
than 22,000 ha burned in the Ucayali region of Peru, a significant
area but probably a very serious underestimate (14). Of the of-
ficially recognized burned area, about 16,000 ha were in forest,
more than 5,000 in pasture, and the rest were fruit plantations,
manioc fields, banana plantations, and the villages and homes
of farming families (14). Increased fire risk in this region likely
reflects a number of factors that interact with drought severity.
These include economic policies that stimulate agricultural de-
velopment (14, 15) and road construction (16, 17). By providing
farmers with economic incentives and access to develop the land,
both of these factors have led to increased fire activity elsewhere
in the Amazon (11). Economic opportunities have also attracted
migrants to the region (18), leading to higher population den-
sities and, potentially, greater fire risk. Nevertheless, concomi-
tant rapid urbanization (Fig. 1) and outmigration of people from
rural areas could be expected to reduce the risk of agriculture-
related fire. On the other hand, rural migration may result in
labor shortages for fire control while the high fuel load of veg-
etation regrowth in fallow areas might make these areas susceptible
to burning.
Here, we use spatially explicit analyses of climate, remote sensing,

and census information to quantify the contribution of climate
(drought), land use patterns, and socioeconomic factors, namely
rural migration, to fire activity (occurrence and frequency) at the
province scale in the Peruvian Amazon (936,240 km2; Fig. S2)
between 2000 and 2010. Severe droughts affected the region in
2005 and 2010 (19, 20). To identify the factors most strongly
associated with fire activity at this scale, we rely on spatiotem-
poral regression models. Preliminary regional analyses indicated
that the occurrence of fires (i.e., binary response) and its drivers
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were qualitatively different from fire frequency (i.e., fire counts)
so we modeled these two processes separately. We considered a
total of seven correlates of variation in fire occurrence and
frequency at the regional scale: drought severity [standardized
precipitation index (SPI) between July and September], two
factors related to agricultural activity (extent of pastures and
crops), two related to transportation networks (distance to roads
and rivers), and two demographic factors (population density
and changes in the size of rural populations at the province level
during the study period) (see Table S1 for sources and Methods
for detailed description of covariates). In an effort to understand
synergistic or antagonistic effects, we also included interactions
between drought severity and the other variables.
To investigate the characteristics and activities of rural dwellers

that may lead to increased fire frequency, we relied on burn
scar data, land use information, and farmer surveys collected
in 2010 for 37 communities in a smaller focus area (2,157 km2;
Fig. S3) located in the Ucayali Region near the city of Pucallpa
(Fig. S3). We considered four correlates of burn scar frequency
and extent at this scale: population density, land use, land owner
place of residence, and degree of implementation of fire control
methods (see Table S2 and Methods for detailed descriptions
of covariates).

Results and Discussion
Our province-scale, regional model captured the spatial distri-
bution of fire risk quite closely, revealing as expected a positive
association of fire occurrence with drought severity, proximity
to roads and rivers, and the extent of pastures and agricultural
crops (Fig. 2 and Fig. S4; see Tables S3–S10 for goodness of fit,
multicollinearity diagnostics, and model selection statistics). We
also uncovered strong synergistic interactions between drought
severity and the extent of agricultural crops and pastures, and
proximity to roads (Fig. 2). For instance, in localities where ag-
ricultural crops covered more than 20% of land area, fire risk more
than doubled from wet to dry years (Fig. 3). These results suggest

that drought severity alone cannot explain the spatial distribution
of fires. Rather, agricultural activity and proximity to roads and
rivers determine the location of fires and modulate the impacts
of drought severity.
Predictors of fire frequency (i.e., how many fires occurred in

the same place) were distinctly different from those of fire oc-
currence (Fig. 2, Tables S3–S10). As before, regression analyses
showed that fire frequency increased with drought severity and
proximity to roads, but the extent of cattle pastures and agri-
cultural crops had little impact on this metric of fire activity. The
absence of an association between these land covers and fire
frequency is not surprising given that data included in these anal-
yses were restricted to areas where fires occurred, which, as our
previous analyses indicated, consisted primarily of these two land
covers. In contrast to the negligible effects of demographic var-
iables on fire occurrence, declines in the size of rural populations
at the provincial scale were associated with greater fire frequency
(Figs. 2 and 4). Contrary to the expectation that rural outmigration
would lead to less fire, this result identifies the demographic
trend toward emptying rural landscapes as a factor that increases
fire frequency.
Our results at the local scale highlight two potential mecha-

nisms to account for the positive association between rural out-
migration and fire frequency. First, communities with a larger
percentage of land in fallow had a greater risk of more fires and
larger burn scars (Tables 1 and 2). A greater amount of land
in fallow was associated with lower population densities (t =
−2.0733, df = 35, P = 0.04). Second, burn scars were larger in
communities that had a greater proportion of farmers who did
not reside in their properties (e.g., resided in urban dwellings)
(Tables 1 and 2; see Tables S11 and S12 for regression diagnostics).
Further analyses showed that collaborative group efforts in fire
management and control were less likely in these communities
(Pearson’s r = 0.46, t = 3.04, P = 0.004), although this factor was
not included in the regression because of collinearity.
There are two major implications of these results. First, trajec-

tories toward continuing road development, conversion of forests
to farms and pastures, and depopulation of rural areas in the
Amazon carry risks of increasing fire susceptibility during dry
years. Attempts to model the distribution of fire in Amazonia
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Fig. 1. Frequency distribution of the ratio of 2007–1993 population size in
the Peruvian Amazon. Values lower than 1 indicate declines; values greater
than 1 indicate increases. Rural populations increased in 46 of the 81 provinces
included in the study and decreased in the remaining 35; urban populations
grew in 76. Data are from Instituto Nacional de Estadística e Informática
(www.inei.gob.pe/).
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Methods for details on variable selection. All covariates were significant at
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Uriarte et al. PNAS | December 26, 2012 | vol. 109 | no. 52 | 21547

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST10
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST10
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST11
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1215567110/-/DCSupplemental/pnas.201215567SI.pdf?targetid=nameddest=ST12
http://www.inei.gob.pe/


have largely focused on biophysical drivers such as variation in
forest biomass and soil moisture (e.g., ref. 11). Road development
and human population size have been included in some fire
models in Amazonia and elsewhere (e.g., refs. 21–23) but the
mechanisms by which human activities influence fire activity over
broad spatial and temporal scales are not well understood. Our
study shows that land use, infrastructure, and demographic factors
act with drought severity to determine fire activity patterns.
Second, demographic processes play a more important role

than land use in modulating fire frequency where fire occurs. Our
study suggests that rural outmigration is associated with increa-
ses in the frequency of fires and size of burn scars in the Peruvian

Amazon. Fire is a cheap, labor-saving way of clearing and managing
land, and, in a situation of rural labor shortage, its use may be
increasingly important. On the other hand, with some household
members, especially the young and able living at least part-time
in the city, the capacity of households to control the fires they
or their neighbors ignite may be declining (24). Communication
among neighbors concerning fires may also be declining, reducing
capacity to control fire (25).
Projected declines in rural population across Amazon coun-

tries (ref. 6; Table S13) and expansion of road infrastructure (17)
combined with more frequent droughts predicted by some global
climate models (26, 27) presage greater damage from fire in the
future. However, it is possible to ameliorate risk to ecosystems
and humans through the development of early warning systems
that incorporate the factors that this study reveals as important
in increasing risk of fires (i.e., differential warnings based on cli-
mate forecasts that account for recent changes in rural popula-
tions, distance to roads, etc.). To be effective, these early warning
systems will require close coordination in fire-fighting activities
among local government, regional civil defense, and of course,
communities. Policies to promote low-fire land use systems (e.g.,
small-scale oil palm) in areas with high owner absenteeism and to
provide options for people to remain in rural landscapes, such as
access to education and health services, could also reduce fire.
Provision of these services, which have been largely unavailable in
rural communities, will enable people to reside in rural areas
rather than seek services in urban centers.

Methods
Data. Data were collected at two spatial scales: the entire Peruvian Amazon
(Fig. S2) and a smaller focal area near the city of Pucallpa (Fig. S3). Pucallpa is
the urban center of Coronel Portillo, which is located on the Ucayali River,
the main transportation thoroughfare of Peruvian Amazonia and connected
to Lima via the Federico Basadre Highway. Because it is a hub of transport
by both road and river, Pucallpa is an important market center and has
attracted migrants from around Amazonia and from the mountain and
coastal regions. Between 1961 and 1993, Pucallpa grew more than sixfold
and now numbers about 300,000 (18). Facility of transport also has favored
the establishment of large-scale industrial agriculture and cattle ranching,
which spread from the edges of the urban zone into the smallholder agri-
cultural landscapes located further away by both road and river. According
to the Peruvian National Census, in 2007 more than 75% of the population
of the Ucayali Region lived in urban places (18). Increasingly, many families
are multisited, with residences in Pucallpa and in agriculturally productive
rural and periurban zones; they maintain houses and economic activities in
rural areas as well as in the city (28). More than one-half of the population
resides in informal or squatter settlements.

At the regional scale, we conducted the analyses using data for the period
2000–2010. For the local scale, analyses were restricted to data collected in
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Fig. 4. Spatial distribution of the average number of fires (red dots) in a
100-km2 pixel relative to the province level ratio of 2007–1993 rural population
size (color legend). Ratio values <1 indicate decline in rural population,
and >1 indicate increase. Average number of fires in a 100-km2 pixel ranged
from 0.1 to 8.16.

Table 1. Standardized coefficients, SEs, and statistical
significance for regression predictors of mean burn scar size
across 37 communities around the city of Pucallpa

Predictor Mean SE t P Partial R2

% community in fallow 62.72 26.05 2.41 0.021 0.13
% farmers who live

on property
−85.71 26.05 −3.20 0.002 0.24

Overall adjusted model R2 = 0.24.

Table 2. Standardized coefficients, SEs, and statistical
significance for regression predictors of fire scar counts across
37 communities around the city of Pucallpa

Predictor Mean SE t P

% community in fallow 0.0009 0.0002 2.35 0.02

Overall adjusted R2 = 0.11.
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2010. Although burn scar data are available since 2000, human settlements
around Pucallpa are extremely fluid, which prevented us from using survey
data to examine fire activity before 2010.
Climate data. Because our focus is fire activity, our analyses aimed to identify
years representing significant departures from average precipitation. To this
end, we used the SPI, the number of SDs that observed cumulative pre-
cipitation over a defined period deviates from the climatological average
(29). A continuous period of at least 30 y of precipitation data are necessary
to accurately estimate the appropriate probability density function for
a given SPI time interval. Once derived, the cumulative probability distri-
bution is transformed to a normal distribution. SPI can then be inter-
preted as a probability using the standardized normal distribution, where
SPI < −1 indicates drought and SPI > 1 pluvial.

For this study, we developed our own regional long-term gridded
precipitation dataset as part of a collaboration work with the Peruvian
Meteorological Service (Servicio Nacional de Meteorología e Hidrología). We
complemented our station network with data obtained from the Brazilian
Agência Nacional de Águas (http://hidroweb.ana.gov.br/). This second data
set provided us with additional number of stations reporting nonmissing
daily average precipitation data over the 1970–2010 period. All of the
data were interpolated to 0.25° spatial resolution using the Cressman (30)
method, which determines the average distance between the available
stations at each time step and applies a multiplier factor to extend the
radius of influence of neighboring stations on the target station. The daily
interpolated precipitation is then averaged to monthly means, but only at
grid cells with 75% of the days reporting nonmissing data. Monthly gridded
precipitation data from 1970 to 2010 were used as the baseline period for
the July–August–September (JAS) SPI calculation. Previous analyses have
shown that SPI calculated for this period, the dry season in the region,
correlates highly with fire anomalies (19). To make the data congruent
with other raster datasets, we rescaled it to 0.1° spatial resolution (Table S1).
Weather station data were not available for 4% of the 7,311 0.1° pixel-years,
so these data were excluded from the analyses.
Remote sensing data. Regional scale. The active fire product from the moderate
resolution imaging spectroradiometer (MODIS) sensor (31) provided a time
series of fire activity over the study region from 2000 through 2010. This
product consist of gridded fire pixels count at 1-km2 resolution aggregated
to a 100-km2 grid and monthly time steps. We first calculated the total
number of “hot” pixels in each 0.1° cell (roughly a 10 × 10-km grid). This
value could range from 0 for no reported fires to 100 if all of the cells had
fire activity in any given day. We then calculated the average annual value
for each cell for the July–September period for 2000 through 2010. Although
the MODIS product does not provide daily coverage in equatorial regions,
the goal of our analyses is to evaluate the factors underlying relative
variation in fire occurrence and frequency across the Peruvian Amazon.
Undersampling might influence the magnitude of parameter estimates, but
it is unlikely to change the sign, significance, or interpretation of the factors
that influence fire activity.

To assess the impacts of human activities in the region, we used land use/
land cover layers based on satellite data from 2000 (32) and calculated the
proportion of each of the 0.1° cells that was used for agricultural crops or
pasture. We also calculated the distance from the center of each cell to the
nearest river and road. Road and river layers were obtained from Center
for International Earth Science Information Network at Columbia University
(Table S1).

Local scale. We used MODIS daily surface reflectance data (MOD09GQ) to
quantify the number and size of burn scars that overlapped with the extent
of each community in 2010. The spatial resolution of this product is ∼250 ×
250 m, meaning that burn scars <250 m were not detected. Communities
were delineated using global positioning system and ranged in size from
298 to 4,810 ha (2.98–48.1 km2) with mean area of 1,660 ha. Burn scars were
mapped based on metrics characterizing temporal changes in bands 1 (620-
670 nm), and 2 (841-876 nm) and normalized difference vegetation index
associated with burning. These metrics were incorporated in a decision tree
classifier (33) for burn scar classification. Calibration and validation data were
obtained from field measurements of burned areas and from visual in-
terpretation of burned and unburned areas in 2009 and 2010 using RGB
composites of bands 5, 4, 3 from Landsat images. Accuracy was measured as
the ability of the calibrated tree with data from 2010 to classify burned and
unburned areas in time, using 2009 as the validation year. We further applied
a postclassification sieving filter of 4 or less pixels to avoid misclassification
of small isolated areas. Producer’s accuracy was 82.4% and user’s accuracy
was 90.8%.

Toassess theroleofhuman landuse infireactivityat this scale,weassembled
Landsat data from 2010 for each of the 37 communities. Land cover was

identifiedusing RandomForest (34–35) andfield data. Each 30× 30 pixel in the
study landscapes was classified as pasture, crop, fallow, or forest. Details on
the methods and accuracy of the classification are provided in ref. 34.
Socioeconomic data. Regional scale. We collected socioeconomic data for the
81 provinces comprising the Peruvian Amazon from the Instituto Nacional de
Estadística e Informática (18). Provinces range in size from 559 to 121,706 km2

(Fig. S2). For each province, variables included population density in 2007 and
the ratio of the 2007–1993 rural population.

Local scale. During the dry season months, generally between the last
weeks of August through September and early October, smallholders clear
new fields and pastures and leave the slash to dry in the clearing. In July 2010,
we assigned one field worker per two sites and identified locations that
were being prepared for burning. Throughout 2010 and 2011, we conducted
semistructured interviews to establish landowner place of residence and
degrees of implementation of fire control methods such as seeking help or
constructing fire breaks (Table S2). We collected data for 732 households
distributed in the 37 communities located within the study areas (Fig. S3).
Surveys were conducted in Spanish in the farm house or within the farm
plot. Before conducting the survey, we informed farmers of the general
intent of our study and asked for permission to transcribe their responses.
Only individuals who were actively managing the farm and making decisions
about farm management were interviewed. These criteria included land-
holders or guardians and excluded temporary hired workers. Population
density data for each community were obtained from community leaders.

Modeling fire incidence and frequency. To understand spatial and temporal
patterns offire activity in the study region as a function of climatic, landscape,
and socioeconomic factors, we relied on time series data of fire activity
detected using the MODIS fire product together with a number of covariates
(Table S1). Preliminary analyses indicated that the occurrence of fires and
its drivers were qualitatively different from fire frequency so we modeled
these two processes separately.

At the regional scale, we examined a number of possible correlates of
fire activity defined in terms of occurrence and frequency, including de-
mographic, land cover, and transportation factors. We formally tested for
collinearity using a number of regression diagnostics including variance
inflation factors, condition indexes (ratios of eigenvalues), and variance
decomposition proportions of the design matrix (36, 37) (Tables S4–S10).

We modeled fire occurrence at the regional scale using a Gaussian con-
ditional autoregressive hierarchical Bayesian model with binary errors.
To account for temporal autocorrelation, 10 × 10-km grid quadrats were
modeled as random effects. To account for spatial autocorrelation, random
effects for each were conditioned on the model predictions for neighboring
quadrats. Parameters were estimated using WinBugs 1.4.3 with weak or
noninformative priors. Initial analyses indicated that spatial autocorrelation
did not influence parameter estimation and significance so we proceeded
with mixed models with quadrat included as a random effect nested within
province. We modeled fire frequency (i.e., annual counts) using a similar
approach with the log of the average number of “hot” pixels in each 10 × 10 km
as the response variable. Covariates included the precipitation index for the
JAS period (JAS SPI), province-level population density in 2007, and the ratio
of rural dwellers in 2007 and 1993, the proportions of each pixel used for
pastures and agricultural crops, and distance to rivers and roads (Table S1).
We also included interactions between climate (SPI) and the other covariates
in our model. To speed up model convergence and facilitate interpretation,
continuous covariates were standardized by taking each datum, subtracting
the mean value and dividing by twice the SD (38). We used deviance in-
formation criterion for variable selection for binary responses (fire occurrence)
and Bayesian information criterion for fire frequency (39).

We calculated model goodness of fit as the proportion of explained
variance (R2) at the sample (data) and site (quadrat) levels using methods
modified from Gelman and Pardoe (40). At the sample or data level, R2 was
calculated as follows:

R2
sample = 1−

E
�
V

j=Nsample

j=1

�
log

�
yj
�
− βXj −ωsiteðjÞ

��

E
�
V

j=Nsample

j=1

�
log

�
yj
��� ; [1]

where Nsample is the number of samples, E is the expected value, V is the
variance, is the fire activity measure for the jth sample, is the sum of the
products of the estimated coefficient and the predictors, and is the ran-
dom effect associated with the quadrat (10 × 10 km) of the sample. The
expected value of the variance was calculated by averaging the value
of the variance obtained from 1,000 independent draws from the joint
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posterior distribution of the fixed and random effects. At the site, or
random effect level, R2 was calculated as follows:

R2
site = 1−

E
�
Vk=Nsite
k=1 ðωkÞ

�

E
�
Vk=Nsite
k=1

�
βXk +ωk

��; [2]

where Nsite is the number of sites (quadrats), is the random effect for the
kth site, and is the product of the estimated coefficients and the mean value
of the predictors within the kth site.

Greater R2 values at the data (sample) level indicate that the patterns
are driven by temporal variation in covariates (i.e., changes in drought
severity within a site over time), whereas a greater R2 at the site level sug-
gests that spatial variability in covariates among sites (e.g., land cover or
socioeconomic covariates) accounts for variation in response variables. The
approach used here allows us to separate the temporal signal from climate
from that of spatial variation in covariates.

For the local-scale analyses, we used linear regression to examine a number
of possible correlates of the number (i.e., frequency) and average size of
burn scars that overlapped the extent of the 37 communities, including land
cover (i.e., proportion of fallow, pasture, and crop cover), as well as the
proportion of land owners who resided in their property and exercised
some fire control practices (Table S2). To account for the possibility that
larger farms would have a greater probability of overlapping burn scars,
we also included community size as a covariate in the analyses of average
burn scar size. We used the same procedures outlined for the regional
analyses to standardize covariates (38) and evaluate regression results (37).
We used Akaike information criterion for variable selection and calculated
overall and partial R2 for all of the covariates included in the final model.
All analyses were conducted using R statistical software (41).
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Fig. S1. Proportion of Amazonian inhabitants living in urban areas by country. Sources are refs. 1–8.
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Fig. S2. Study region encompasses 81 provinces. A province was included in the study if its centroid fell within the wet tropical forest biome. Biome GIS layer
used for selection was from ref. 1.
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Fig. S3. Area of the local study, showing the 37 communities included in the analyses.
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Fig. S4. Distribution of fire (black crosses) and predicted probabilities of occurrence (color legend) for 2005. The blank quadrats indicate missing climate data
for those quadrat-years.

Table S1. Data variables included in the model with sources, and
spatial and temporal scales at which they were used

Variables Sources and scales

Fire activity MODIS, no. of hot pixels
0.1°, 2000–2010 (NEO)

Biophysical Rivers (CIESIN)
1 x 1 km, 2005

Infrastructure Roads (CIESIN)
1 x 1 km, 2005

Demographic Population density 2007
Rural population 2007/rural population

1993 INEI
Agricultural activity Extent of pastures and crops

0.083° (1)
Climate SPI-JAS, SENAMHI

0.1°, 2000–2010

See Methods for details. CIESIN, Center for International Earth Science
Information Network at Columbia University (http://sedac.ciesin.columbia.
edu/es/aglands.html); INEI, Instituto Nacional de Estadística e Informática
(access at www.inei.gob.pe/); MODIS, moderate resolution imaging spec-
troradiometer; NEO, NASA Earth Observatory (http://neo.sci.gsfc.nasa.gov/);
SENAMHI, Servicio Nacional de Meteorología e Hidrología; SPI-JAS, standardized
precipitation index July–August–September.

1. Ramankutty N, Evan AT, Monfreda C, Foley JA (2000) Global Agricultural Lands: Pastures, 2000. Data Distributed by the NASA Socioeconomic Data and Applications Center (SEDAC).
Available at http://sedac.ciesin.columbia.edu/es/aglands.html. Accessed July 6, 2011.
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Table S2. Data variables included in the local model of fire
frequency and size with sources, and spatial scales at which
they were used

Variables Sources, resolution, and values

Fire frequency MODIS 1 x 1 km
Fires/ha

Fire intensity MODIS 250 x 250 m
Maximum burn scar size (no. pixels)

Proportion of fallow land Landsat 30 x 30 m
Population density Survey data
% Farmers using fire

control methods
Survey data, Community scale

% Farmers residing in
their property

Survey data, Community scale

See Methods for details. MODIS, moderate resolution imaging spectro-
radiometer.

Table S3. Explained variance at the data and site (quad) levels for
best models of fire occurrence and frequency calculated using
methods described in ref. 1

Fire occurrence Fire frequency

Data R2 Quad R2 Data R2 Quad R2

Best model 0.060 0.435 0.231 0.212

Values of R2 at the data level indicate the importance of temporal variation
in covariates in explaining fire activity; R2 at the site level indicates importance
of spatial variation in covariates.

1. R Development Core Team (2008) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna).

Table S4. VIF for all of the variables initially included in the
regressions for fire occurrence and frequency

Variable
VIF fire

occurrence
VIF fire

frequency

SPI 1.50 1.01
Pasture 1.44 1.26*
Agricultural crops 1.28 1.24*
Distance to roads 1.31 1.35
Distance to rivers 1.10 1.03*
Population density 2007 1.16* 1.02*
Rural population ratio (2007/1993) 1.13* 1.09

Variance inflation factor (VIF) should be <5 to avoid multicollinearity (1).
SPI, standardized precipitation index.
*Indicates variables not retained in the final models.

1. Belsey DA, Kuh E, Welsch RE (2004) Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley, New York).
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Table S5. Multicollinearity diagnostics for variables used in the regression at the regional scale: Fire occurrence

Parameter
Condition

index Intercept SPI
Distance
to road

Distance
to river Pasture Crop

Population
density

Rural
change

Intercept 1.000 0.000 0.000 0.105 0.008 0.113 0.111 0.000 0.045
SPI 1.306 0.000 0.369 0.019 0.184 0.004 0.000 0.195 0.068
Distance to road 1.402 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Distance to river 1.413 0.000 0.050 0.011 0.370 0.000 0.001 0.467 0.089
Pasture 1.437 0.000 0.234 0.006 0.241 0.006 0.015 0.264 0.241
Crop 1.555 0.000 0.332 0.017 0.177 0.025 0.033 0.026 0.538
Population density 2007 1.782 0.000 0.008 0.791 0.003 0.058 0.338 0.029 0.004
Rural change (93–07) 1.962 0.000 0.007 0.051 0.017 0.793 0.502 0.019 0.014

Condition index should be <30 to avoid multicollinearity (1). SPI, standardized precipitation index.

1. Belsey DA, Kuh E, Welsch RE (2004) Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley, New York).

Table S6. Multicollinearity diagnostics for variables used in the regression at the regional scale: Fire frequency

Parameter
Condition

index Intercept SPI
Distance
to road

Distance
to river Pasture Crop

Population
density

Rural
change

Intercept 1.000 0.000 0.017 0.128 0.035 0.119 0.100 0.004 0.031
SPI 1.203 0.000 0.098 0.007 0.150 0.005 0.086 0.143 0.226
Distance to road 1.341 0.000 0.176 0.048 0.144 0.040 0.004 0.487 0.005
Distance to river 1.358 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pasture 1.425 0.000 0.667 0.001 0.184 0.000 0.023 0.087 0.081
Crop 1.536 0.000 0.000 0.005 0.298 0.179 0.066 0.053 0.536
Population density 2007 1.709 0.000 0.022 0.001 0.189 0.395 0.465 0.212 0.053
Rural change (93–07) 1.854 0.000 0.021 0.811 0.001 0.262 0.256 0.013 0.068

Condition index should be <30 to avoid multicollinearity (1). SPI, standardized precipitation index.

1. Belsey DA, Kuh E, Welsch RE (2004) Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley, New York).

Table S7. DIC values for regression models of fire occurrence at the regional scale: Single-variable
models

Variable excluded?

Single-variable
models SPI Rivers Roads Pasture Crop

Population
density

Rural
change DIC

1 28045
2 Yes 29349
3 Yes 28196
4 Yes 28230
5 Yes 28061
6 Yes 28334
7 Yes 28048
8 Yes 28045
9 Yes Yes 28045

We first tested a model with the nine covariates and compared deviance information criterion (DIC) values for
models without each of the individual covariates. We then compared models with interaction terms of drought
and covariates that had a significant influence on DIC as single factors. Lower DIC indicates a better fit. SPI,
standardized precipitation index.
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Table S8. DIC values for regression models of fire occurrence at
the regional scale: Models with interactions

Interaction excluded?

Models w/
interactions SPI*river SPI*road SPI*past SPI*crop DIC

1 27931
2 Yes 27968
3 Yes 27931
4 Yes 27956
5 Yes 28252
6 Yes Yes 27985
7 Yes Yes 28000
8 Yes Yes 27983
9 Yes Yes 27958
10 Yes Yes 28000
11 Yes Yes 27985
12 Yes Yes Yes 28028
13 Yes Yes Yes 28003

We first tested a model with the nine covariates and compared DIC values
for models without each of the individual covariates. We then compared
models with interaction terms of drought and covariates that had a signifi-
cant influence on DIC as single factors. Lower DIC indicates a better fit. SPI,
standardized precipitation index.

Table S9. BIC values for regression models of frequency at the regional scale: Single-variable
models

Single-variable
models

Variable excluded?

SPI Rivers Roads Pasture Crop
Population
density

Rural
change BIC

1 14857
2 Yes 14957
3 Yes 14848
4 Yes 14860
5 Yes 14850
6 Yes 14846
7 Yes 14845
8 Yes 14889
9
10 Yes Yes Yes Yes 14815

We first tested a model with the nine covariates and compared Bayesian information criterion (BIC) values for
models without each of the individual covariates. We then compared models with interaction terms of drought
and covariates that had a significant influence on BIC as single factors. Lower BIC indicates a better fit. SPI,
standardized precipitation index.

Table S10. BIC values for regression models of frequency at the
regional scale: Models with interactions

Interaction excluded?

Models with interactions SPI*roads SPI*rural BIC

1 14829
2 Yes 14821
3 Yes 14826

We first tested a model with the nine covariates and compared BIC values
for models without each of the individual covariates. We then compared
models with interaction terms of drought and covariates that had a signifi-
cant influence on BIC as single factors. Lower BIC indicates a better fit. SPI,
standardized precipitation index.
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Table S11. VIF for all of the variables initially included in the
regressions for fire scar numbers

Predictor No. scars ha

% community in fallow 1.12
% community in pasture* 1.32
% community in crops* 1.31
Population density* 1.28
% farmers who live on property* 1.42
% farmers who do not engage in fire control* 1.01

VIF should be <5 to avoid multicollinearity.
*Indicates variables not retained in the final models. Covariates were elim-
inated using stepwise regression. All condition indexes were less than 10.

Table S12. VIF for all of the variables initially included in the
regressions for fire scar average size

Predictor Mean scar size

% community in fallow 1.37
% community in pasture* 1.40
% community in crops* 1.35
Farm area* 1.27
Population density* 1.79
% farmers who live on property* 1.46
% farmers who do not engage in fire control* 1.09

VIF should be <5 to avoid multicollinearity.
*Indicates variables not retained in the final models. Covariates were elim-
inated using stepwise regression. All condition indexes were less than 10.

Table S13. Projected changes in rural population between 2010
and 2050 for countries in the Amazon basin

Country Ratio of projected 2050–2010 population

Bolivia 0.78
Brazil 0.53
Colombia 0.76
Ecuador 0.64
Guyana 0.58
French Guyana 1.16
Peru 0.72
Suriname 0.63
Venezuela 0.67
Average 0.72

Data are from ref. 1.

1. United Nations (2009) World Urbanization Prospects: The 2009 Revision (United Nations, New York).
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