
Global Environmental Change 31 (2015) 144–153
Climate, landowner residency, and land cover predict local scale fire
activity in the Western Amazon

Naomi B. Schwartz a,*, Maria Uriarte a, Victor H. Gutiérrez-Vélez b,c, Walter Baethgen d,
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A B S T R A C T

The incidence of escaped agricultural fire has recently been increasing in the Western Amazon, driven by

climate variability, land use change, and changes in patterns of residency and land occupation.

Preventing and mitigating the negative impacts of fire in the Amazon require a comprehensive

understanding not only of what the drivers of fire activity are, but also how these drivers interact and

vary across scales. Here, we combine multi-scalar data on land use, climate, and landowner residency to

disentangle the drivers of fire activity over 10 years (2001–2010) on individual landholdings in a fire-

prone region of the Peruvian Amazon. We examined the relative importance of and interactions between

climate variability (drought intensity), land occupation (in particular, landowner absenteeism), and land

cover variables (cover of fallow and pasture) for predicting both fire occurrence (whether or not fire was

detected on a farm in a given year) and fire size. Drought intensity was the most important predictor of

fire occurrence, but land-cover type and degree of landowner absenteeism increased fire probability

when conditions were dry enough. On the other hand, drought intensity did not stand out relative to

other significant predictors in the fire size model, where degree of landowner absenteeism in a village

and percent cover of fallow in a village were also strongly associated with fire size. We also investigated

to what extent these variables measured at the individual landholding versus the village scale influenced

fire activity. While the predictors measured at the landholding and village scales were approximately of

equal importance for modeling fire occurrence, only village scale predictors were important in the model

of fire size. These results demonstrate that the relative importance of various drivers of fire activity can

vary depending on the scale at which they are measured and the scale of analysis. Additionally, we

highlight how a full understanding of the drivers of fire activity should go beyond fire occurrence to

consider other metrics of fire activity such as fire size, as implications for fire prevention and mitigation

can be different depending on the model considered. Drought early warning systems may be most

effective for preventing fire in dry years, but management to address the impacts of landowner

absenteeism, such as bolstering community fire control efforts in high-risk areas, could help minimize

the size of fires when they do occur. Thus, interventions should focus on minimizing fire size as well as

preventing fires altogether, especially because fire is an inexpensive and effective management tool that

has been in use for millennia.

� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Although humans have long influenced fire regimes on earth,
recent anthropogenic drivers are causing major shifts in fire
activity in some parts of the world and are expected to further alter
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global fire regimes in the near future (Bowman et al., 2011;
Krawchuk et al., 2009; Turner, 2010). These changes will have
consequences for biodiversity, conservation, and ecosystem
processes, along with human health, economics, and wellbeing
(Bowman et al., 2009; Lohman et al., 2007). Adapting to and
mitigating the effects of changing fire regimes requires an
understanding of the drivers of both broad scale and local
heterogeneity in fire activity, and of the links, interactions, and
interdependencies of the multiple drivers of these changes.
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An ideal region in which to examine such questions is the
western Amazon. Although humans have used fire to clear land for
agriculture and improve hunting grounds in the Amazon for
thousands of years (Bowman et al., 2008; Bush et al., 2008), the
incidence of escaped agricultural fires has been increasing in
recent decades (Alencar et al., 2011; Aragão et al., 2007; Aragão and
Shimabukuro, 2010; Armenteras and Retana, 2012; Asner and
Alencar, 2010). Because there are few natural ignitions, fires are
associated with human activities (Cochrane and Laurance, 2008;
Nepstad et al., 2001). Fire is still a common tool used to prepare
land for agriculture or grazing, but today, these fires are prone to
escaping into adjacent forest or non-forested land, particularly in
dry years (Alencar et al., 2004; Nepstad et al., 1999). Amazonian
fires can be major sources of greenhouse gas emissions (DeFries
et al., 2002, 2008), degrade forests, affect biodiversity and
ecosystem services (Cochrane and Schulze, 1999; Gerwing,
2002), and cause property loss and respiratory disease (de
Mendonça et al., 2004). Although fire is most prevalent in the
southern and eastern parts of the Amazon basin, its incidence is
growing in the western Amazon as well (Brown et al., 2011). For
example, in the 2005 drought, 22,000 ha burned in the Ucayali
region of Peru (Gobierno Regional de Ucayali, 2006).

Fire can only occur when conditions are favorable; it requires
fuels, an ignition source, and sufficiently dry weather conditions to
ignite and spread. Fire regimes, the spatial and temporal patterns
of fire observed in an ecosystem, are the result of vegetation,
climate, and ignition controls acting simultaneously (Moritz et al.,
2005). Human activities can affect fire regimes by interfering with
any of these controls. For example, land use and management
activities can change fuel amounts, composition, and configuration
and affect the number and spatiotemporal patterns of ignitions
(Nepstad et al., 1999), while roads can act as fire breaks, but also
can be a source of anthropogenic ignitions (Archibald et al., 2009;
Bowman et al., 2011; Cardille et al., 2001; Hawbaker and Radeloff,
2013). Promoting grazing, introducing exotic plants, engaging in
fire suppression, and other activities can similarly affect patterns of
fire (Bowman et al., 2011).

The degree to which various controls on fire activity limit fire
depends on the study location (Bowman et al., 2009; Krawchuk
et al., 2009; Krawchuk and Moritz, 2011; Parisien and Moritz,
2009). For example, in places with wet climates where productivi-
ty, and thus fuel availability, is high, fire is limited by fuel moisture.
In very dry climates where fuels are almost always dry enough to
burn, fuel quantity can be limiting instead (Krawchuk and Moritz,
2011). Where natural ignitions are very rare, the availability of
anthropogenic ignitions changes the degree to which ignitions
limit fire (Cochrane and Laurance, 2008; Nepstad et al., 2001).

The spatial scale of analysis also affects which drivers best
explain patterns of fire activity (Parisien and Moritz, 2009; Parks et
al., 2012). Climate exerts control across broad areas, while
topography and vegetation are important in driving finer scale
heterogeneity. Within broad fire-prone regions there can be
considerable spatial and temporal heterogeneity in frequency,
intensity, and severity of fires, and local patterns of fire activity are
the result of climate, fuel, and ignition controls acting simulta-
neously and to different degrees, and reflect the ways humans
influence each of these controls. Thorough understanding of a fire
regime requires examining patterns of fire at a number of different
spatial scales: focusing on broad scales might blur out the drivers
of local scale heterogeneity, while focusing only on very local
scales may miss informative and important regional patterns in
fire activity. For example, a focus on climate may overlook the role
of topography in driving local variation in fire regimes, while a
focus on the way topography influences patterns of fire might not
detect the role of interannual climate variability in driving regional
synchrony and year-to-year variability in fire activity.
Similarly, the most important biophysical factors predicting fire
occurrence (defined as whether a particular place burns or not)
may be different from those predicting other metrics of fire activity
such as fire intensity or fire size. In ecosystems where natural
ignitions are rare, availability of ignitions could be the most
important driver of fire occurrence, but once a fire starts, fuel
quantity could be the strongest predictor of fire intensity and the
spatial configuration or connectivity of fuels could be most
important for fire size. In ecosystems where ignitions are frequent
but conditions are rarely dry enough for fires to start, fuel moisture
might be the most important factor limiting fire occurrence,
intensity, and size.

Here, we combine multi-scalar data on land use, climate, and
landowner residence from remote sensing, meteorological stations
and socio-economic surveys to further disentangle the drivers of
two different metrics of fire activity – fire occurrence and fire size –
over 10 years on individual landholdings in a fire prone region of
the Peruvian Amazon. We focused on the following questions:

1) What is the relative importance of climate, landowner place of
residence, and land cover for predicting fire activity in the
Ucayali region of the Peruvian Amazon and how do these drivers
interact?

We expected that climate would exert the strongest control on
fire, but in dry years, variables related to human activities would
play an important role in determining finer scale patterns of fire
activity.

2) To what extent do characteristics of a particular landholding, as
opposed to characteristics of the village or region around it,
predict fire activity on that landholding?

Because most landholdings are relatively small and thus
potentially highly susceptible to fire spread from adjacent
properties, we expected that characteristics of the village around
a landholding would be a stronger predictor of fire activity than
conditions on a landholding itself.

3) Are the drivers of fire occurrence different from those of fire
size?

We expected that the predictors of fire occurrence would be
different from those of fire size: fire occurrence would be more
closely associated with spatial and temporal patterns of ignition
sources (related to patterns of human activity) while fire size
would be associated with variables that affect fuel quantity and
moisture, in particular land cover and drought intensity, and that
reflect social control, in particular the number of landowners
present in the village.

2. Material and methods

2.1. Study area

This study focused on an area within the Ucayali region of Peru,
near the urban areas of Pucallpa and Campo Verde (Fig. 1).
Elevation ranges from 150 to 250 m, and annual mean precipitation
averages 1500–2500 mm/year with an annual dry season from
July to September (Gutiérrez-Vélez and DeFries, 2013). The study
region has been connected to Lima and other urban centers in the
coast and mountains of Peru by a highway and networks of roads for
more than six decades. It has attracted many migrants from
elsewhere in Peru in recent years (Uriarte et al., 2012) and has
undergone extensive land-use change and deforestation including



Fig. 1. Map of study area. Inset shows location in Peru (black rectangle).
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conversion of forest to oil palm (Gutiérrez-Vélez and DeFries, 2013;
Oliveira et al., 2007). Since the early 1980s, there has been
significant rural-to-urban migration, with 75% of the population
living in cities as of 2007, up from 56% in 1972 (Instituto, 2009).
Many households are multi-sited, with property and activities in
rural and urban areas (Padoch et al., 2008).

Several studies have examined the drivers of recent fire activity
in the western Amazon, and have found it is correlated with
repeated droughts over the 2000s, which in turn are associated
with positive anomalies in the North Atlantic sea surface
temperature (Chen et al., 2011; Fernandes et al., 2011). Recent
fires in the Peruvian Amazon have been concentrated in provinces
where rural-to-urban migration is high, and, within the study area,
in villages with high levels of landowner absenteeism (Uriarte et
al., 2012). This may be due to decreased capacity to control fires in
areas where landowners are rarely present on their land, and/or to
an increase in flammable fallow land. Gutiérrez-Vélez et al. (2014)
found that land cover composition is significantly correlated
with fire probability in individual burned pixels but that the
magnitude and sign of the correlation depends strongly on drought
intensity, successional stage of regrowing vegetation and oil palm
age. Here, we build on these findings to further disentangle the
drivers of fire occurrence over 10 years on the scale of individual
landholdings in the Peruvian Amazon. Previous analyses of drivers
of fire activity in the region have been on disparate scales:
province, village, burned 250 m pixel. Conducting analyses on the
scale of individual landholdings allows us to simultaneously
compare the relative importance of the climate, residency, and
land cover drivers previously identified as important, at a scale
relevant for local management and prediction of finer scale
patterns of fire occurrence.

Data were compiled from a number of sources including
weather stations, satellites, and farmer surveys (Table 1). We
focused our analyses on 732 farms within 37 villages in the region
(Fig. 1).

2.2. Climate data

Drought is a major climatic driver of fire in the Amazon (Alencar
et al., 2006; Fernandes et al., 2011; Nepstad et al., 2004). To
quantify drought intensity, we used the Standardized Precipitation
Index (SPI), calculated as the number of standard deviations that
cumulative precipitation over a defined period deviates from the
long-term average: here, 1970–2010. SPI values < �1 indicate
drought, while SPI > 1 wet years. We used a map of SPI at 0.258
spatial resolution developed by Fernandes et al. (2011) to assess
the relative and interactive influence of drought intensity on fire
occurrence and size. The map was derived by interpolating
meteorological stations’ precipitation data from the Peruvian
Meteorological Service (Servicio Nacional de Meteorologia e
Hidrologia-SENAMHI) and the Brazilian Agência Nacional de Águas
(http://hidroweb.ana.gov.br/) using the Cressman method (Cress-
man, 1959). Previous analyses have shown that July–August–
September (JAS) SPI is the most accurate predictor of fire activity

http://hidroweb.ana.gov.br/


Table 1
Variables used and their sources.

Variable Source Citation

Response variables

Fire occurrence MODIS Gutiérrez-Vélez et al. (2014)

Burn scar size MODIS Gutiérrez-Vélez et al. (2014)

Predictors–household scale

Land cover (focal landholding) Landsat Gutiérrez-Vélez and DeFries (2013)

Does landowner live on farm? Landowner survey Uriarte et al. (2012)

Farm size Landowner survey Uriarte et al. (2012)

Predictors–village scale

Land cover (village) Landsat Gutiérrez-Vélez and DeFries (2013)

% Landowners residing in village Landowner survey Uriarte et al. (2012)

Predictors–regional scale

Climate (SPI) Peruvian Meteorological Service and

Brazilian Agênia Nacional de Águas

Fernandes et al. (2011)
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for the Peruvian Amazon (Fernandes et al., 2011), so we used JAS
SPI as the climate variable in our analyses to predict fire activity.
Because of the coarse spatial resolution of the SPI data, there were
only six different values of SPI across the study area each year.
Thus, variation in SPI mainly represents inter-annual variation in
precipitation, as opposed to spatial variation.

2.3. Fire mapping

Annual burn scar maps for every year between 2001 and 2010
were obtained from a previous study (Gutiérrez-Vélez et al., 2014).
Burn scars were mapped using the daily surface reflectance
product from the Moderate Resolution Imaging Spectrometer
(MODIS) satellite (MOD09GQ) at 250 m � 250 m resolution, based
on temporal changes in NDVI and in bands 1 (620–670 nm) and 2
(841–876 nm). The presence of smoke, haze, and clouds during
burning can prevent the detection of fires at the time of burning.
The method used for burn scar mapping minimizes these effects in
a number of ways. First, the MODIS surface reflectance product
incorporates an algorithm that reduces the effects of smoke and
other aerosols (Vermote et al., 2002). Second, the method
implements a filtering algorithm to remove unreliable pixel
observations. Third, the method takes into consideration minimum
NDVI values measured throughout the entire dry season, July
through November. Detection of fires that occur toward the end of
this period may be reduced somewhat, but relatively few fires
occur during this time period (Gutiérrez-Vélez et al., 2014).

Due to the minimum pixel size required for detection, sub pixel-
sized fires, such as controlled agricultural fires, are not likely to be
detected, and the method is most reliable for burn scars larger than
10 ha (Gutiérrez-Vélez et al., 2014). Therefore, though it is not
possible to discriminate controlled vs. escaped fires using this
method, the majority of fires included in our models likely
represent large escaped fires, as controlled agricultural fires are
generally smaller than 2 ha (Gutiérrez-Vélez et al., 2014).
Therefore, this method allows us to detect and model the drivers
of large fires; the drivers of small fires may be different.

In addition, there may be some error in the size of mapped burn
scars in both directions, due to the lack of information on date of
burning. The same fire event may correspond to multiple separate
mapped burn scars if they are connected through areas smaller
than the minimum detectable burn scars, leading to some
underestimation of fire size. On the other hand, single burn scars
could correspond to areas burned in different fire events during the
same year and close enough to be mapped as an individual burn
scar, leading to some overestimation.
2.4. Land cover mapping

Land cover maps were obtained from a previous study
(Gutiérrez-Vélez and DeFries, 2013). They were classified at the
30 m � 30 m resolution using a combination of Landsat TM and
ETM optical data and ALOS-PALSAR radar data. We excluded 2007
from analyses because there was not a suitable Landsat TM image
of the region available. Each pixel was classified as oil palm,
deforested, fallow, forest, pasture, secondary vegetation, bare, or
water with an overall accuracy of 93%.

2.5. Socio-economic data

During 2010 and 2011, we conducted semi-structured
interviews at 732 farms in 37 villages across the study area
(Fig. 1). A farm is defined here as one spatially continuous
landholding with one owner. Villages are defined as communities
with more than 40 school-aged children (the minimum number
needed for a private school) and are delineated by the local
government. We selected these 37 villages via a preliminary
survey of fire history and landholding types (smallholders versus
large holdings). Households were selected from within these
communities from the population who potentially used fire as a
management tool or were potentially affected by escaped fires
using snowball sampling, in which individual respondents helped
recruit future respondents from their acquaintances (Goodman,
1961). Only heads of households or individuals actively involved
with farm management were interviewed. Each individual was
asked about the landowner’s place of residence and fire use and
management practices. If the current landowner acquired the
farm more recently than 10 years ago, they were included in
analyses for all years after they acquired it. Otherwise, they were
included for all 10 years of the study. This resulted in 5387 farm-
year observations. We assumed that their answers in 2010–2011
reflect conditions since the acquisition.

Farm boundaries were mapped using GPS points. Mean farm
size was 32.5 ha. If any burn scar overlapped with a farm in a given
year, that farm was classified as ‘‘burned’’ for that year, for the
model of fire occurrence. Otherwise landholdings were marked as
unburned. For farms that burned, we calculated the total area of
the burn scars that overlapped with the farm for use in the model of
fire size. For each farm, we tallied the proportion in each land
cover class for each year between 2001 and 2010. In addition, we
calculated the proportion of land cover class in each village and the
proportion of landowners residing on their property to use as
community-scale predictors in our models of fire activity.



Fig. 2. Standardized regression coefficients for model predicting fire occurrence.
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2.6. Statistical analysis

We used a hierarchical Bayesian modeling framework to predict
annual fire activity from 2001 to 2010 at the scale of individual
farms. We expected that the predictors of fire occurrence would be
different from those of fire size. Therefore, we built two models to
predict fire activity: first, to predict the probability that fire occurs
on a farm in a given year, and second, for the subset of farms that
did burn in a particular year (n = 1095), the total area of burn scars
overlapping with each farm. Considering fire size in this way
allows us to understand the characteristics of farms that are
associated with large escaped fires.

Predictors varied at the regional (i.e. whole study area), village,
and individual farm scale and comprised drought intensity (SPI),
farm-level land cover (proportion of pasture and fallow), place of
residence of landowner (on the farm or elsewhere), village land
cover (proportion pasture and fallow), and percent of landowners
residing within the village (Table 1). We also included interactions
between SPI and each other predictor. Because we were interested in
how the relative importance of predictors varied across models, and
not in finding the best model to predict each metric of fire
occurrence, we fit a full model for both fire probability and fire size.
Farm size (hectares) was included as a covariate to control for the
fact that fire is more probable in large farms because they cover more
area. We included only the fallow and pasture land cover classes as
predictors to avoid collinearity between land cover predictors and
because both have been identified as being associated with fire in
previous analyses (Gutiérrez-Vélez et al., 2014). Collinearity was
less than 0.36 for all pairs of predictors (Table A.1).

Fire occurrence (yocc) was modeled as a Bernoulli process as
follows:

yocc;i j� Bernoullið pi jÞ (1)

where pij is the probability of fire on farm i in year j. We modeled
the logit of pij as a linear combination of the predictors (x),
regression coefficients b, and a farm-specific intercept ai:

ln
pi j

1 � pi j

  !
¼ ai j þ b1x1;i j þ � � � þ bnxn;i j (2)

The size of fires overlapping with a farm was log transformed, as
a few very large fires resulted in a long-tailed distribution. We
modeled fire size (yfs) using a gamma density function as follows:

y fs� gamma
m2

i j

s
;
mi j

s

  !
(3)

mi j ¼ ai j þ b1x1;i j þ � � � þ bnxn;i j (4)

where mij is the predicted fire size associated with farm i in year j

and s is the estimated variance. In all models for both fire
occurrence and fire size, we modeled random effects (ai) for farm i

in community k drawn from a normal distribution with parameters
mk and tk determined by the community in which they were
located. These parameters were in turn derived from a normal
distribution whose mean (mcom) and precision (tcom) were
estimated as hyperparameters. Including random effects for village
helps account for the fact that a farm may be more likely to burn
simply because it is located in a more fire-prone village.

Models were specified using uninformative priors. Posterior
distributions for parameters were estimated using Markov Chain
Monte Carlo (MCMC) sampling. Models were run for 3 chains and
10,000 iterations burn-in, and then for 10,000 total iterations.
Convergence was assessed visually by examining chains and the
shapes of the posterior distributions of parameters and using
the Gelman and Rubin Diagnostics (Brooks and Gelman, 1998).
If the 95% credible interval of the posterior distribution of a
parameter did not overlap with 0, that parameter was determined
to be statistically significant. The estimated parameters were used
to calculate predicted values of fire probability and fire size for
each landholding; the predictions were plotted against observa-
tions to assess model predictive ability (Figs. A.1 and A.2). All
statistical analyses were conducted in R (R Core Team, 2012) using
the rjags interface (Plummer, 2003).

3. Results

3.1. Fire occurrence model

The model of fire occurrence was able to reproduce the
patterns observed in the data (Fig. A.1). Main effects for all
predictors were significantly different from zero (Fig. 2). Consis-
tent with expectations, greater drought intensity (lower SPI
values) was associated with greater fire occurrence (Fig. 2), and
the magnitude of the effect of drought intensity on fire probability
stood out as far larger than the effects of any other predictors; it
was more than double the magnitude of the next largest effect
(farm size). The probability of fire increased with the percent of
the farm in fallow and to a slightly lesser extent, in pasture. The
presence of a landowner on a farm decreased the probability of
fire, and fire was less likely on farms located in villages with a
higher percentage of landowners residing in that village. The
predicted probability of fire was higher on farms located in
villages with a larger percent in fallow, but was reduced in villages
with a large proportion of pasture.

There were significant interactions between the index of
drought intensity and both percent fallow on the farm and
village-scale landowner absenteeism. The magnitude of the effect
of percent fallow on a farm on the probability of fire was higher in
drought years (Fig. 3a). In wet years, probability of fire increases
only slightly as the percent of a farm in fallow increases. In dry
years, the overall probability of fire is much higher, but also
increases more quickly as the percent fallow on a farm increases.
There was a positive interaction between drought intensity and the
percent of landowners in a village who live locally. In dry years,
farms located in villages with high levels of landowner absentee-
ism were more likely to burn than those in villages where more
landowners are present (Fig. 3b).



Fig. 3. (a) Predictions for probability of fire as a function of percent farm in fallow. When SPI is high (wet year), fire probability is low regardless. In dry years, fire probability is

higher overall, but increases with percent fallow on a parcel. (b) Predicted probability of fire as a function of SPI. Blue line depicts predictions for village with a high percent of

landowners residing in the village (90th percentile) while red line is for villages with a low percentage of farmers residing in village (10th percentile). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of the article.)
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3.2. Fire size model

Results from the model to predict fire size (the total area of fires
overlapping with an individual farm in a given year) were
qualitatively different from the results from the fire occurrence
model (Fig. 4). While the model of fire size accurately reproduced
the trend in the observed data, the model under-predicted the size
of large fires (Fig. A.2). SPI was negatively correlated with fire size,
meaning that fires are larger in drier years. However, unlike the
model of fire occurrence, here there were other predictors that had
effects of almost the same magnitude as that SPI. Several of the
village level predictors had effects comparable in magnitude to
that of SPI, with larger fires associated with farms within villages
with a high percent cover of fallow and in villages with fewer
landowners residing on site. The only farm-level predictor that was
Fig. 4. Standardized regression coefficients from the model to predict fire size.
significant was percent of farm in fallow, with farms with a large
percent in fallow being associated with larger fires.

As in the previous model, there were several significant
interactions between SPI and the other predictors, but the nature
of these interactions was different. The negative interaction term
between percent of a village in fallow and SPI means that farms
located in villages with a high percent of fallow land cover tend to
be associated with large fires regardless of SPI, whereas when there
is small area of fallow in a village, climate is more important in
determining fire size (Fig. 5). In other words, the relative effect of
SPI is greater in villages with less percent cover of fallow.
Fig. 5. Predicted fire size as a function of the proportion of a village in fallow. Red

line shows predictions for a dry year (10th percentile SPI) and blue line shows

predictions for a wet year (90th percentile SPI). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of the article.)
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4. Discussion

We combined data from meteorological stations, remote
sensing, and landowner surveys to examine the relative impor-
tance of and interactions between multiple drivers of fire activity
in the Peruvian Amazon. As expected, drought intensity is an
important predictor of fire occurrence and fire size, although its
relative importance compared to other significant predictors is far
greater in the model of fire occurrence than in that of fire size. We
also found that the relative importance of predictors varies
depending on the scale at which they are measured: in the model
of fire occurrence, the predictors at both household and village
scales are important, but in the model of fire size, the importance of
village scale predictors outweighs that of the household scale
predictors. These differences across scales and across metrics of
fire activity have implications for understanding future fire
regimes and for fire prevention and mitigation activities.

4.1. Relative importance of climate, patterns of landowner residency,

and land cover for predicting fire activity

Other studies have shown that because much of the Amazon
is so wet, climate exerts a strong control on fire (Alencar et al.,
2011, 2004; Fernandes et al., 2011; Nepstad et al., 2004).
Because almost all ignitions are caused by human activities, at
some level fire occurrence is limited by whether or not there are
people present and whether or not they are using fire. However,
in dry years, fires are more likely to escape, spread further and
burn a larger area, which increases the likelihood that any given
farm is burned by a fire large enough to be detected by satellites.
While variables associated with human activities were impor-
tant in our models, we found that climate was the most
important driver of fire occurrence. In the model of fire
occurrence, the effect of drought intensity overwhelms the
effects of other predictors, with an effect about twice the
magnitude of any others. Fire is more common in the drier and
more seasonal eastern Amazon than it is in the more humid
western Amazon (DeFries et al., 2008; van der Werf et al., 2009),
so the constraint of climate on fire occurrence may be
particularly strong in Ucayali and other regions of western
Amazonia. This is consistent with the varying constraints
hypothesis, which implies that in wet regions fire should be
constrained by fuel moisture conditions (Krawchuk and Moritz,
2011). If it is too wet, agricultural fires will rarely escape control,
regardless of land cover type, landowner place of residence, or
management practices. Climate also exerts a strong influence on
fire size, with big fires more likely in dry years.

However, within dry years, there is still considerable heteroge-
neity in spatial patterns of fire, driven by factors other than
climate. Our results were consistent with other studies that have
examined the role of human activities in driving patterns of fire in
the Amazon. While conventional wisdom has said that more
people and more land preparation mean more fires in the Amazon,
recent findings, including those presented here, indicate that this
relationship is more complex than previously thought. In the
Brazilian Amazon, fire occurrence has increased in the majority of
the areas where deforestation rates have declined (Aragão and
Shimabukuro, 2010). Morton et al. (2013) found high levels of
understory fire activity in Mato Grosso, even as deforestation rates
were some of the lowest in recent decades. Uriarte et al. (2012)
found that fire activity in the Peruvian Amazon was more extensive
in provinces with high levels of rural-to-urban migration and in
villages with high levels of landowner absenteeism. Our results
extend this finding to a finer spatial scale, demonstrating that fine
scale analysis can help explain the mechanism behind the
observed broad scale trends.
Land cover type was significantly related to fire activity in both
the fire occurrence and size models, although the role of land
cover was weaker than that of climate in the model predicting fire
occurrence. Although not all measures of land cover were
significant in both models, fallow and pasture were both
correlated with fire activity. There are multiple plausible
mechanisms for the relationship between land cover and fire
activity, which could be biophysical or related to human activities
and decisions. The biophysical explanations relate to differences
in flammability: fallow land could be more flammable because
there are more fuels that can dry out relatively quickly compared
to forest (Gutiérrez-Vélez et al., 2014). Alternatively, the reason
fallow land is more prone to fire could be because people
frequently burn fallow land for various management purposes.
Fire is a common tool for land preparation and agricultural
management in the Amazon (Bowman et al., 2008; Carmenta et
al., 2013), and so the association between fallow land and fire
could represent people’s uses of fire for land preparation or
pasture management. However, because of the minimum fire size
necessary for satellite detection, the fires mapped for this research
likely represent escaped fires, suggesting that factors that affect
the likelihood of fire escaping, i.e. biophysical factors not directly
related to ignitions, are responsible for this association (Gutiér-
rez-Vélez et al., 2014).

There were significant interaction terms in both models.
These interactions illustrate that the nature of the relationships
between local-scale variables and fire can change depending on
the prevailing climate conditions within a year. For example,
percent of farm in fallow has little effect on the probability of fire
in wet years, but once it starts getting drier, the amount of the
farm in fallow can greatly increase the probability of fire (Fig. 3a).
Gutiérrez-Vélez et al. (2014) found that the relationship
between land cover types and fire on the pixel scale covaried
with climate. They found a particularly strong interaction
between secondary forest and fire activity: the direction of
the relationship between secondary forest and fire occurrence
switches from a negative correlation during wet years to a
positive correlation during dry years. In the Brazilian Amazon,
human activity is key for determining seasonal and annual
trends in fire occurrence, but the effect of drought can
overwhelm that of anthropogenic activities, leading to high-
fire years when land conversion is low (Aragao et al., 2008). Our
results are consistent with these findings, which demonstrate a
strong interaction between the effects of human activities and
the effects of climate.

4.2. Importance of conditions within vs. around a farm

Fire can occur on a farm in two ways: the ignition can occur in
the landholding, or it can spread onto a property from a fire ignited
in the area surrounding it. For that reason, we included land cover
and landowner residency predictors calculated at both the
individual landholding and the village scale, to compare to what
degree landscape context (i.e. characteristics of the village in which
farms are located) versus characteristics of a property itself are
important.

The importance of variables at the village and individual
landholding scale varied depending on which metric of fire
occurrence was being considered. In the fire occurrence model, the
parameters for variables measured at the individual farm and
village scale were approximately of the same magnitude. On the
other hand, in the model for predicting fire size, the effects of
variables at the village scale (percent of landowners living in
village and percent of village in fallow) were much larger than
those at the individual farm scale, of which only one predictor,
percent of property in fallow, is significant. This suggests that
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efforts to control fire size should target communities, perhaps
working to build fire control and firefighting capacity or working to
manage fallows in a way that would reduce flammability, in
addition to targeting management practices of individual house-
holds. This also corroborates the hypothesis that large fires are
related to a limited capacity to control fire (Uriarte et al., 2012), as
fire control can be a community effort (Bowman et al., 2008;
Brondizio and Moran, 2008).

4.3. Drivers of fire occurrence vs. fire size

As expected, there were differences between the models
predicting fire occurrence and fire size (total area of fires
overlapping a farm), mostly in terms of differences in the
relative magnitudes of the coefficients of the various
predictors. Fewer of the predictors found to be significant in
the model of fire occurrence were significant in the model of fire
size. This could relate to the fact that the model of fire size in
general did a poorer job predicting the observed data (Fig. A.2)
and suggests that there may be factors important for
predicting the size of fires overlapping with a farm that we
did not measure or include in our model, such as landscape
configuration or fuel connectivity on or around a farm.
Gutiérrez-Vélez et al. (2014) found that the degree of agg-
regation and patchiness of some land cover types affected fire
spread, i.e. the number of pixels burned around a focal pixel.
Including such a measure of the degree of connectivity or
fragmentation of particular fuel types might have improved our
predictions of fire size. A lower predictability of fire size might
also be influenced by limitations in fire detection given the
relatively coarse resolution of the satellite source (250 m pixel
size) used for burn scar mapping, the absence of data on the time
of burning, and possible errors in estimation of fire size, as
discussed in Section 2.3.

One key difference between the models of fire occurrence
versus fire size was the difference in the strength of the effect of
climate relative to the strength of the other significant predictors.
Climate is an important predictor of fire occurrence and size, but its
influence relative to other predictors is smaller in the model of fire
size. Fires are bigger in dry years, but several other predictors also
have quite large contributions; in particular, larger fires are
associated with landholdings located in villages with high levels of
landowner absenteeism and in villages with a high percent cover in
fallow.

The significant interaction terms in the model predicting fire
size also illustrate that the dynamics in models of fire size are
different than in those for fire occurrence (Fig. 5). Once a fire is
ignited, it is likely to be large in villages with a high percent cover
in fallow regardless of a year’s climate conditions. On the other
hand, if there is small area of fallow, predicted fire size is much
smaller overall, but is significantly larger in dry years than in wet
years. In this case, local conditions are more important in
determining fire size, with big fires happening when village
conditions are favorable with comparatively less influence of
climate conditions. This is in contrast to the dynamics observed in
models predicting fire probability, where only in dry years do
conditions such as landowner place of residence and land cover
type elevate the probability of fire.

These results suggest that studies should consider multiple
aspects of fire regimes to gain full understanding of the relative
importance of and interactions between different drivers of fire
activity. In our study area, conclusions about which fire prevention
and mitigation activities are most likely to be effective could vary
depending on the model being considered. The model of fire
occurrence suggests that management to lower the probability of
fire should mainly focus on responding to anticipated climate
conditions. Fire prevention interventions to this end include early
warning systems meant to inform farmers of extreme weather
conditions that create high risk of escaped fires (Goldammer,
1998), coupled with education about how drought affects the risk
of escaped fire and under what conditions it is safer to burn.
However, other variables, which could imply different manage-
ment responses, become equally relevant when fire size is
considered. For example, targeting fire-fighting efforts and
building community fire-control capacity in areas with high levels
of absenteeism, or building fire breaks in areas with extensive
fallow land may also be effective at minimizing the occurrence,
size and effects of escaped fires. Area burned, not just fire
occurrence, is important for emissions and property loss.
Management interventions could usefully focus on minimizing
fire size and not just preventing people from using fire, especially
because fire is an inexpensive and effective management tool that
has been in use for millennia (Bowman et al., 2008; Carmenta et al.,
2013).

4.4. Future research

By simultaneously using data on climate variability,
landowner residence and land cover type to model two
different metrics of fire activity, this study provides a deepened
understanding of the relative importance and interactions
between the multi-scalar drivers of fire activity. Yet we still
require a further understanding of the sources, numbers, and
spatio-temporal patterns of ignitions. Fires cannot occur
without ignitions, and all ignitions in this region come
from human activities. Changing the spatial and temporal
patterns of ignitions could have a major effect on patterns of
fire activity. While some of the predictors considered in
this analysis may reflect differences in ignitions–for exa-
mple, ignitions might be more common in pasture as it is
frequently burned for management – a more direct examina-
tion of the sources and patterns of ignitions would help our
understanding of the degree to which ignitions are limiting in
the region.

Additionally, fire activity may have positive feedbacks: a place
that burns once may be more likely to burn again in the future
because of fire-induced changes to fuel structure. This phenome-
non has been observed elsewhere in the Amazon (Nepstad et al.,
2001); however, it has not been investigated in this region.
Alternatively, in places that burn frequently, there may be a
negative fire feedback as fine fuels may become slower to
accumulate (Balch et al., 2008). Analyses of repeat burns could
provide insights into whether or not this phenomenon occurs in
the wetter Peruvian Amazon as well, which would have implica-
tions for our understanding of fire regimes in the region and for fire
management.

5. Conclusions

Climate variability and change, land use change, and other
shifts in human activity and demographics are expected to alter
future fire regimes around the world (Bowman et al., 2011;
Krawchuk et al., 2009), and are projected to lead to increases in
future fire activity in the Amazon (Chen et al., 2011; Silvestrini et
al., 2011). Better understanding of the drivers of fine scale patterns
of fire activity provides insight into appropriate actions to
minimize the risk of escaped fires and decrease the risk of
property loss to fire in these landscapes (Carmenta et al., 2013;
Sorrensen, 2009). By focusing on the individual farm scale, we were
able to combine climate and land cover data, along with data on
patterns of landowner occupation to better elucidate how these
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variables affect patterns of fire on a relatively fine scale. This study
adds to the growing literature demonstrating that fire in the wet
tropics is not simply a byproduct of deforestation and may
continue to spread even as deforestation declines (Aragão and
Shimabukuro, 2010; Morton et al., 2013; Uriarte et al., 2012).
Additionally, the differences we found between the models of
fire occurrence and fire size demonstrate that the metric of fire
activity being considered can influence results, and highlight
the importance of considering multiple aspects of fire regimes. A
full understanding of drivers of fire, their relative importance,
and their interactions can help to identify the most effective
interventions to prevent and mitigate escaped fires in the
tropics.
Fig. A.1. Plot of proportion of parcels with predicted probability of fire that actually

burned. The red dashed line indicates the expected value for a model that perfect

predicts probability of fire. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)

Table A.1
Correlation matrix between predictors used in analyses.

SPI Fallow

(farm)

Pasture

(farm)

Lan

pre

SPI 1

Fallow (farm) 0.043 1

Pasture (farm) 0.072 �0.098 1

Land owner present? 0.002 0.090 0.034 1

Fallow (village) 0.031 0.278 �0.105 0

Pasture (village) �0.002 0.053 0.386 �0

% Landowners living in village 0.019 0.170 0.017 0

Farm area �0.010 �0.072 �0.042 �0
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Appendix A
Fig. A.2. Observed fire size vs. predicted fire size. Our model underpredicts large

fires.

d owner

sent?

Fallow

(village)

Pasture

(village)

% Landowners

living in village

Farm area

.081 1
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