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Abstract

Many countries have made major commitments to carbon sequestration through reforestation
under the Paris Climate Agreement, and recent studies have illustrated the potential for large
amounts of carbon sequestration in tropical second-growth forests. However, carbon gains in
second-growth forests are threatened by non-permanence, i.e. release of carbon into the
atmosphere from clearing or disturbance. The benefits of second-growth forests require long-
term persistence on the landscape, but estimates of carbon potential rarely consider the spatio-
temporal landscape dynamics of second-growth forests. In this study, we used remotely sensed
imagery from a landscape in the Peruvian Amazon to examine patterns of second-growth forest
regrowth and permanence over 28 years (1985-2013). By 2013, 44% of all forest cover in the
study area was second growth and more than 50% of second-growth forest pixels were less than
5 years old. We modeled probabilities of forest regrowth and clearing as a function of landscape
factors. The amount of neighboring forest and variables related to pixel position (i.e. distance to
edge) were important for predicting both clearing and regrowth. Forest age was the strongest
predictor of clearing probability and suggests a threshold response of clearing probability to age.
Finally, we simulated future trajectories of carbon sequestration using the parameters from our
models. We compared this with the amount of biomass that would accumulate under the
assumption of second-growth permanence. Estimates differed by 900 000 tonnes, equivalent to
over 80% of Peru’s commitment to carbon sequestration through ‘community reforestation’
under the Paris Agreement. Though the study area has more than 40 000 hectares of second-
growth forest, only a small proportion is likely to accumulate significant carbon. Instead, cycles
between forest and non-forest are common. Our results illustrate the importance of considering
landscape dynamics when assessing the carbon sequestration potential of second-growth forests.

1. Introduction

Recent studies have highlighted the potential for
carbon mitigation from rapid biomass recovery in
regrowing tropical forests (Poorter et al 2016). In Latin
America alone, second-growth forests could offset 21
years of the region’s emissions from fossil fuels and
other industrial processes (Chazdon et al 2016).

Carbon sequestration through reforestation (includ-
ing active restoration and natural regeneration)
comprises a major contribution in many countries’
Intended Nationally Determined Contributions
(iNDCs) to emissions reductions in the UN Frame-
work Convention on Climate Change (UNFCCC).
However, carbon sequestration in forests can be
temporary, since forests are always at risk of being

© 2017 IOP Publishing Ltd
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cleared or otherwise disturbed. Though the UNFCCC
recognizes the risk of non-permanence and reversal of
carbon gains from reforestation (UNFCCC 2014),
estimates of potential benefits from second-growth
forests typically consider just a snapshot of a
landscape, without explicit analysis of the spatio-
temporal dynamics of second-growth forest regrowth
and clearing.

The carbon benefits and other services associated
with tropical second-growth forests require the forests
persist long-term (Chazdon et al 2009). Accumulating
biomass equivalent to 90% that of old-growth forest
takes a median time of 66 years (Poorter et al 2016).
Long-term persistence of second-growth forest allows
long-lived species and old-growth taxa to regenerate,
enhancing long-term carbon storage and conservation
value (Liebsch et al 2008, Chazdon et al 2009).
Therefore, an estimate of the amount of second-
growth forest in a region or the amount of land
available for reforestation is not enough to quantify
these benefits. Predictions of the likelihood of forest
regrowth and persistence and an understanding of
their drivers are necessary as well.

Drivers of forest regrowth range from global
macroeconomic conditions to local management
strategies, and vary across scales. Commodity prices,
demand for agricultural and forest products, and other
global macroeconomic drivers influence rates of
deforestation and regrowth (Aide et al 2013, Lambin
and Meyfroidt 2011, Grau and Aide 2008). At national
scales, forest transition theory describes the shift from
net deforestation to net increase in forest cover that
has occurred in many countries as their economies
have developed (Mather 1992). Mechanisms for forest
transitions include agricultural intensification and
adjustment to land quality, shortages of forest
products, or demographic shifts such as rural-to-
urban migration and associated remittances (Mather
1992, Meyfroidt and Lambin 2011, Hecht et al 2006).
However, forest transitions can reverse (Jeon et al
2014). At sub-national scales, forest regrowth tends to
occur first in regions with marginal suitability for
agriculture (Rudel et al 2000, Asner et al 2009, Yackulic
et al2011). Within landscapes, forest regrowth is more
likely far from roads (Rudel et al 2002) or closer to
forest (Crk et al 2009, Sloan et al 2016). Finally, forest
regrowth may be intertwined in local management
strategies, particularly shifting cultivation (Rudel et al
2002), or may be influenced by land-tenure status
(Robinson et al 2011).

Far less research has assessed if, when, and why
second-growth forests persist. Most second-growth
forests are not under formal protection, and rates of
clearing of second-growth forest tend to be higher
than old-growth forest (Heinimann et al 2007,
Gutiérrez-Vélez et al 2011), though the probability
of clearing tends to decline with increasing forest age
(Helmer et al 2008, Etter et al 2005). Because regrowth
tends to occur along forest margins (Asner et al 2009,
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Sloan et al 2016) and in small fragments (Helmer
2000), second-growth forests are highly vulnerable to
fire (Alencar et al 2004, Armenteras et al 2013) and
wind disturbance (Laurance and Curran 2008,
Schwartz et al in review). Regrowth forests associated
with shifting cultivation practices are unlikely to
persist longer than the length of the fallow period,
often as few as 5-7 years (Coomes et al 2000, Pinedo-
Vasquez et al 1992). Furthermore, many drivers of
regrowth are transitory. For example, commodity
prices fluctuate and economic downturns affect the
amount of remittances arriving in rural areas (Tilly
2011). These and other changes can lead to
deforestation and shifts in land-use practices, affecting
the likelihood that second-growth forests persist and
influencing estimates of the carbon sequestration
potential of second-growth forests.

In this study, we used remotely sensed imagery to
examine annual patterns of second-growth forest
development and permanence over 28 years (1985-
—2013) in a western Amazonian landscape. We
investigate temporal variation in the amount of
second-growth forest, and rates of forest regrowth
and clearing. We also assess spatial variation in where
second-growth forest develops and persists within the
study landscape. Specifically, we ask:

1. How has the amount of second-growth forest in
the study area changed over the last three decades?

2. What landscape factors are associated with forest
regrowth?

3. What landscape factors are associated with clear-
ing of second-growth forest?

4. How do estimates of carbon sequestration poten-
tial vary under different assumptions about
second-growth forest persistence?

Better understanding the dynamics associated with
second-growth forest development and persistence
will allow more realistic estimation of the carbon
potential of second-growth forest, and will allow
managers interested in promoting forest regrowth to
target efforts most effectively.

2. Materials and methods

2.1. Study area

This research focuses on an area of 215800 ha near
Pucallpa, the capital of the Ucayali region of Peru
(figure 1). Elevation in the study area ranges from
136-180 m a.s.l, and slopes are gentle with 97.5% of
the study area at a slope less than 9 degrees, and the
maximum slope only 15 degrees. The landscape is a
mosaic of forest (old-growth and naturally regenerat-
ing, plus a small number of forest plantations)
surrounded by pastures, oil palm plantations, and
smallholder farms. Pucallpa is connected to Lima, the
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Figure 1. Location of study area in Peru, and location/extent of second-growth forest in study area in 2013.

capital city, by road, and has been an important
transport center and a hotspot for in-migration,
settlement, and land conversion since the 1960s.
Recently, rural-to-urban migration has increased
(Instituto Nacional Estadistica e Informatica 2009),
which has been associated with cessation of cultivation
on land owned by absentee landowners and an
increase in fire activity in areas with high levels of
landowner absenteeism (Uriarte et al 2012, Schwartz
et al 2015). More recently, there has also been
expansion of more intensive commodity crops,
especially oil palm and cacao, in response to
government policies incentivizing their cultivation,
often into un-protected second-growth forest areas
(Gutiérrez-Vélez et al 2011). Shifting cultivation is still
a common form of smallholder production, with the
typical fallow time being around 4-7 years (Pinedo-
Vasquez et al 1992). The study area is in the midst of a
transition from frontier clearing to small-scale farming
and intensive agriculture, a common dynamic in some
tropical landscapes (DeFries et al 2004). This region
thus provides a useful example for considering
second-growth forest dynamics in a changing tropical
landscape.

2.2. Data collection
We developed a 28 year land cover time series with nearly
annual Landsat data spanning from 1985-2013 (table
S1). The classification differentiates between old-
growth/high-biomass forest, young or low-biomass
forest, pasture, fallow, oil palm and other land-cover
types with an overall accuracy of 93%. Methods for the
classification are detailed in Gutiérrez-Vélez and
DeFries (2013) and in the supporting information.
Second-growth forest was defined as woody
vegetation growing on land that was previously
classified as non-forest at some point since 1985.
Because we had nearly-annual land-cover data, forest

age could be determined with high precision: second-
growth forest age was determined as the number of
years since a non-forest land cover type was replaced
by forest. We identified regrowth events as a transition
from non-forest to forest. To be classified as second-
growth forest, we required that a pixel must have been
classified as non-forest for at least two consecutive
years prior, and that the new forest must have persisted
for at least two consecutive years, to minimize the
influence of random noise or classification error on
our results.

We also used the land cover layers to generate a
number of predictor variables (table 1). Predictor
variables were related to either pixel position on the
landscape (distance to roads, rivers, and settlements,
distance to forest edge, forest patch size, and the
amount of forest in the neighborhood around the
pixel) or pixel history (forest age, number of years
cleared before regrowth occurred, whether or not the
pixel was ever classified as forest, table 1). Because the
pixel size is 30 m, we cannot detect small forest patches
less than 0.09 hectares. This limits the precision of the
measurements of distance to forest edge, forest patch
size, and the proportion of neighboring forests.

To develop a relationship between forest biomass
and forest age, we collected data on above ground
biomassin 30 field plots (Schwartz et alin revision, see SI
available at stacks.iop.org/ERL/12/074023/mmedia).
We identified the age of each plot using the land cover
time series. Plots that were classified as forest for the
entire study period were assigned an age of 30 years,
which is alower bound. We fit a linear model predicting
biomass from log-transformed age, as the rate of
biomass accumulation tends to slow with age (Poorter
et al 2016, figure S1). The parameters from this model
and their 95% confidence intervals were used to estimate
biomass accumulated in second-growth forest pixels
and associated uncertainty.
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Table 1. Predictor variable descriptions, and results from the mixed effects models predicting forest regrowth in cleared areas and
clearing of second-growth forest. n.a. indicates parameter not included in model, as some parameters (e.g. patch size, distance to
edge) were relevant for only one of the models. Predictors were standardized to facilitate parameter comparison. Standard error values
are in parentheses. Parameter significance: **p < 0.001, *p < 0.05, n.s. not significant.

R Description Regrowth Clearing
Rzmarginal 0.31 0.22

R conditional 0.64 0.35
Predictor Model parameters

Distance to road
not available.

Pixel distance to nearest road. Constant over time because historic roads maps were ~ 0.28 —0.05

(0.05)***  (0.01)"

Distance to river Pixel distance to nearest river or stream. Constant over time. 0.01™* —0.02
0.01)™
Distance to settlement  Pixel distance to nearest settlement. Constant over time because historic data on the ~ —0.18 —-0.01™*
existence or location of settlements unavailable. (0.04)™*
Proportion of forest in  Amount of forest (old growth and second growth) in a 30 X 30 pixel window around 1.56 —0.11
neighborhood focal pixel (.04)™™  (0.01)™*
Ever forest Binary variable variable for whether the pixel was ever previously classified as forest ~ 0.50 na.
before time t. (.10)***
Distance to edge For forest pixels, the distance to the nearest forest edge. n.a. —0.60
(0.02)"*
Clear length Number of consecutive years that pixel was classified as non-forest before regrowth n.a. 0.3
event. (0.01)**
Patch size For forest pixels, the size of the forest patch in which the pixel was located. n.a. 0.15
(0.01)™"
Age Number of consecutive years classified as forest, up to and including present year n.a. 2.48
(log-transformed). (0.04)™**
Age’ Quadratic log-transformed age. n.a. —2.17
(0.04)™*

2.3. Statistical analysis

2.3.1. Modeling forest regeneration

Prior studies have assessed the factors that drive forest
regrowth at patch (Sloan et al 2016) and landscape
scales (Carreiras et al 2014). We analyzed regrowth and
clearing at the level of individual pixels, in order to
understand fine-scale variation in drivers of regrowth
and clearing, and because regrowth and clearing in the
study area rarely happen at the scale of entire forest
patches but rather occur at the scale of hectares or
smaller. To assess the factors associated with forest
regrowth, we first sampled pixels every 600 m from a
regular grid overlaid across the study area; this
sampling scheme facilitates computation and avoids
spatial autocorrelation. Pixels classified as non-forest
were included in analyses, with the response variable
determined as whether or not that pixel transitioned
into forest (i.e. regrew) in the subsequent year.
Sampled pixels that were always classified as forest
during the 28 year time-series were not included in
analysis. Ultimately, a total of 54 718 pixel-years were
included in analysis, from 4223 unique pixels. We used
the R package ‘lme4’ (Bates et al 2015) to fit
generalized linear mixed effects models to assess what
landscape characteristics best predicted forest re-
growth. Fixed effects covariates are listed in table 1,
and pixel ID and year were both included as random
effects to account for year-to-year variation and
repeated measures of individual pixels. Predictors were

scaled by subtracting the mean and dividing by the
standard deviation to facilitate model interpretation
(Gelman and Hill 2006). To ensure that spatial
autocorrelation did not bias our results, we tested for
spatial autocorrelation in the residuals by calculating
Moran’s I To assess goodness of fit, we calculated
marginal and conditional R* values using the R
package MuMIn, and compared predicted probability
of regrowth with the proportion of pixels that did
regrow (figure S2).

2.3.2. Modeling second-growth forest permanence

To analyze the degree to which second-growth forests
persist and the factors associated with persistence, we
sampled one pixel from every new second-growth
forest patch greater than 1 ha for all years. For each
sampled pixel, we tracked the fate of the pixel (whether
it persisted as second-growth forest, or was cleared) for
each year until the pixel was classified as non-forest, or
until the end of the study period, whichever came first.
This resulted in a total of 142 487 pixel-years included
in analysis, from 19 805 unique pixels. We fit generalized
linear mixed effects models including random effects for
year and pixel ID, to account for repeated measures of
individual pixels, and scaled predictors as described
above. Predictors included variables related to pixel
position and pixel history (table 1). We tested for spatial
autocorrelation and assessed goodness of fit using the
same procedures described above.
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potential vary under different assumptions of second-
growth forest persistence, we simulated future forest
regrowth trajectories from the end of the study period
until 2050. For each annual time step from 2013 to
2050, we recalculated predictor variables. Distance to
road, river, and settlement were assumed to remain
constant over time for pixels, because projections for
how the location or number of these features will
change over time are not available. Then, we calculated
the probability of regrowth (for non-forest cells) or the
probability of clearing (for the second-growth forest
cells) using the model parameters from the models
described above. Because we were interested specifi-
cally in dynamics surrounding regrowth forest, we
assumed all ‘old-growth’ pixels (i.e. pixels that were
never detected as a non-forest land cover class)
remained old growth forest throughout the simula-
tion. However, we included old-growth forest pixels in
our simulated landscapes so they would be factored in
as forest for variables like distance to forest edge and
proportion of neighborhood made up of forest. To
calculate total second-growth forest biomass over
time, we applied the parameters from the model of
biomass vs. forest age to all second-growth forest pixels
and summed across the landscape (SI). We compared
these calculations to the amount of biomass that
would accumulate on the landscape if the regrowth
forest present in the landscape at the end of the
observation period (2013) was assumed to persist and
continue to accumulate biomass until 2050.

3. Results

3.1. Forest regrowth and clearing, 1985-2013
From 1985-2013, total forest cover decreased from
162725 hectares to 97455 ha (figure 2). By 2013,
42756 hectares of second-growth forest were present
in the study area, while only 54 698 ha of old growth
remained (figure 2). Most of this forest was young,
with 57.4% of second-growth forest less than 5 years of
age, and only 4.3% over 20 years of age (figure S4).
The model of forest regrowth reproduced the
patterns observed in the data, but slightly over-

predicted forest regrowth (R*=0.64, table 1, figure
§2). Spatial autocorrelation in the model residuals was
low (Moran’s I < 0.001, p < 0.05). Both pixel position
and pixel history were important for predicting forest
regrowth (table 1). The proportion of neighboring
forest around a focal pixel was the most important
predictor of forest regrowth (table 1), suggesting that
forest cover is contagious. Distance to nearest road and
to nearest settlement were also important predictors of
the probability of regrowth, with regrowth more likely
to occur further from roads, but closer to settlements.
Whether a pixel had previously been classified as forest
was the second most important predictor of regrowth
probability, with probability of regrowth higher for
pixels that were previously classified as forest.

The model of second-growth forest clearing
somewhat under-predicted clearing of second-growth
forest (figure S3), but explained 35% of the variation
in observed clearing (table 1). Spatial autocorrelation
in residuals was low (Moran’s I=0.02, p < 0.05).
Again, both pixel position and pixel history were
significant predictors of the likelihood of clearing, but
the relative importance of predictors differed from the
model of regrowth. Age was the strongest predictor of
clearing, with the probability of clearing first increas-
ing with age, until peaking approximately at 5 years of
age, and then declining steeply (figure 3). The number
of years pixels remained cleared before regrowing was
also an important predictor of clearing likelihood,
with pixels that had been cleared for shorter periods of
time more likely to persist as second-growth forest. As
expected, second-growth forest pixels farther from
forest edges were more likely to persist, but counter to
expectations, pixels in larger patches were more likely
to be cleared. Pixels far from roads and far from rivers
were less likely to be cleared, but these effects were
weak relative to other significant predictors.

3.2. Forest regrowth trajectories and biomass
accumulation

Simulations of future forest regrowth trajectories
predicted a further increase in the total cover of
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second-growth forest, from 42 756 hectares in 2013 to
50 636 hectares in 2050 (figure 2). However, 52% of
second-growth forest in 2050 was still under 20 years
old in our simulations, and only 35% was over 30
(figure 4). Our simulations predicted that by 2050,
total carbon stored in second-growth forest in the
study area was 2.724 million tonnes (CI=0.300,
5.536, figure 4). Under the assumption that all second-
growth forest on the landscape in 2013 persists and
continues to age and accumulate carbon, but no new
forest emerges, 3.649 (95% CI=10.619, 6.614) million
tonnes C are stored in the second-growth forest by
2050 (figure 5).

4, Discussion

Reforestation is frequently cited as a promising
strategy for removing CO, from the atmosphere
(van Vuuren et al 2013, Rhodes and Keith 2008),
particularly in the humid tropics where second-growth
forest can accumulate as much as 225 Mg biomass
(113 Mg carbon) per hectare in just 20 years (Poorter
et al 2016). Furthermore, forest cover is increasing in
many countries as forest transitions take place,
offering a cost-effective carbon mitigation strategy
(Aide et al 2013, Meyfroidt et al 2010, Rudel et al
2005). Although reforestation is an attractive option, it
is also risky: carbon sequestration from reforestation
can be rapidly reversed because forests are inherently
vulnerable to both natural and anthropogenic distur-
bance (Fuss et al 2014). Our study highlights the role
that land-use and land-cover change play in influenc-

ing carbon sequestration potential of reforestation in
tropical landscapes.

Peru estimates that community-based reforesta-
tion could provide up to 1.069 million tonnes CO,
equivalent in emissions reductions (Peru 2015). We
found that within our relatively small study area (0.16
of the area of Peru), estimates of carbon potential
differed by nearly 925 000 tonnes of carbon depending
on assumptions made about land-use change and
disturbance. Similarly, Chazdon et al (2016) found
that the degree of second-growth forest permanence
could greatly reduce estimates of carbon sequestration
across Latin America; for example, they estimated that
60% persistence would result in only 1.34 Pg C
sequestration in Latin America versus 8.48 Pg under
100% persistence. Though there are more than 40 000
hectares of second-growth forest present in the study
landscape, only a small proportion of that forest is
likely to persist long enough to accumulate significant
amounts of carbon. Instead, rapid cycles between
forest and non-forest land-cover types are the norm.
In a study in the Brazilian Amazon, Carreiras et al
(2017 2014) found that most second-growth forest is
very young, though some areas appear to have higher
rates of permanence. As in our study, multiple clearing
cycles and regrowth events were also common in their
study landscapes (Carreiras et al 2014). Managing
tropical landscapes for climate mitigation will require
a deeper understanding of the factors that drive these
dynamics within sites, and of the factors that explain
variation in permanence across sites.

Regrowth and clearing varied considerably both
temporally and spatially. Rates of regrowth and
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clearing strongly fluctuated from year to year (figure 4).
Large-scale processes, such as regional variation in
climate and ecological conditions, land-use policies,
and demographics, likely drive temporal fluctuations
in rates of clearing and regrowth. Forest disturbance
linked with climate conditions, specifically fire activity,
could be an important driver of observed dynamics.
The highest rate of clearing occurred in 2005,
coincident with a severe drought and the highest
levels of fire activity observed in the study area (figure
S4, Fernandes et al 2011). Fire is commonly used for
land management, and during dry years it frequently
burns second-growth forest and can cause conversion
to non-forest (Gutiérrez-Velez et al 2014).

Changes in land-use policies may also underlie
temporal fluctuations in regrowth and clearing. For
example, the Peruvian government has promoted oil
palm cultivation in Ucayali since 1991 (Potter 2015),
and oil palm is often planted in second-growth forest
(Gutiérrez-Vélez et al 2011). Up to 42% of smallholder
oil palm plantations in Ucayali have been abandoned
due to crop disease and poor road access (Potter 2015),
and abandoned oil palm plantations may convert to
second-growth forest. Past rural development projects,
such as those promoting pepper plantations, sugar
cane, and rice may also have influenced fluctuations in
second-growth forest cover and dynamics. However,
land-use practices in the study area are particularly
diverse and heterogeneous (Fujisaka and White 1998),
so it may be difficult to distinguish the role of any
particular policy or practice at the scale of the entire
landscape.

Demographic changes and associated shifts in
demand for forest products also influence forest
dynamics in the study area. Pucallpa, the city adjacent
to our study area, has rapidly grown since the 1960s
(Padoch et al 2008). This growth has driven increased
demand for cheap construction products, which has
encouraged smallholder farmers who practice shifting
cultivation to increase the size of their fallows and
manage them to promote cheap and fast-growing
timber species (Padoch et al 2008). These trees are
harvested after four years of growth, which corresponds
with the maximum probability of clearing occurring at
about 4-5 years of age observed in our dataset.

The observed decline in probability of clearing
with age is probably also influenced by changes in the
way that people use and value forest with forest age. In
a study nearby in the Peruvian Amazon, de Jong et al
(2001) found that 27 percent of land owners intended
to conserve at least some of their second-growth forest,
often with the intention of extracting wood or non-
timber forest products. Conservation plans were more
common for older second-growth forest than for
young forest. In our study area, once second-growth
forests reach about 20 years of age the probability of
clearing is low, suggesting that the economic or
conservation value of second-growth forests increases
with age.
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Second-growth dynamics also vary spatially.
Variables related to pixel remoteness were important,
but not always in the direction expected. Pixels far
from forest edges were less likely to be cleared.
Regrowth was more likely and clearing less likely far
from roads. Similarly, Rudel et al (2002) found that
dynamics differed depending on distance to the road:
close to roads, cyclical dynamics associated with
swidden agriculture were common, while regrowth
was more permanent far from roads. Surprisingly,
regrowth was more likely close to settlements, possibly
because shifting cultivation is more commonly
practiced near settlements. However, there was no
significant effect of distance to settlement on
probability of clearing. This suggests that more
permanent regrowth may be more common near
settlements, possibly because people conserve some
second-growth forest for ecosystem services beyond
carbon (de Jong et al 2001). Also surprising was our
finding that the probability of second-growth forest
clearing increased with forest patch size. On the
national and regional scales that are typically
associated with forest transitions, increases in forest
cover can result from scarcity of forest resources and
forest cover (Rudel et al 2005). A similar dynamic, in
which small forest patches are more protected because
forest is locally scarce, might play out on a smaller scale
within the study landscape, and could explain the fact
that second-growth pixels in larger patches were more
likely to be cleared than those in smaller patches.

The simulation results indicate that realistic
scenarios of forest regrowth and clearing lead to
much lower estimates of future carbon storage in the
landscape. Our simulations predicted over 900 000
tonnes less carbon than the static land-use dynamics
scenario, or 25% (figure 5). This is likely a conservative
estimate of the discrepancy for several reasons. First,
our models slightly over-predict regrowth and under-
predict clearing (figures S2, S$3). Furthermore, our
models assume that when a pixel is forested, it
continuously accumulates biomass and does not
experience any disturbance other than clear-cutting,
which results in being classified as non-forest. We do
not consider variation in land-use history or in
vulnerability to disturbance, important factors that
affect rates and quantities of biomass accumulation. In
the Amazon, the legacy of fire can reduce rates of
carbon accumulation in second-growth forests (Zarin
et al 2005). Fire is commonly used for clearing and
agricultural management in our study area (Schwartz
et al 2015) and might be an important factor
influencing rates and quantities of biomass accumu-
lation. Second-growth forests in our study area also
tend to be highly fragmented and close to forest edges
(Schwartz et al in revision). Fragmented forests are
more susceptible to wind damage (Schwartz et al in
revision) and forest edges tend to have lower biomass
(Laurance et al 1997, Haddad et al 2015). In general,
plot-based estimates of biomass accumulation rates
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such as in this study may underestimate disturbance
and morality, and therefore overestimate biomass
accumulation (Fisher et al 2008, Chambers et al 2009,
Di Vittorio et al 2014). This discrepancy might be
particularly important in second-growth forests,
which are more prone to disturbance. Finally, feed-
backs with future climate change could affect
successional trajectories and rates of biomass accu-
mulation (Uriarte et al 2016, Anderson-Teixeira et al
2013). Still, our results illustrate the importance of
considering land-use/land-cover change and land-
scape dynamics when considering the carbon seques-
tration potential of second-growth forest.

Because land-use dynamics vary across regions,
the specific results of our study do not apply
everywhere, but the approach and predictors we used
are generalizable across landscapes. However, there are
likely to be scale considerations when applying this
approach, as decisions to clear or to allow regrowth are
made on different scales in different settings.
Landholding sizes differ across regions, and land-
use decisions are also sometimes made on larger scales
such as municipality, state, or national. In other areas,
a more appropriate scale of analysis might be pixels (or
even sub-pixels), individual landholdings, municipal-
ities, or larger. Results from other scales might also
facilitate different, and complementary, conclusions to
those from finer scale analyses like this one; for
example, analyses at the municipality scale might not
yield a fine-scale understanding of how landscape
position affects regrowth/clearing, but it could provide
useful information for targeting land-use policies at
the municipality level. Future studies of these
dynamics would also benefit from the integration of
socioeconomic data, such as land prices, land holding
size, land tenure, and more detailed information about
prior land use. Land tenure in particular can influence
decisions about whether or not to clear or protect
second-growth forest (Angelsen and Kaimowitz 1999,
Robinson et al 2011), and spatially explicit data on
landowner’s tenure status could help elucidate some of
the mechanisms behind regrowth/clearing dynamics.

5. Conclusions

Many countries, including Peru, have ambitious
reforestation goals in their iNDCs. Peru predicts
1.069 million tonnes carbon sequestration via
community reforestation (Peru 2015). Brazil plans
12 million ha reforestation (Brazil 2015), China plans
50-100 million ha reforestation, equivalent to 1
gigaton carbon (Fransen et al 2015), and India plans
5 million ha reforestation (100 million tonnes carbon,
India 2015). These are non-trivial contributions to the
carbon reductions these countries pledged under the
Paris Climate Agreement, but the assumptions about
land-use dynamics and methods to ensure second-
growth forest permanence are not made clear in the
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iNDCs. Land-use dynamics reduced projected C
storage potential by 25% in our study area; a similar
discrepancy in China’s estimates would lead to 250
million tonnes additional emissions. Looking to past
dynamics of second-growth forests can help identify
where second-growth forest is threatened by non-
permanence and where to focus reforestation pro-
grams. Policies that promote management of young
second-growth forests and enrichment planting of
valuable timber species could reduce rates of clearing
of young second-growth forests. Monitoring the fate
of new second-growth forests will also be important to
ensure that the carbon promise of second-growth
forests can be achieved.
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