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Abstract. Tropical second-growth forests could help mitigate climate change, but the
degree to which their carbon potential is achieved will depend on exposure to disturbance.
Wind disturbance is common in tropical forests, shaping structure, composition, and function,
and influencing successional trajectories. However, little is known about the impacts of extreme
winds on second-growth forests in fragmented landscapes, though these ecosystems are often
located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence
suggests that fragmentation increases risk of wind damage in tropical forests, but no studies
have found such impacts following severe storms. In this study, we ask whether fragmentation
and forest type (old vs. second growth) were associated with variation in wind damage after a
severe convective storm in a fragmented production landscape in western Amazonia. We
applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and
combined it with field observations of damage to map wind effects on forest structure and
biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old-
and second-growth forest and characterizing fragmentation. We used these data to assess
variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We
find that fragmentation is significantly associated with wind damage, with damage severity
higher at forest edges and in edgier, more isolated patches. Damage was also more severe in
old-growth than in second-growth forests, but this effect was weaker than that of fragmenta-
tion. These results illustrate the importance of considering landscape context in planning tropi-
cal forest restoration and natural regeneration projects. Assessments of long-term carbon
sequestration potential need to consider spatial variation in disturbance exposure. Where risk
of extreme winds is high, minimizing fragmentation and isolation could increase carbon
sequestration potential.
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INTRODUCTION

Tropical second-growth forests, defined here as forests
growing on previously cleared land, can recover biomass
quickly and sequester large amounts of carbon (Poorter
et al. 2016). These forests could play an important role in
mitigating climate change; for example, if allowed to
grow undisturbed, existing Latin American second-
growth forests could accumulate an additional 8.48 Pg C
in the next 40 yr, enough to offset all carbon emissions
from fossil fuel use and industrial processes in Latin
America and the Caribbean from 1993 to 2014 (Chazdon
et al. 2016). Many factors, including past land use, cli-
mate, and soil characteristics influence rates and

quantities of carbon sequestration in second-growth
forests (Anderson-Teixeira et al. 2013, Poorter et al.
2016, Jakovac et al. 2016, Uriarte et al. 2016). In particu-
lar, exposure to natural disturbances such as extreme
winds, fires, or drought can affect successional trajecto-
ries in regenerating forests (Flynn et al. 2009, Uriarte
et al. 2009, Anderson-Teixeira et al. 2013, Uriarte et al.
2016), influencing the degree to which the carbon seques-
tration potential of second-growth forests is achieved.
Furthermore, second-growth forests are typically located
in landscapes subject to human influence that are
mosaics of old growth, second growth, and other land
cover types (Brown and Lugo 1990). Regrowth often
happens along existing forest margins (Asner et al. 2009,
Sloan et al. 2015), making second-growth forests highly
exposed to edge effects, impacts of fragmentation, and
anthropogenic disturbances such as fire and logging.
Accurately predicting biomass recovery in these forests
requires that we understand their disturbance ecology
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and how their disturbance regimes are influenced by the
landscapes in which they are situated.
Wind is a major disturbance in the tropics and has

both short-term impacts and lasting legacies in tropical
forests (Everham and Brokaw 1996, Laurance and
Curran 2008, Lugo 2008). Tropical forests are exposed
to extreme winds from tropical storms or via convective
downdrafts, squall lines, and isolated cold fronts.
Convective downdrafts and squall lines are relatively
common in the Amazon basin (Garstang et al. 1994,
1998), and associated extreme winds can cause large-
scale forest disturbance and tree mortality (Esp�ırito-
Santo et al. 2010, Negr�on-Ju�arez et al. 2010). Tropical
storms and heavy precipitation events are expected to
become more intense with climate change (Knutson
et al. 2010, Orlowsky and Seneviratne 2012, IPCC
2013), and warming and land use change will affect
future convection patterns (Del Genio et al. 2007,
Ramos da Silva et al. 2008). Understanding the determi-
nants of forest susceptibility to extreme winds is thus
important for modeling and monitoring future impacts
of forest disturbance (U.S. Department of Energy 2012).
The spatial distribution and size of blowdowns have

important consequences for understanding biomass
dynamics in tropical forests (Fisher et al. 2008, Chambers
et al. 2009, Di Vittorio et al. 2014, Marra et al. 2016). A
number of studies have quantified the frequency, return
interval, rotation period, and carbon impacts of large
blowdowns in the Amazon across expanses of old-growth
forest (Nelson et al. 1994, Negr�on-Ju�arez et al. 2010,
Chambers et al. 2013, Esp�ırito-Santo et al. 2014). How-
ever, little is known about the impacts of extreme winds
in the fragmented, mosaic landscapes in which tropical
second-growth forests occur. If forest fragmentation
increases the impacts of wind disturbance, this difference
could affect estimates of potential carbon sequestration
in tropical second-growth forest.
Impacts of extreme wind on both individual trees and

stand-level carbon balance differ depending on species
composition and forest structure. Damage is most severe
for pioneer species, species with low wood density, taller
trees, and trees with higher slenderness coefficient, i.e., a
larger height for a given diameter (Putz et al. 1983, Zim-
merman et al. 1994, Everham and Brokaw 1996, Curran
et al. 2008, Canham et al. 2010, Mitchell 2012, Uriarte
et al. 2012, McGroddy et al. 2013, Rifai et al. 2016,
Ribeiro et al. 2016). Stand structure characteristics such
as canopy height, canopy density, basal area, and med-
ian diameter are positively correlated with the amount
of wind damage in a stand (Everham and Brokaw 1996,
Uriarte et al. 2004, McGroddy et al. 2013). Susceptibil-
ity to damage also increases with stand age in earlier
stages of succession, but may decline in older stands
(Everham and Brokaw 1996). These shifts are due to
both changes in forest structure and changes in species
composition: though canopy height, density, and basal
area increase over succession, species composition
often shifts away from low-wood-density pioneers

toward late-successional species with higher wood den-
sity (Bazzaz and Pickett 1980, Lohbeck et al. 2013).
Though second-growth forests are often highly frag-

mented and located in mosaic landscapes, few studies
have considered the influence of landscape and patch
structure on wind damage. Fragmentation may influence
exposure to strong winds because landscape variability
influences the way wind moves, and generates heterogene-
ity in wind speeds and wind exposure through a number
of mechanisms. Wind speeds vary with surface roughness,
with winds gaining more speed over low-roughness vege-
tation such as open grassland, brush, or agricultural
crops (Fons 1940, Oliver 1971, Davies-Colley et al. 2000).
Accordingly, wind speeds decline with distance from
forest–pasture edges (Davies-Colley et al. 2000), and
there is strong wind turbulence at high-contrast forest
edges (Somerville 1980, Morse et al. 2002, Quine and
Gardiner 2007). Wind also moves more quickly though
open forest (Somerville 1980, Kanowski et al. 2008).
Forest edges have lower biomass and a more open canopy
(de Casaneve et al. 1995, Laurance et al. 1997, Harper
et al. 2005), implying that wind speeds should be higher
at forest edges than in the interior. Furthermore, pioneer
species are more common close to forest edges, elevating
the vulnerability of edge forest to windthrow (Ooster-
hoorn and Kappelle 2000, Laurance et al. 2006).
Despite variation in exposure and vulnerability to

extreme winds, evidence for impacts of fragmentation on
wind damage in tropical forests is lacking. Several stud-
ies in temperate silvicultural systems have detected edge
effects on wind damage (Peltola 1996, Talkkari et al.
2000, Zeng et al. 2004) but this effect has been more
challenging to detect in diverse tropical forests. The Bio-
logical Dynamics of Forest Fragments experiment in the
Brazilian Amazon found high tree mortality close to for-
est edges, with uprooting more frequent relative to
standing dead trees (Ferreira and Laurance 1997, Lau-
rance et al. 1997, Mesquita et al. 1999). However, this
mortality was not linked to specific extreme wind events
and could have resulted from other factors (e.g., desicca-
tion). Several studies have examined fragmentation
effects on wind damage after tropical storms, and have
found little evidence that damage varies with fragmenta-
tion (Catterall et al. 2008, Grimbacher et al. 2008). The
degree to which fragmentation increases the risk of dam-
age from extreme winds in tropical forests thus remains
an open question.
Detecting effects of fragmentation on wind damage

may be difficult with a field sampling approach. Extreme
winds can be highly patchy (Bellingham et al. 1992,
Imbert et al. 1996, Grove et al. 2000, Pohlman et al.
2008). Detecting spatial patterns within heterogeneous,
patchy phenomena requires large sample sizes, and inad-
equate sampling can make it difficult or impossible to
detect patterns (Loehle 1991). Estimates of landscape
level mortality based on field plot observations may miss
up to 17% of mortality (Chambers et al. 2013), and field
plot studies may lack the statistical power to detect the
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effect of fragmentation on wind damage (Grimbacher
et al. 2008). However, remote sensing allows detection
of patterns that may be unfeasible or impossible in
ground-based studies (Chambers et al. 2007). Recently
developed remote sensing techniques can detect small
blowdowns (Negr�on-Ju�arez et al. 2011). Unlike plot-
based approaches, remote sensing allows estimation of
wind damage across broad areas, and in combination
with field data can improve our understanding of
disturbance and carbon dynamics in tropical mosaic
landscapes.
Here, we use remotely sensed data to quantify damage

from a mesoscale convective storm system across a frag-
mented production landscape in the Peruvian Amazon.
We use these data in combination with land cover maps
to ask the following questions: (1) Are second-growth
forests more severely fragmented than old-growth for-
ests? (2) How does fragmentation influence forest vul-
nerability to extreme winds? (3) Does wind damage
severity vary in old-growth vs. second-growth forests?
We predict that second-growth forests in our study

area will be more severely fragmented than old-growth
forests, and hypothesize that severity of wind damage
will be highest in small, isolated forest fragments and
close to forest edges. We expect that second-growth for-
ests, which have a higher proportion of pioneer species

with low wood density, will suffer more severe damage
than old-growth forests, composed of less vulnerable
high wood density species. This variability could affect
forest succession in dynamic, fragmented landscapes,
with forest patch and landscape characteristics influenc-
ing rates of biomass recovery via effects on exposure and
vulnerability to wind disturbance.

METHODS

Study area

The city of Pucallpa, the capital of the Ucayali region
of Peru, is the largest Amazonian city connected to the
national capital, Lima, by road. As a result, Pucallpa is
an important transport center, and in recent years has
been a hotspot of forest disturbance, deforestation, and
fire in the Peruvian Amazon (Oliveira et al. 2007,
Uriarte et al. 2012, Schwartz et al. 2015). This research
focuses on an area of 2,158 km2 near Pucallpa, sur-
rounding the highway from Lima to Pucallpa. The land-
scape is heterogeneous, with patches of old-growth and
second-growth forest surrounded by pastures, oil palm
plantations, and smallholder farms (Gutierrez-Velez and
DeFries 2013; Fig. 1). Elevation ranges from 150 to
250 m above sea level and total annual precipitation
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FIG. 1. Location of the study area, near Pucallpa, Ucayali, Peru. Inset depicts forest cover, and locations of field plots and
roads.

Xxxxx 2017 WIND DISTURBANCE IN FRAGMENTED FORESTS 3



ranges from about 1,500 to 2,500 mm, with a dry season
from July to September.
On 30 November 2013, a mesoscale convective system

(MCS) passed through the study area, resulting in wide-
spread blowdowns and tree mortality. Though there is
insufficient meteorological station data available from
the study area to characterize the storm severity, data
processed from the GOES-13 satellite using the method
described in Bedka and Khlopenkov (2016) indicates
high overshooting top probability during the November
30 storm in the study area (Appendix: Fig. S1). Over-
shooting tops indicate regions where strong updrafts
were present within the MCS. Strong downdrafts are
often present near to these updrafts in regions of heavy
precipitation. Storms with overshooting tops often gen-
erate winds that exceed 58 mph, the criterion for “dam-
aging wind” by the U.S. NOAA National Weather
Service (Dworak et al. 2012). Given the heterogeneity in
land cover, forest age, and patch size, this landscape
offers an ideal opportunity to study how impacts of
damaging winds vary with fragmentation and landscape
context.

Remote sensing of wind damage

We obtained Landsat 8 OLI scenes covering the study
area (path-row 06-066 and 07-066) from 2013 (pre-storm)
and 2014 (post-storm; Appendix: Table S1) at 30-m reso-
lution. All scenes were acquired with atmospheric correc-
tions from the Landsat CDR archive (LaSRC product;
USGS 2016) via USGS Earth Explorer (available online).7

The LaSRC product includes a cloud mask band, gener-
ated with the FMASK algorithm (Zhu and Woodcock
2012). We used this band to mask pixels that were cloudy
in 2013 or 2014. An area of 1,023 ha was masked out due
to cloud cover, equal to 0.5% of the study area. Because
the atmospheric composition between multi-temporal
images differs, especially regarding water vapor and
ozone, we applying a radiometric normalization (Hall
et al. 1991) to normalize the 2014 scene to the 2013 scene,
using the MAD algorithm (Canty and Nielsen 2008). All
remote sensing data processing was conducted in ENVI
(Exelis Visual Information Solutions, Boulder, Colorado,
USA) unless otherwise indicated.
To map wind damage, we follow the approach out-

lined by Negron-Juarez et al. (2010, 2011), which uses
spectral mixture analysis (SMA) to map the change in
non-photosynthetic vegetation (NPV) fraction across
pixels. SMA assumes that every pixel is a linear combi-
nation of some number of target endmember spectra,
such as vegetation, shade, NPV, and/or bare soil, and
quantifies the per-pixel fraction of each endmember
(Adams and Gillespie 2006). Wind damage increases the
amount of wood, dead vegetation, and litter exposed to
the sensor, and so the change in NPV fraction is associ-
ated with the amount of wind damage.

We applied linear spectral unmixing to each image
using endmembers for green vegetation (GV), NPV, and
shade. Endmembers were identified from the 2013 scene
using the Pixel Purity Index algorithm (Boardman et al.
1995) available in ENVI (Appendix: Fig. S2). Following
unmixing, we normalized the fraction of NPV without
shade as NPV/(GV + NPV) so that fractions reflected
only relative proportions of NPV and GV, and not differ-
ences due to effects of shading (Adams and Gillespie
2006). Change in NPV (DNPV) was calculated by sub-
tracting the normalized NPV fraction in 2013 from 2014.

Field data collection

Wind damage was measured in the field to assess
whether DNPV provided an adequate approximation of
damage. Because previous studies (Negr�on-Ju�arez et al.
2011, Rifai et al. 2016) had validated the relationship
between DNPV and wind damage in old-growth forests,
we focused our validation and field data collection on sec-
ond-growth forest. During the months of July and August
of 2014 and 2015, we established 30–0.1 ha forest plots
(Fig. 1). We used satellite images to identify forest patches,
and from those, chose sites where we could locate and get
permission from the landowners to access their property.
Within these areas, plot locations were selected to encom-
pass a range of DNPV. Because plots were slightly larger
than a Landsat pixel, plot-level DNPV was calculated as
the weighted mean of DNPV in pixels overlapped by the
plot. We determined age of the forest plots from a 28-yr
land cover time series (Schwartz et al., in press), as the
number of years since the last year that the plot location
was classified as non-forest. Though all forest plots were
located within forest classified as second growth (see
Remote sensing of land cover), not all had been observed
as having been clear-cut during the 30-yr satellite record,
and plot ages ranged from 3 yr to >30 (i.e., never cleared).
Plots were geolocated using a Garmin GPSMAP 62sc.
In each plot, we measured diameter at breast height

(dbh) of all trees >5 cm, and coded each tree as damaged
(uprooted, trunk snapped, or severe branch loss) or
undamaged. Downed or damaged trees that were severely
rotted were marked as such, since these trees were likely
damaged prior to the 2013 storm. We conducted all anal-
yses including and excluding these previously damaged
individuals and it did not significantly affect our results;
reported results exclude these trees. Measures of damage
include both stems directly thrown by wind and trees that
were damaged by other trees, because it is difficult to dis-
tinguish between these two types of damage in the field.
We calculated aboveground biomass (AGB) using the
following allometric equation developed for secondary
forest species in the central Amazon (Nelson et al. 1999):

lnðbiomassÞ ¼ �1:9968þ 2:4128� lnðDBHÞ:

We divided biomass by two so that estimates were in
terms of kg C instead of kg biomass, under the7 http://earthexplorer.usgs.gov/
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assumption that C makes up 50% of biomass (Brown
and Lugo 1982). To characterize plot-level damage, we
calculated total damaged biomass, proportion biomass
damaged, total stems damaged, and proportion of stems
damaged for each plot. We assessed the relationship
between DNPV and wind damage by calculating linear
regressions of DNPV vs. field measurements of wind
damage in the 30 forest plots. To estimate AGB loss
across the study area, we used the parameters from the
linear model of DNPV vs. total AGB lost in field plots
(Appendix: Fig. S6c), and applied it to each forest pixel
to calculate lost biomass based on a pixel’s NPV.
Because allometries based on secondary forest species
yield lower estimates of biomass, using an allometric
equation designed for secondary forest species across the
whole study area is likely to underestimate biomass lost
in old-growth forest. Furthermore, wind damage tends
to increase with age (Fig. 2), so it is likely that old-
growth forests experienced more severe damage than sec-
ond-growth forests. However, because we measured wind
damage in second-growth forests only, we are extrapolat-
ing using parameters derived from the relationship
between damage and AGB in second-growth forests.
Therefore, our estimates represent a conservative esti-
mate of biomass lost across in the study area’s forests,
particularly for old-growth forests.

Remote sensing of land cover

We developed a land cover classification at 30-m reso-
lution for use in generating predictor variables related to
fragmentation and masking analyses to forested areas.
The classification expanded on the approach laid out in

Guti�errez-V�elez and DeFries (2013). Land use classes
were old-growth forest, second-growth forest, mature oil
palm (>3 yr old), and “other,” which included young oil
palm (<3 yr old), bare ground, burned non-forest areas,
fallow, pasture, degraded pasture, and bodies of water.
Training data were collected in the field, and for the
training data, second-growth forests were identified as
tree-dominated vegetation growing in areas that had pre-
viously been cleared, with significantly lower basal area
than old-growth forests in the study area (Guti�errez-
V�elez et al. 2011). Old-growth forests were identified as
predominantly residual forest from logging and extrac-
tion of non-timber resources, but they have significantly
higher basal area and biomass than second-growth for-
ests (Guti�errez-V�elez et al. 2011). Ultimately, whether a
pixel was classified as old growth or second growth
depends on its spectral properties, which do not always
coincide with its land-use history.
We classified Landsat 8 OLI images (Appendix:

Table S1) with a random forest classification built with
several spectral indices and spectral transformations: (1)
NDVI; (2) bare soil, vegetation, and shade fractions
from SMA; (3) brightness, greenness, and third from a
tasseled-cap transformation; and (4) first- and second-
order texture measures. Components 1–3 were shown to
be effective for classifying the non-oil palm land cover
classes in a land cover classification from the same study
area (Guti�errez-V�elez and DeFries 2013). Component 4,
the texture measures, were useful for distinguishing oil
palm plantations, which are spectrally similar to sec-
ondary forests but appear more uniform in satellite
images due to even-aged planting. Training and testing
data for land cover classes were collected during a 2015
field campaign and included 2,198.52 ha total, divided
among classes (Appendix: Table S2). For more details
about the classification, see Appendix S1.
The land cover map from 2014 was used to mask

analyses to forested areas (old growth and second
growth). We also masked areas near known anthro-
pogenic disturbance, since spillover disturbance from
recent forest clearing might bias results along forest
edges. To do so, we identified recently deforested areas,
areas that were classified as forest in 2013 and as non-
forest in 2014, and masked all pixels within 60 m to
prevent anthropogenic disturbance biasing results (App-
endix: Fig. S3).

Characterizing forest fragmentation

We used Fragstats (McGarigal et al. 2012) to charac-
terize forest patch fragmentation. Old-growth and sec-
ond-growth forests were all treated as a single forest
category for the purpose of characterizing patches. Frag-
mentation has three key axes: area, edge, and isolation
(Fahrig 2003, Haddad et al. 2015). We calculated one
Fragstats metric to represent each of these axes (Fig. 3).
Patch area (ha) represents patch size. Edginess is quanti-
fied with the shape index, which is calculated as

y = 0.026 + 0.36x, R2 = 0.699
r.m.s.e. = 0.036
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FIG. 2. Change in non-photosynthetic vegetation (DNPV)
vs. proportion of stems > 5 cm DBH damaged in second growth
forest field plots. Shaded areas indicate 95% confidence interval
of regression line; r.m.s.e., root mean square error. Regression
P < 0.001.
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SHAPE ¼ 0:25pffiffiffi
a

p

where p is the patch perimeter and a is the patch area.
Shape index increases as the perimeter of a patch gets
more complex, and equals 1 if a patch is a perfect square.
We quantified isolation with the proximity index. The
proximity index takes into account the area and distance
of forest within a particular radius around the focal
patch, and increases from zero with the upper limit
determined by the search radius. For a given patch I,
proximity index is calculated as

PROX ¼
Xn

j¼1

aij
h2ij

where aij is the area (m2) of patches j = 1. . .n within
specified neighborhood radius (m) of focal patch i and
hij is the distance (m) between patch i and patch j. Using
this formulation assumes that larger and closer patches

decrease patch isolation more than smaller or more dis-
tant ones, a reasonable assumption. We calculated prox-
imity index with several radii (250, 500, 1,000, 2,000,
4,000, and 10,000 m), but these indices were highly cor-
related and there was no significant different in model
performance depending on the distance, so we used the
1,000 m radius in our final models. So that higher values
represented increasing isolation, we multiplied proximity
index by �1.

Statistical analysis

We compared sizes of damaged vs. undamaged trees,
and fragmentation variables in old- vs. second-growth
forest using t tests. To test the relationship between wind
damage, forest fragmentation, and forest age (old vs. sec-
ond growth), we fit a generalized linear model to predict
DNPV at the pixel scale (Table 1). Pixels with DNPV < 0
were excluded from analysis, because a decline in NPV
cannot represent negative damage and instead likely rep-
resents changes due to forest succession or recovery from
prior disturbance. Both pixel characteristics and patch
characteristics were included as predictors. Pixel level
predictors were distance from forest edge and a binary
predictor for second-growth forest (0, old growth;
1, second growth). Patch level predictors were area,
edginess, and isolation of the patches in which pixels
were located. Because the total number of pixels was
large (461,610) and DNPV was highly left skewed, we
stratified pixels according to DNPV (0–0.05, 0.05–0.15,
0.15–0.25, >0.25) and randomly sampled 2,000 pixels
from each stratum for use in statistical analyses (Appen-
dix: Fig. S4). The sample was bootstrapped 200 times.
DNPV was log-transformed to meet the assumption of
normality. Distance from edge was also log-transformed
because it was highly left-skewed. To facilitate interpre-
tation, all predictors were scaled to unit standard devia-
tion by subtracting the mean and dividing by the
standard deviation (Gelman and Hill 2007). To test for
collinearity among predictors we calculated variance
inflation factors (VIF; Fox and Monette 1992) and con-
dition indices (Belsley 1991). VIF values greater than ~5
indicate strong collinearity (Dormann et al. 2012),
though values as low as 2 can have impacts on parame-
ter estimates (Graham 2003). VIF for all predictors was
<4 with the exception of edginess (VIF = 5.2). To
address this potential collinearity issue, we ran the
model with all predictors other than patch area, which
was correlated with the other fragmentation predictors
and was the predictor with the weakest effect in the full
model. The maximum VIF in this partial model was 2.2,
and the parameters for all remaining predictors were
qualitatively the same as in the full model. We followed
the same steps, removing edginess, which had the highest
VIF at 2.2. In this partial model, the maximum VIF was
1.4 and still, parameters were qualitatively the same.
Condition indices >30 indicate substantial collinearity
(Belsley 1991). All condition indices in our model were

FIG. 3. Conceptual figure illustrating axes of fragmentation
and variables associated with fragmentation included in analy-
ses. Green squares represent forest pixels and adjacent pixels
represent a patch. Orange outline indicates focal pixel/patch for
distance to edge and isolation measures.
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<5. We tested for spatial autocorrelation among model
residuals by calculating Moran’s I and found no spatial
autocorrelation in the model residuals (Moran’s
I = 0.0003, P = 0.45). Model parameters reported are
the median estimates of the 200 bootstrapped models
and 95% bootstrapped confidence intervals. Statistical
analyses were conducted in R (RCore Team 2016).

RESULTS

Overview: linking field and remote sensing data

Validation of DNPV with field observations.—Mean pre-
damage AGB in field plots was 62.04 Mg C/ha
(SD = 13.31, Appendix: Table S4). Mean AGB damaged
was 17.5 Mg C/ha (SD = 18.7), or 24.6% of pre-storm
AGB (SD = 25.1%). Mean stem density in field plots
was 1,286 stems/ha (SD = 342.6), with an average 16.5%
of stems damaged (SD = 15.7). Damaged stems were
significantly larger than undamaged stems (Appendix:
Fig. S5, t = �9.73, P < 0.0001).
DNPV was strongly related to damage as measured in

the field plots. It was most strongly correlated with the
proportion of stems damaged in field plots (R2 = 0.699,
Fig. 2), but the relationship held when damage was
quantified in terms of total number of stems damaged
(R2 = 0.649), total AGB damaged (R2 = 0.542), or pro-
portion of AGB damaged (R2 = 0.603, Appendix:
Fig. S6). On average, DNPV was low across the land-
scape: mean DNPV was 0.03, and standard deviation
was 0.04 (Fig. 4). Five percent of forest pixels, or
2,058 ha, had DNPV higher than 0.1, corresponding to
20.7% stems damaged, or 31.5% of carbon lost (22.5 Mg
C/ha, Table 2). DNPV was >0.2 in 0.8% of forest pixels
(348.5 ha), corresponding to 48.6% stems damaged, or
82.0% of carbon lost (59.1 Mg C/ha, Table 2). The total
biomass lost as a result of the wind event in second-
growth forests was 0.161 Tg C (95% CL = 0.026, 0.553,
Table 2). When extrapolating across the whole study
area, carbon lost was approximately 0.296 Tg C (95%
CL = 0.05, 1.02), with 54% in second growth forest, and
46% in old growth (Table 2). Estimates for carbon lost
in old-growth forest are based on extrapolation of data
from second-growth forest, and therefore they are con-
servative estimates of total carbon lost.

Characterizing land cover and fragmentation.—The land
cover classification accurately distinguished between oil
palm, old-growth forest, second-growth forest, and other
classes (Appendix: Table S3). Overall accuracy was
96.4%. Forty-four percent of the study area, 95,596 ha,
was classified as forest. Forty percent of forest pixels
were classified as old-growth forest and 60% were classi-
fied as second-growth forest (Fig. 1). There were 6,110
forest patches in the study area, with a mean area of
42.1 ha (Appendix: Fig. S7). Mean edginess (shape
index) was 1.3, and mean isolation (�1 9 proximity
index) was �19,688 (Appendix: Fig. S7).T
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Fragmentation in old- vs. second-growth forests

Degree of fragmentation varied across old-growth and
second-growth forest pixels, with second-growth forests
more fragmented along most measures (Fig. 5). Second-
growth forest pixels were closer to forest edges
(t = 237.15, P < 0.001, Appendix: Table S5), but in less
edgy patches (t = 134.76, P < 0.0001, Appendix:
Table S5). Second-growth pixels were also located in
smaller (t = 141.28, P < 0.001, Fig. 5) and more iso-
lated patches, (t = 47.658, P < 0.0001, Fig. 5).

Wind damage model

Fragmentation and forest type were significantly asso-
ciated with DNPV (R2 = 0.158, 95% bootstrap
CL = [0.143, 0.173]). Distance to edge had the strongest
association with DNPV (Fig. 6), which exponentially
decreased with pixel distance from forest edge (Fig. 7a).
Patch edginess was positively associated with DNPV,

with pixels in edgier patches suffering more severe wind
damage (Fig. 6, Fig. 7c). Isolation also influenced dam-
age: DNPV was higher in more isolated patches (Figs. 6,
7d). Patch area was negatively associated with damage,
though this effect was weaker than that of the other frag-
mentation predictors (Figs. 6, 7b). Predicted DNPV was
slightly higher for old-growth forest pixels, though the
difference between second growth and old growth was
small compared to the predicted variation in DNPV
associated with fragmentation (Figs. 6, 7).

DISCUSSION

Effects of fragmentation on wind damage

This study provides the first unequivocal empirical
evidence that fragmentation increases risk of damage
from extreme wind events in tropical forests. The severe
convection event that occurred in our study region
caused an overall loss of approximately 0.3 Tg C in the

FIG. 4. Map of wind damage (DNPV) in study area. Insets show two areas of interest where several field plots were located.

TABLE 2. Summary of wind damage effects by forest type.

Parameter Old growth Second growth All forest

Total area (ha) 38,137 57,459 95,596
Mean DNPV 0.033 0.035 0.034
Proportion pixels with DNPV >0.1 0.04 0.05 0.05
Proportion pixels with DNPV >0.2 0.01 0.01 0.01
Carbon lost (Tg C) 0.135 (0.020, 0.470) 0.161 (0.026, 0.553) 0.296 (0.05, 1.02)
Biomass lost per ha (Mg C/ha) 3.55 (0.519, 12.32) 2.79 (0.460, 9.63) 3.09

Note: 95% confidence intervals for lost carbon are in parentheses.
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study area (0.14 in second-growth forest and 0.16 in old-
growth forest). When averaged across the total forested
area in the study area (95,596 ha), this amounts to
3.09 Mg C/ha (2.79 Mg C/ha in second-growth, and
3.55 in old-growth), more than 60% greater per hectare
than figures from a recent study that estimated annual
carbon loss from natural disturbances in the entire Ama-
zon forest (Esp�ırito-Santo et al. 2014). That study esti-
mated the total loss at 1.3 Pg C/yr, an average of 1.9 Mg
C/ha across the ~6.8 9 108 ha of Amazon forest.
A number of differences between their study and ours

could explain the discrepancy. The Esp�ırito-Santo et al.
study mapped disturbances across a study area many
times the size of ours, and developed a disturbance size-
frequency distribution for the entire Amazon. The distur-
bances captured in our far smaller study are likely on the
intermediate-to-large end of their disturbance size-

frequency distribution. However, the discrepancy might
also reflect differences in landscape structure in the two
studies. Esp�ırito-Santo et al. focused on contiguous for-
est, where, based on our results, wind damage is likely to
be less severe than in the fragmented landscapes of our
study region. These findings illustrate the importance of
considering fragmented landscapes when assessing distur-
bance regimes in tropical forests. Studies that do not con-
sider the effects of landscape configuration may
underestimate the importance of wind disturbance for
quantifying the tropical forest carbon sink. Recent esti-
mates suggest 70% of the world’s forests are within 1 km
of a forest edge (Haddad et al. 2015), and that 19% of
tropical forests are <100 m from an edge (Brinck et al.
2017). Brinck et al. (2017) estimate that edge effects result
in 0.34 Gt additional carbon emissions from tropical for-
ests per year, though this estimate does not explicitly take
into account effects of extreme winds. Considering the
impacts of extreme winds in fragmented landscapes
would likely affect estimates of the effects of fragmenta-
tion on forest carbon balance, and would influence our
understanding of the importance of extreme wind events
for driving carbon cycling in the Amazon.
Though many studies suggest that fragmented forests

should have heightened vulnerability to wind damage
(Saunders et al. 1991, Laurance and Curran 2008), evi-
dence for this phenomenon has been lacking. For exam-
ple, a number of studies that set out to measure effects
of fragmentation on wind damage after Cyclone Larry, a
category 5 tropical cyclone, found little difference in
wind damage between fragments and continuous forest
(Catterall et al. 2008, Grimbacher et al. 2008, Pohlman
et al. 2008). Our study may have detected an effect
where former studies did not for several reasons. First,
the storm we considered was not as intense as a Cyclone
Larry, and continuous forest cover may provide a protec-
tive benefit only up to a certain degree of storm intensity
(Catterall et al. 2008). We do not have precise wind
speed measurements from the date of the storm, but the
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presence and intensity of overshooting tops indicates
that winds were probably ≥93 km/h (Bedka and Khlo-
penkov 2016). In contrast, Category 5 tropical storms
are associated with sustained winds >200 km/h. Lending
support to this threshold hypothesis, a study after Hurri-
cane Hugo in South Carolina found that in areas struck
by the most intense part of the hurricane, species differ-
ences in wind resistance were not apparent (Hook et al.
1991). Differences in rates of damage across species were
only observed in areas where wind speeds were lower.
Variation in exposure and vulnerability to extreme winds
due to species composition and landscape configuration
may come into play only when winds are not so severe
that they cause widespread damage regardless.
Second, previous studies of fragmentation and wind

damage were based on field data from a relatively small
number of plots. Heterogeneity in damage and wind
speeds may have affected the statistical ability to detect
underlying patterns related to fragmentation (Grim-
bacher et al. 2008). This patchiness and unmodeled varia-
tion in wind speeds is likely the reason for the substantial
unexplained variance in our statistical models. However,

because our remote sensing approach allows us to con-
sider a broad landscape with a large sample size we are
able to detect an effect of fragmentation despite the noise,
demonstrating, as many other studies have, the usefulness
of remote sensing for understanding ecosystems at land-
scape to regional scales (Chambers et al. 2007).
Fragmented forests may be more prone to wind dam-

age via two main mechanisms: because they are exposed
to stronger winds than continuous forest, or because
they are more vulnerable to strong winds due to differ-
ences in species composition or forest structure (Lau-
rance and Curran 2008). We found effects of all three
axes of fragmentation—isolation, edge, and area—on
wind damage, which suggests possible support for both
mechanisms. The effects of isolation are probably due to
exposure to stronger winds. Forest slows wind down;
rougher surfaces exert more drag, leading to slower wind
speeds (Davies-Colley et al. 2000). Wind picks up more
speed over smoother vegetation types, like pasture.
Because isolated fragments are surrounded by larger
expanses of open areas and non-forest land cover types,
they likely are subject to stronger winds. However,
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species composition may also differ depending on patch
isolation. Because we do not have measurements of spe-
cies composition in relation to isolation, we cannot rule
out that differences in composition also contribute to
the observed effect of isolation.
Edge and area effects on wind damage are more diffi-

cult to attribute to exposure vs. vulnerability, and could
be due to either or both mechanisms. We found that pix-
els close to forest edges and pixels in edgier patches were
more likely to be severely damaged. We also found a
weak effect of patch size, likely because pixels in smaller
patches are closer to edges. Forest edges are exposed to
stronger winds (Somerville 1980, Morse et al. 2002), but
there are also well-documented edge effects on species
composition that could increase vulnerability to wind
damage (Oosterhoorn and Kappelle 2000, Laurance
et al. 2006). The degree to which differences in exposure
or vulnerability explain the relationship between frag-
mentation and wind damage has implications for man-
agement actions to minimize impacts of strong winds.
Future research could focus on disentangling the mecha-
nisms responsible for these patterns.

Wind damage in old- vs. second-growth forest

The results from the model predicting wind damage
(DNPV) indicate that when controlling for fragmenta-
tion, second-growth forests suffer slightly lower damage
(have lower DNPV) than old-growth forests, counter to
our initial hypothesis. Because trees with lower wood
density are more prone to wind damage and community
mean wood density tends to increase over succession in
wet tropical forests (Bazzaz and Pickett 1980, Lohbeck
et al. 2013), we hypothesized that wind damage would
be more severe in second-growth forests. Our finding to
the contrary may be due to differences in tree stature
between old-growth and second-growth forests. Larger
trees and more slender trees are more susceptible to wind
damage, in particular to uprooting (Putz et al. 1983,
Zimmerman et al. 1994, Everham and Brokaw 1996,
Slodicak and Novak 2006, Canham et al. 2010, Ribeiro
et al. 2016), which translates into differences in damage
across sites with different forest structure. For example,
Uriarte et al. (2004) found that damage after Hurricane
Georges in the Dominican Republic was higher in sites
with higher basal area and that young forests with low
basal area were not severely affected by hurricane. Simi-
larly, McGroddy et al. (2013) found that forest stands in
the southern Yucatan with taller canopies and higher
basal area suffered more severe hurricane damage, and
that these structural differences were associated with
past land use. Furthermore, because of the high levels of
anthropogenic disturbance in the study area, we do not
necessarily expect the successional shifts in species com-
position that are predicted for relatively undisturbed for-
ests. Old-growth forests in the study area have never
been completely cleared, but they have still been subject
to anthropogenic disturbance, such as selective logging

and fire. Selective logging tends to target timber species
with higher wood density (Verburg and van Eijk-Bos
2003), so the largest remaining trees in selectively logged
forests may be species with low wood density. Large
stature and low-density wood would make these forest
fragments especially prone to wind damage, perhaps
explaining the higher damage we observed in old-growth
forests. Alternatively, it is possible that large, high-wood-
density trees are more vulnerable to wind, or that when
they do fall, they result in larger blowdowns due to a
domino effect of large, heavy trees causing more damage
than trees with lighter wood. In future studies, addi-
tional field plot data, with information on forest stature,
species identification and wood density from damaged
vs. undamaged trees could help further elucidate which
of these mechanisms drives the observed pattern.
In our model, however, fragmentation had a much

stronger influence on damage than forest type (Figs. 6,
7). Second-growth forests in the study area are more
fragmented than old-growth forests, which ultimately
might result in more severe wind impacts in these forests.
Elsewhere, studies have found that second growth tends
to happen along forest margins and in small fragments
surrounded by non-forest land use (Helmer 2000, Asner
et al. 2009, Sloan et al. 2015). Wind is not the only dis-
turbance for which risk is higher along edges: fire in the
Amazon tends to be concentrated along forest edges
(Cochrane and Laurance 2002, Alencar et al. 2004,
Armenteras et al. 2013). There is potential for wind and
fire to interact and amplify the other’s impacts: studies
in temperate ecosystems have found that an earlier fire
can increase the severity of subsequent blow downs, and
wind damage can increase the risk of fire by adding fuels
and opening up the forest canopy (Myers and van Lear
1998, Kulakowski and Veblen 2002, 2007). These inter-
actions might occur in the Amazon, and could exacer-
bate disturbance effects on forest carbon balance.
Wind and other disturbances can alter successional

pathways in regrowing forests (Anderson-Teixeira et al.
2013, Uriarte et al. 2016). Variability in disturbance risk
should thus be taken into account in spatial planning,
management, and carbon accounting in tropical second-
growth forests where the goal is to promote carbon
sequestration. Silviculture has long considered wind dam-
age risk in site and species selection and planting configu-
ration (Somerville 1980, Savill 1983, Talkkari et al. 2000).
However, managing tropical second-growth forests for
carbon is a relatively new endeavor and the way landscape
configuration influences susceptibility to disturbance is
not well understood for tropical forests (U.S. Department
of Energy 2012). However, where possible, and where risk
of extreme winds is high, minimizing fragmentation and
isolation could reduce risk of wind damage. Smallholders,
too, get services such as timber or other forest products
from forest fragments on their properties, and may wish
to protect their forest fragments from the impacts of
extreme winds. Promoting regrowth close to existing for-
ests, maintaining less edgy patches, or planting wind-firm
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species in isolated fragments and close to forest edges are
all steps that smallholders could take to reduce risk of
wind damage in their forests.
Future research should attempt to disentangle the

mechanisms behind the patterns observed in this study.
Understanding the degree to which differences in vulner-
ability vs. exposure underlie variation in wind impacts
will clarify appropriate management actions to minimize
risk of wind damage in second-growth or remnant for-
ests. Fragmentation experiments such as the Biological
Dynamics of Forest Fragments experiment in Brazil
have shed light on how fragmentation affects forest com-
position, structure, and microclimate (Laurance et al.
2002). However, understanding what those changes
mean for impacts of extreme winds is not straightfor-
ward, and doing so would require some “luck” in that a
severe windstorm would have to strike the experiment.
This limitation presents some challenges in studying
mechanisms of wind damage in fragmented landscapes,
but there are ways forward. Fragmentation experiments
like the aforementioned, but located in landscapes that
suffer frequent severe wind events, such as Caribbean
forests, could be useful in that the likelihood of extreme
winds striking an experiment would be higher. However,
an experimental approach relying on random chance is
not the only way to further investigate these mecha-
nisms. Improvements in modeling and mapping wind
speed and in our understanding of how wind interacts
with complex landscapes will further shed light on how
exposure varies with fragmentation. Advances in remote
sensing technology, which are beginning to provide a
more detailed picture of forest structure and composi-
tion, will be useful in understanding ecological mecha-
nisms responsible for variability in disturbance impacts
(Chambers et al. 2007). Finally, much of what we
already know about variation in species and stand sus-
ceptibility to wind comes from opportunistic field sam-
pling after extreme winds (e.g., Zimmerman et al. 1994,
Uriarte et al. 2004, McGroddy et al. 2013), and there is
a need for further opportunistic post-storm sampling in
fragmented landscapes. Continued monitoring of forest
disturbance in fragmented landscapes, such as with the
remote sensing approach demonstrated in this paper, is
essential so that such opportunities are not lost. An
improved understanding of how and why fragmentation
and landscape configuration influence disturbance
regimes in tropical second-growth forests will help
ensure that the carbon potential of tropical second-
growth forests is better achieved.
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