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Ecosystem restoration can provide multiple benefits to people 
and help to achieve multiple Sustainable Development Goals1–3, 
including climate change mitigation4 and nature conservation5. 

Thus, 47 countries have collectively committed to have 150 and 
350 million hectares of degraded lands under restoration by 2020 
and 2030, respectively, and have included major restoration targets in 
national pledges to the Paris Climate Agreement6. Restoration, how-
ever, has both direct costs (those required for implementation and 
maintenance) and indirect costs, including the potential loss of reve-
nues from foregone agricultural production7. These restoration costs 
and benefits present trade-offs and synergies that vary across space8–

10 and have been progressively better studied5. Indeed, the field of sys-
tematic conservation planning (SCP) provides methods for spatial  

prioritization that maximizes benefits while minimizing costs11.  
Despite recent efforts8,9,12, applications of comprehensive SCP 
approaches to complex large-scale restoration problems with mul-
tiple objectives remain sparse.

Here, we present a restoration prioritization approach based on 
linear programming to solve customized complex restoration prob-
lems at large scales. We apply this approach to solve a problem of 
global significance that will inform restoration policy and practice 
at a national scale in the Brazilian Atlantic Forest hotspot13,14. This 
area is highly deforested and fragmented and is poised to undergo 
one of the biggest large-scale restoration efforts15. We identify exact 
cost-effective solutions that consider multiple benefits, costs and 
policy scenarios. We also investigate trade-offs in benefits and costs 
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across different scenarios, and impacts of increasing the size of res-
toration projects. Linear programming can find exact solutions that 
can perform at least 30% better than mainstream SCP software16. 
It can also be better customized, allowing the incorporation of res-
toration aspects relevant to particular socioecological contexts. In 
this application, we aim to maximize restoration benefits for biodi-
versity conservation and climate change mitigation while reducing 
restoration and opportunity costs.

We divided the biome into 1.3 million planning units of 1 km2. 
For biodiversity conservation, benefit was measured as the reduc-
tion in projected extinctions owing to habitat restoration17. We gath-
ered and analysed species occurrence data in the Atlantic Forest and 
then performed data cleaning, identification of endemism by spe-
cialists and model selection (Methods). Next, we generated poten-
tial species occurrence models for 785 species of plants, birds and 
amphibians endemic to the Atlantic Forest, representing the best 
set of biodiversity data currently available for this biome. We then 
utilized a function10,18 derived from the species–area relationship to 
calculate the marginal contribution of each hectare restored towards 
reducing the extinction probability for each species. The benefit of 
habitat restoration to each species is dynamic in that the value of 
restoring additional habitat for that species diminishes as the total 
area of habitat increases. Our approach accounts for this effect, 
although for visualization purposes, we aggregate the restoration 
value of each planning unit across all species, thereby generating a 
biodiversity conservation benefits surface (Supplementary Fig. 1).  
Our species data confirmed the severity of the biodiversity crisis in 
the Atlantic Rainforest, with an estimated 27–32% of the endemic 
species of the biome currently committed to extinction (Methods). 
For climate change mitigation, benefit was measured as the poten-
tial aboveground carbon sequestration in the first 20 years following 
habitat restoration4. We produced the climate change mitigation sur-
face (Supplementary Fig. 2a) by applying and extending a recently 
published empirical model of the carbon sequestration potential of 
restoration4 to the whole Atlantic Rainforest. Restoration imple-
mentation costs, including maintenance and monitoring, were 
estimated based on a survey with restoration companies active in 
the area. Costs were spatially adjusted via a proxy for the natural 
regeneration potential based on a model of ecological uncertainty 
of tropical forest restoration success19 (Methods). Opportunity 
costs, a measure of potential conflict with agricultural production, 
were estimated based on land acquisition costs and spatial distribu-
tions of agriculture and pasturelands20. A restoration costs surface 
(Supplementary Fig. 2b) was built based on these two costs (referred 
to as total cost).

We also introduced advances regarding the impacts that the 
scale of a restoration project has on its costs and benefits. Costs per 
unit area restored reduce with increasing area of the project, so we 
modelled these economies of scale using field evidence on how uni-
tary costs fall as projects grow (Methods and Supplementary Fig. 3).  
The size of the project also affects ecological outcomes, an effect 
that we term ‘ecologies of scale’, such as biomass accumulation 
through edge effects. We also incorporated this into the prioriti-
zation using empirically derived edge-effects estimate for Atlantic 
Forest remnants21.

The Brazilian Native Vegetation Protection Law22 requires 
Atlantic Forest farmers to keep at least 20% of their farms under 
native vegetation. Farmers currently below this threshold must 
comply either by implementing restoration in their own farms or 
by financing conservation or restoration offsets elsewhere within 
the biome. If enforced, it could lead to up to 5.17 million hectares 
of restoration22, which is the restoration target area we used in all 
scenarios. This represents approximately 4% of the original area of 
the biome, which has lost 73–84% of its native vegetation cover. This 
target was chosen so that the maps produced could guide restora-
tion efforts even if all farmers decided to compensate their debts 

by financing restoration efforts outside their farms. Our dynamic 
approach allocates this target area in 20 steps, so our restoration 
priority maps can also guide restoration projects with smaller tar-
gets (Methods and Supplementary Fig. 4). In our ‘Baseline’ scenario, 
farmers restore this target inside their own farms until this mini-
mum threshold is met. In a set of alternative scenarios, we simu-
late different ways of prioritizing benefits and costs of restoration, 
considering variations in the size of projects. These 362 alternative 
scenarios focused on combinations of maximizing the benefits for 
biodiversity conservation and climate change mitigation while min-
imizing costs (Methods and Supplementary Fig. 5). We also inves-
tigated the impacts of limiting offsets to the farmer’s own state (a 
policy option currently pursued by some Brazilian states).

Results
The Baseline scenario has the worst performance for biodiversity 
conservation, the fourth worst for carbon sequestration and the 
highest costs across all 363 scenarios analysed (Baseline, in Fig. 1). 
For a total cost of US$50.2 billion, this allocation would avoid 7.2% 
of the projected extinctions for the central estimate (which is 6.8% 
for the lower and 7.7% for the upper). Moreover, it would sequester 
0.5 billion tonnes of CO2-equivalent (CO2e) for the central estimate 
(which is 0.4 for the lower and 0.6 for the upper; further lower and 
upper estimates are presented in Supplementary Tables 1 and 2). 
This outcome suggests that pursuing alternative spatial allocations 
for restoration would deliver greater benefits at lower costs, there-
fore aligning species conservation and climate mitigation targets 
with the interests of farmers.

One of the advantages of compensation outside farms is the 
potential to increase the size of individual projects, which has a 
strong positive impact on cost-effectiveness due to both economic 
and ecological efficiencies of scale (Fig. 2). First, economies of scale 
result in a substantial reduction in unitary restoration costs (57% 
drop when projects grow from 1 to 100 ha; Fig. 2a). Second, ecolo-
gies of scale lead to improved efficiencies in climate mitigation out-
comes for larger projects (Fig. 2b), with 100-ha projects sequestering 
58% more than the same area of 1-ha ones. The combination of both 
economic and ecological efficiencies of scale results in synergistic 
and marked increases in cost-effectiveness for larger restoration 
projects (Fig. 2c). Indeed, the carbon prices required to cover resto-
ration costs drop 73% when increasing projects from 1 to 100 ha, a 
268% improvement in cost-effectiveness. These scale impacts occur 
across all scenarios and are independent of the relative weights of 
the benefits. Although we did not model the impacts of the size of 
the restoration projects on biodiversity conservation, we expect the 
same to apply to biodiversity outcomes given the importance of 
edge-effects on populations in small forest fragments23.

Another advantage of compensation outside farms is implement-
ing restoration in areas that would maximize benefits, thus improv-
ing the likelihood of long-term socioecological success. Allocations 
based on maximizing a single benefit reveal the maximum out-
comes that restoration prioritization can achieve for each benefit. 
For biodiversity conservation, 29.7% of the species committed to 
extinctions could be saved (“Maximum Biodiversity” in Fig. 1a,b),  
an improvement of 311% in relation to the Baseline scenario. 
Likewise, a focus on climate change mitigation could sequester up 
to 1.3 GtCO2e (“Maximum Climate” in Fig. 1a,c), a 174% increase 
from the Baseline scenario. Focusing on costs would reduce them 
to US$15.2 billion (“Minimum Costs” in Fig. 1a,d), a 69% saving 
on the Baseline scenario. But despite the marked improvements in 
relation to Baseline, single-focus allocations have mixed and varied 
outcomes when all benefits and costs are considered. For instance, 
considering solely biodiversity conservation benefit yields a much 
larger fraction of the greatest possible climate change mitigation 
benefit (75% of those under Maximum Climate) than the reverse, 
with only 51% of the Maximum Biodiversity benefit being captured 

Nature Ecology & Evolution | VOL 3 | JANUARY 2019 | 62–70 | www.nature.com/natecolevol 63

http://www.nature.com/natecolevol


Articles Nature Ecology & Evolution

by the climate-focused allocation (Fig. 1). The latter metric is much 
higher for birds (72%), with plants benefiting the least (45%) from 
the climate-focused solution (Supplementary Fig. 6). The biodiver-
sity-focused solution would cost US$35 billion, delivering 44% of 
the potential costs savings and resulting in benefit–cost ratios of 
US$9 million per species saved and US$35 per tonne of CO2e. By 
contrast, the climate-focused solution would cost US$29 billion, 
delivering 59% of the cost-savings achieved by Minimum Costs and 
resulting in benefit–cost ratios of US$15 million per species saved 
and US$23 per tonne of CO2e.

In turn, restoration plans designed solely to minimize costs 
have a poor environmental performance. The Minimum Costs 
scenario underperforms substantially for climate mitigation and 
biodiversity conservation. It would yield only 25% and 42% of the 
potential biodiversity and climate mitigation benefits, respectively. 
These outcomes are worse than those under a random allocation of  

restoration efforts, which would on average achieve 29% and 62% 
of the potential biodiversity and climate mitigation benefits, respec-
tively (“Random” in Fig. 1).

Compromise solutions can simultaneously deliver a substantial 
fraction of the maximum outcome for each benefit. Our approach 
allowed us to combine efficiencies of scale with multicriteria spa-
tial prioritization to systematically generate and evaluate solutions 
that combine different weights for benefits and costs, generat-
ing efficiency frontiers (Fig. 1). The outer frontier is generated by 
eliminating the costs component from the algorithm, whereas the 
‘Cost-effective’ frontier is produced by maximizing cost-effective 
benefits for biodiversity and climate change mitigation. Compared 
to the Baseline scenario, one of the solutions for the Cost-effective 
efficiency frontier (‘Compromise’ in Fig. 1a,e) increases biodiver-
sity benefits by 257% (equivalent to 94% of those achieved under 
Maximum Biodiversity). Moreover, the climate change mitigation 

30

25

20

15

10

0.6 0.8 1.0 1.2

Carbon sequestered (Pg CO2e)

VII

II

VI

VIVI

E
xt

in
ct

io
ns

 a
vo

id
ed

 (
%

)

50

32

15

III

T
otal costs (U

S
$ billions)

a b

c d e

$

$ IV$$

I

II III

0 250 500 1,000km 750

Fig. 1 | Spatial configurations and outcomes for climate change mitigation, avoided extinctions and total costs of selected scenarios. a, The following 
scenarios are considered: I, Baseline without offsets; II, Maximum Biodiversity; III, Maximum Climate; IV, Minimum Costs; V, Random; VI,Compromise; 
and VII, Environment Only. The unbroken (outer) line connects points in the efficiency frontier of environmental benefits when excluding costs from the 
prioritization algorithm. The broken (inner) line connects allocations for the cost-effective frontier. b–e, Spatial configurations and radar diagrams of 
outcomes for the Maximum Biodiversity (b), Maximum Climate (c), Minimum Costs (d) and Compromise (e) scenarios. Colours are related to the cost 
scale presented in a.

Nature Ecology & Evolution | VOL 3 | JANUARY 2019 | 62–70 | www.nature.com/natecolevol64

http://www.nature.com/natecolevol


ArticlesNature Ecology & Evolution

benefit increases by 105% (79% of Maximum Climate), and reduces 
costs by 57% (83% of the reduction achieved by Minimum Costs). 
This translates into an eightfold increase in cost-effectiveness for 
biodiversity conservation.

These compromise solutions arise from the concave shape of 
the efficiency frontier curves (Fig. 1a), which indicate that when 
departing from single-focus solutions, large gains for one benefit 
can be achieved at relatively modest cost to others. Indeed, moving 
from Maximum Climate to Compromise results in a loss of 20% in 
climate change mitigation but a gain of 95% in avoided extinctions. 
Therefore, sequestering 0.27 GtCO2e less would save 411 animals 
and plants from extinction when applying the relative reduction in 
extinctions to the overall extinction debt of plants and animals in 
the biome (Supplementary Table 1). This results in a trade-off ratio 
of 1 animal or plant extinction avoided for every 0.7 million tonnes 
of CO2e not sequestered. Given the key role that biodiversity has in 
driving the productivity of ecosystems24, such a compromise might 

result in climate mitigation gains in the long term. Climate change 
adaptation might also benefit from improved ecosystem-based 
adaptation25 due to more resilient ecosystems. Furthermore, it can 
be argued that species extinctions are irreversible losses, whereas 
reductions in carbon sequestration are reversible and can be com-
pensated for, suggesting that greater importance should be given to 
the former. Revealing trade-offs in units that people can relate to 
helps inform the stark decisions that need to be made in a context 
of scarcity.

The substantial reductions in total costs arise from the combina-
tion of efficiencies of scale and the ability to prioritize areas with 
lower opportunity costs and higher potential for natural regen-
eration. The relative contribution of each of these factors varies 
across scenarios (Fig. 3). In comparison with the Baseline scenario, 
assumed to comprise 1-ha projects, economies of scale reduce costs 
by US$23.9 billion when moving to 100-ha projects. Identifying areas 
with lower opportunity costs reduces these by between US$10.8 bil-
lion (Compromise) and US$17.0 billion (Minimum Costs),  
demonstrating that there is great scope for avoiding restoration 
conflicts with agricultural production. The strong impact of natural 
regeneration on reducing restoration costs is felt across all scenarios,  
reducing it by 56% (or US$35 billion) in the Baseline scenario, by 
76% (or US$29 billion) in the Minimum costs scenario and by 74% 
(or US$28 billion) in the Compromise scenario.

Spreading restoration across wider areas by considering that not 
all deforested lands in priority landscapes would be restored might be 
more feasible in practice and would not have overly large impacts on 
the benefits. Indeed, restricting the maximum restoration allowed in 
each planning unit has moderate impacts on biodiversity outcomes 
and small ones for carbon. When restricting the proportion of the 
planning unit that can be reforested to 65% and 35%, biodiversity 
outcomes fall by 6% and 17%, respectively (Supplementary Fig. 7).  
For climate mitigation, the same restrictions result in reductions of 
2% and 6%, respectively (Supplementary Fig. 7). These decreased 
outcomes arise from selecting areas that have comparatively lower 
priority for those benefits, as these caps lead to restoration being 
allocated beyond the very highest priority planning units.

Our results also provide important insights into considering how 
the costs of achieving restoration targets can be shared between 
farmers and the wider society. Benefits from restoration are shared 
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between farmers and the wider society (in Brazil and elsewhere), 
whereas opportunity and restoration costs would be borne by the 
farmers, as the target analysed here arises from past deforestation 
beyond legal limits. Although the overall cheapest solution for 
farmers (Minimum Costs) would be US$19 billion cheaper than a 
solution that combines large benefits for biodiversity and climate 
change mitigation without considering costs (“Environment Only”),  
it could be argued that the collective benefits would justify that 
society pay for this difference if the latter solution is to be achieved. 
Payments for ecosystem services schemes are a way to motivate 
farmers to pursue options that are more beneficial to the wider 
society. Carbon-based incentives of US$38 per tonne of CO2e, spe-
cies-based incentives of US$30 million per extinction avoided or 
a combination of both would be enough to pay for the difference 
in costs. Although the Environment Only solution is US$14 billion 
cheaper than the Baseline scenario, which would have to be paid 
individually by farmers, it could be argued that farmers could choose 
intermediate solutions, since this reduction in costs is made possible 
by the decision in 2012 by Brazilian society to allow compensation 
outside their farms. The intermediate Compromise solution still 
delivers reasonable environmental outcomes and, being US$7 bil-
lion more expensive than the cheapest possible but US$29 billion 
cheaper than the Baseline scenario, could be seen as a reasonable 
compromise for farmers to invest in. Alternatively or complemen-
tarily, carbon incentives of US$15 per tonne of CO2e, species-based 
incentives of US$9 million per extinction avoided or a combination 
of both would be enough to cover the difference from the cheapest 
solution. It is important to highlight that restoration projects can 
lead to positive financial returns based on revenues from sustainable 
management of timber or non-timber forest products, potentially 
complemented by payments for ecosystem services schemes26.

Introducing broad-scale spatial restrictions on restoration, such 
as allowing off-farm compensation but only within state borders, 
generates more nuanced outcomes. On the one hand, constraining 
restoration by state borders leads to worse outcomes when com-
pared with the unconstrained version of each goal. The outcomes 
are irrespective of whether assessed for biodiversity conservation 
(10% lower), climate change mitigation (14% lower) or cost mini-
mization (17% more expensive). On the other hand, a state-con-
strained cost-minimization scenario would yield 103% and 44% 
higher returns for biodiversity and climate, respectively, compared 
with an entirely unconstrained Minimum Costs scenario. So, if the 
alternative is that farmers offset in the cheapest areas of the biome, 
constraining their choices to the cheapest areas in their home states 
would bring substantially higher environmental benefits at modest 
additional cost.

Discussion
It is important to highlight that while the Baseline scenario performs 
very poorly in terms of all three outcomes analysed in this study,  
having smaller patches of restoration dispersed across the entire 
biome would have other benefits. For instance, the provision of 
local ecosystem services such as soil retention, improved water 
quality and pollination tends to be more widely distributed across 
the landscapes with small and dispersed restored sites27. By contrast, 
the ecological equivalence between remnants, the representation of 
different ecological communities and community integrity across 
the biome28 can be higher. Crucially, the Law of Native Vegetation 
Protection also mandates that mountaintops and riparian areas 
should be preserved, a requirement estimated to lead to another 
5.2 million hectares of restoration. As these are fixed in space (so 
not subject to spatial prioritization) and dispersed throughout all 
watersheds of the biome, the combination of restoring legal reserves 
in priority areas and riparian and mountaintop areas throughout 
the biome could deliver increased local, regional and global benefits 
at lower costs.

Although we strived to apply recognized best practices to all 
stages of our analyses, some limitations should be highlighted  
(see Methods for further discussions). Some species distribution 
models relied on a relatively small number of occurrences, and all 
present the usual limitations associated with correlative models. The 
approach used to estimate extinction risk is an imperfect approxi-
mation, and our climate benefits did not include belowground bio-
mass or soil carbon. Also, importantly, shifts in species distribution 
as a result of climate change were not taken into account.

The technical advances and high degree of customization to 
context-specific policies and goals led to the Brazilian Ministry 
of Environment to decide to use the decision-supporting tool and 
the maps introduced here as the key prioritization information for 
restoring the Atlantic Rainforest. Moreover, our results led to the 
commission of the replication of our approach to the other five 
Brazilian biomes as part of the National Plan for Native Vegetation 
Recovery—PLANAVEG29. The potential of this approach for eas-
ily exploring large numbers of scenarios will be of particular 
importance for two PLANAVEG strategies: Spatial Planning and 
Monitoring and Finance. These ongoing biome-specific initia-
tives are tapping into the ability of our approach to include cus-
tomized sets of benefits and costs, such as the following: water 
(Atlantic Forest); farmers income (originated from ecosystem 
services and forest products in all biogeographical regions); pol-
lination (Amazon); firewood production (Caatinga); and ecotour-
ism-related species (Pantanal). Furthermore, the time-efficiency of 
the linear programming approach permits assessment of thousands 
of variations of factor weightings in a few hours (for applications of 
the size and complexity presented here), allowing stakeholders to 
select the most desirable allocations based on final outcomes, avoid-
ing the often-contentious task of selecting relative weights a priori.

To fulfil its promise as a substantial contributor to overcoming 
major global and local sustainable development challenges, large-
scale restoration needs to carefully balance its multiple costs and 
benefits with the diverse interests of stakeholders. Our results show 
that substantial benefits for biodiversity conservation and climate 
change mitigation can be achieved in the Atlantic Forest alongside 
marked reduction in total costs. They illustrate that multicriteria 
spatial planning can be an important tool to reveal and manage the 
trade-offs and synergies involved in and, consequently, increase the 
impact and feasibility of large-scale restoration.

Methods
In this study, we developed a multicriteria spatial restoration prioritization 
approach for the Brazilian Atlantic Forest hotspot to investigate alternative 
restoration scenarios. We simulated the restoration of approximately 5.17 million 
hectares (estimated deficit of the Legal Reserve in the Atlantic Forest22) to achieve 
the following: (1) quantify the variation in costs and benefits of restoration among 
a range of possible scenarios governing where restoration occurs; (2) quantify the 
trade-offs among costs and benefits to identify good compromise solutions; (3) 
quantify the effects of economies of scale and analogous ecologies of scale impacts 
on carbon sequestration by using restoration block sizes of 1, 5, 10, 25, 50 or 100 ha; 
and (4) quantify the effects of restricting the maximum proportion of land that can 
be restored within each planning unit (up to 35, 65 and 100%).

Our multicriteria spatial restoration prioritization approach was based on 
the following five main steps: (1) conduct consultations with representatives 
of the Ministry of Environment and other stakeholders of the Atlantic Forest 
biogeographical region to identify critical variables to be included in our 
modelling and to develop restoration scenarios that reflect the policy objectives 
and multistakeholder preferences; (2) gather and model variables to be used as 
inputs; (3) develop a multicriteria spatial restoration prioritization framework 
implemented as an integer linear programming problem; (4) simulate restoration 
scenarios; and (5) analyse and interpret the solutions and their trade-offs.

We developed spatial surfaces for the following three benefits of biodiversity: 
conservation, climate change mitigation and costs reduction. We detail each 
of these below, followed by explanations of the scenarios analysed and the 
optimization model itself.

Biodiversity conservation benefits. Benefits to biodiversity conservation were 
quantified using species extinction functions reflecting diminishing returns 
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associated with increasing areas of habitat for each species (Supplementary Fig. 1).  
This function is based on a re-working of the species–area relationship and 
operates at the level of individual species17. This approach is imperfect, as it ignores 
the possibility of negative density-dependence at very low population sizes, and 
does not consider the time scale of resulting extinctions, which will vary with 
the life history and ecology of a species. However, unlike simpler formulations, it 
takes into account the non-linearity of the response of persistence to changes in 
population size, and has been used in several similar studies10,17,18. If the existing 
habitat area is small, there is a large benefit to increasing that area, but as the area 
of habitat increases, there is a diminishing benefit for the addition of more habitat 
area. On the basis of a previous study10, the change in extinction risk (r) for each 
individual species as a function of habitat area was modelled as follows:

= − ∕r x A1 ( ) (1)z
0

where A0 is the current habitat area, x is additional habitat area that would arise 
from habitat restoration, and the power z describes the rate of diminishing returns 
in value of additional area at reducing extinction risk. We used z =​ 0.25 for the 
central estimates presented in the main text (following previous studies10,1718), and 
z =​ 0.15 and z =​ 0.35 for sensitivity analyses presented in Supplementary Fig. 8 
and Supplementary Table 2. To implement these curves in an linear programming 
problem framework, we quantify benefit as the tangent to these curves at a given 
current area of species habitat and update these benefit values after solving each of 
the 20 increments of total restoration area target.

Ecological niche models. To identify areas that, if restored, would be a suitable 
habitat for each species, we developed ecological niche models for endemic 
amphibians, birds and woody plants in the Brazilian Atlantic Forest. We used the 
potential species distribution instead of the current species distribution because 
restoration would expand the available habitat area for the species. This is a 
different approach to the usual used in conservation prioritization, where the aim 
is to conserve current habitats by using the distribution of species that falls within 
native vegetation.

Species occurrence data. We collated all freely available occurrence data on endemic 
amphibians, birds and woody plants in the Brazilian Atlantic Forest. Data on 
amphibian occurrence were obtained from a previous study30, with updates from 
the authors, and comprised 114 endemic species (3,786 occurrences). Data on 
bird occurrence were obtained from the Global Biodiversity Information Facility 
database31 and comprised 223 endemic species (12,085 occurrences). Data on plant 
occurrence were obtained from NeoTropTree and SpeciesLink32, and comprised 
846 endemic species and 44,024 records. The original plant names were based on 
the NeoTropTree database33 and updated according to the List of Species of the 
Brazilian Flora34 using R package ‘flora’35, which is based on the List’s Integrated 
Publishing Toolkit database36.

We cleaned the data for each species by deleting the following: records that fell 
out of the environmental layers; duplicated records; and non-duplicated records 
that fell in the same planning unit (1 km-pixel). The endemism status of species 
was assessed by consulting amphibian experts and by following a previously 
described method37 for birds and the Brazilian Flora 2020 for woody plants.

Environmental data. The initial environmental dataset was composed of the 
following 28 variables: the 19 bioclimatic variables from Worldclim38; 4 CGIAR 
CSI geohydrological variables (actual evapotranspiration, aridity index, soil water 
balance and potential evapotranspiration39); and 5 USGS topographical variables 
(elevation, slope, aspect and topographic index39). Since aspect is a circular 
variable, its sine and cosine were calculated to be used as two different variables. 
All variables had a spatial resolution of 1 km².

We summarized these variables into ten orthogonal variables, calculated 
through a principal component analysis of the whole raster set. These account for 
95% of the overall environmental variation in the Brazilian Atlantic Forest. The 
principal component analysis variables were used to reduce errors in the modelling 
process, which are caused by the spatial autocorrelation of presence data or the 
multicollinearity of the environmental predictors40,41.

Ecological niche modelling methods. Preliminary ecological niche models were 
produced to define the best algorithms to run the final models. The tested 
algorithms were bioclim, domain, generalized linear models, MaxEnt, random 
forest and support vector machines. Their performance was tested by calculating 
the true skill statistics (TSS)42. During the preliminary round of models only 
MaxEnt, random forest and support vector machines showed average high TSS 
scores (>​0.7) and low variance (Supplementary Fig. 9). The final models were 
therefore run using these three algorithms. TSS values for each algorithm used 
in the Environmental Niche Modelling varied little across the three biodiversity 
groups (Supplementary Fig. 10).

For each species, random pseudoabsence points were sorted within a 
maximum distance buffer (that is, the radius of the buffer is the maximal 
geographical distance between the occurrence points). This procedure reduces the 
modelling background area, ensuring better estimates, once pseudoabsences were 

sampled only in areas where species could disperse43–45 while controlling for the 
low prevalence associated with generating pseudoabsences inside large range areas.

Species were modelled using a threefold cross-validation procedure to 
guarantee a minimum number of presence records in the test set due to the small 
number of samples for some species. For each partition and algorithm, a model was 
fitted and its performance was tested by calculating TSS. Only models with TSS 
values of >​0.7 were retained. As a consequence, at the end of this modelling phase, 
51 amphibian species, 122 bird species and 612 woody plant species endemic to 
the Brazilian Atlantic Forest constituted the final potential richness maps. Retained 
models were cut by the threshold that maximizes their TSS, and ensemble models 
were built by the majority consensus rule (that is, the area in which at least half of 
the algorithms predict a potential presence of the species46), resulting in a binary 
map of the potential distribution of species. The steps described above were taken 
to reduce some of the limitations of the species distribution models, such as the 
fact that they are merely correlative and not mechanistic models, and to control 
overfitting and inflated evaluation statistics when species are very restricted 
compared to the total geographical area.

The modelling was performed using ModelR47, a set of R scripts for species 
distribution model fitting and assessment based on packages XML48, dismo49, 
raster49, rgdal50, maps51, rgeos52, random forest53 and e107154.

Climate mitigation benefits. We built a potential aboveground biomass recovery 
map for the Brazilian Atlantic Forest, which is a proxy for aboveground potential 
carbon sequestration in degraded areas (Supplementary Fig. 2). The map has a 
resolution of 1 km2 and followed the methods of of a previous study55. That study 
included the following three biomes: tropical and subtropical moist broadleaf 
forests; tropical and subtropical dry broadleaf forests; and tropical and subtropical 
coniferous forest55. These biomes were defined based on a map of world ecoregions 
obtained from the Nature Conservancy56. Total annual precipitation was calculated 
by summing the individual monthly totals provided by WorldClim57. Data for 
mean annual rainfall (defined as the average of 1950–2000) and rainfall seasonality 
were obtained at a 30” resolution (approximately 1 km ×​ 1 km) from WorldClim57, 
and the climatic water deficit (CWD) was obtained from a previous study58.

We calculated the total potential aboveground biomass recovery (AGB) 
accumulation over 20 years of secondary forest growth (assuming that the initial 
year 0 condition was a fully cleared area), based on annual rainfall, rainfall 
seasonality and CWD. The regression equation obtained from a previous study55 
estimates AGB after 20 years based on best-fit models that incorporate climatic 
variables as follows:

_ = .  −  × ∕ +
.  ×  + .  × 

AGB 20y 135 17 103,950 1 rainfall
1 521983 rainfall seasonality 0 1148 CWD

(2)

where estimated AGB_20y indicates the absolute biomass recovery potential 
over 20 years based on chronosequence models55. Realized local rates of biomass 
recovery may vary because of differences in local soil conditions, land use history, 
the surrounding matrix and availability of seed sources.

To insert uncertainty measures into this analysis, the raw data from a previous 
study55were obtained and used to generate similar equations for the lower 
bound and upper bound of the 95% confidence interval. These estimates were 
incorporated into the optimization process, and the corresponding results are 
presented in Supplementary Table 1.

We did not include changes in carbon stocks in the soils, as very few studies 
investigate the carbon accumulation or loss in soils following restoration in the 
Atlantic Rainforest59. We believe this is a conservative assumption. A recent 
global study showing the impact of land-use change on soil organic carbon60 
shows significant losses following deforestation in the Atlantic Rainforest. Further 
research would enable future studies to overcome this limitation.

Costs. The cost of land restoration for each area within the Brazilian Atlantic 
Forest was based on the opportunity cost for restoration of the land and the cost 
associated in restoring it, actively or passively. Opportunity cost is the potential 
loss of revenue from agriculture or livestock from areas being restored. We used 
the land acquisition cost as a proxy for opportunity cost, which is based on an 
established economic assumption that higher acquisition costs are due to land 
generating greater economic gains20, as land acquisition cost should reflect the 
discounted future revenues from that land. We combined spatial data on the 
distribution of pasturelands and croplands61 with county-level data on the land 
acquisition costs for these two categories62.

The restoration costs vary widely according to the methods applied, ranging 
from lower-cost approaches for natural regeneration (passive or assisted) to higher-
cost approaches for active restoration (for example, tree plantings using nursery 
stock)63,64. Natural regeneration is the spontaneous recovery of native tree species 
that colonize and establish in abandoned fields, while active restoration requires 
planting of nursery-grown seedlings, direct seeding and/or the manipulation of 
disturbance regimes (for example, thinning and burning)64.

The likelihood of an area requiring active or passive restoration is determined 
by socioeconomic factors that in turn determine the likelihood of an area being 
abandoned to regrow and on ecological factors that determine the resilience of 
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the ecosystem to disturbance. As this information is not available for the Atlantic 
Forest, we used the ecological uncertainty of forest restoration success for plant 
biodiversity20 as a proxy. A recent global meta-analysis20 revealed a clear pattern 
of increasing the success of forest restoration (by comparing plant biodiversity in 
reference and restored and degraded systems) and decreasing uncertainty as the 
amount of forest cover increases. We built our map on the ecological uncertainty 
of forest restoration success by calculating the amount of forest cover surrounding 
each non-forested pixel within a buffer size of 5 km (the strongest scale of effect). 
We subsequently applied the negative non-linear equation from a previous study20 
over the map. Finally, we standardized the values within each pixel (dividing its 
value by the highest value found across all pixels) to provide an index that varies 
from 0 (low uncertainty) to 1 (high uncertainty). Our restoration costs map 
therefore identifies areas where natural regeneration and/or active restoration 
methods are most likely to foster plant biodiversity recovery to similar levels found 
in reference systems (that is, old-growth or less-disturbed forests).

Restoration cost (r) was calculated as follows:

= × +r u c f (3)

where u is the ecological uncertainty of forest restoration success, c is the cost 
of the full planting, and f is the cost of the fencing. Areas with lower ecological 
uncertainty of forest restoration success will be less expensive for restoration; 
that is, it will require less human intervention. The cost of a full planting method 
(the most expensive method for active restoration) was obtained from a previous 
study29. Thus, our total costs map (Supplementary Fig. 3) was produced by adding, 
for each planning unit, the values of the opportunity costs map with the values 
from the restoration costs map.

We also incorporated cost reductions based on economies of scale for 
restoration projects of different sizes. To understand how per-unit costs reduce 
with scale, we gathered information from five active forest planting companies 
in the Atlantic Forest. We obtained cost estimates for restoration projects of the 
following sizes: 1, 5, 10, 25, 50 and 100 ha. We then analysed how the average 
costs per project scaled with project size and fitted linear functions to this dataset 
(Supplementary Fig. 4). In each of the size-related scenarios (corresponding to the 
six project sizes listed above), restoration was constrained to happen up to that size.

Other variables. Forest cover data were obtained from a map produced in a 
previous study65, which were derived from TM/Landsat 5, ETM+​/Landsat 7 
or CCD/CBERS-2 images, available at a scale of 1:50,000 in vector format, and 
delimiting remnants ≥​3 ha. This dataset was used to calculate the following: (1) the 
proportion of existing forest (f) within a planning unit; (2) environmental deficits 
according to the Native Vegetation Protection Law; and (3) the amount of area that 
could be restored within each planning unit. Our analysis was focused on areas 
where the native vegetation was forest, therefore excluding areas such as natural 
grasslands or mangroves. In addition to the forest cover, we also masked areas 
that could not be restored (for example, urban areas, roads and lakes) within each 
planning unit. All geographical information system data were converted to Albers 
projection to ensure accurate area and distance calculations.

Prioritization model. Our objective function determines how much forest to 
restore in each planning unit to maximize ecosystem services benefits (biodiversity 
conservation and/or carbon sequestration) and/or minimizes total cost 
(opportunity and restoration costs). Specifically,
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where x is the decision variable representing the proportion of forest to restore 
within each planning unit i. The two components of the objective function 
represent the returns (benefit and cost) of forest restoration to biodiversity 
conservation (b/(c +​ e); benefit US$−1 km−2) for each species j and carbon 
sequestration (s/(c +​ e); tonnes US$−1 km−2), where the total cost of forest 
restoration is the sum of the opportunity cost (c; US$−1 km−2) and the restoration 
cost (e; US$−1 km−2). N is the total number of planning units and M is the total 
number of species. The first constraint ensures that the proportion of forest 
restored ranges from 0 to a maximum value (f), which accounts for the proportion 
of the planning unit that is already forested or represents a land use that cannot 
be restored. In scenarios that limited the maximum proportion of forest in each 
planning unit to 35% or 65%, the functions min(0.35, f) or min(0.65, f) were used 
to define the upper limit of x. The second constraint limits the total area of forest 
to be restored (A; km2), where A =​ 5,179,088 ha. The user-defined parameters w1 
and w2 weight the relative contribution of the biodiversity and carbon sequestration 
components, respectively, of the objective function. They are required because 
the equivalence of objectives with different units is a subjective decision that must 

be made by decision-makers. The objective function can be solved over a range 
of relative weights to understand how these components trade-off. The model 
was solved iteratively in 20 increments of the target area A to approximate the 
non-linear function describing biodiversity conservation values; that is, the target 
was not prioritized at once only. We tested the influence of running even greater 
intervals (up to 1,000) and found very marginal gains after 10 runs (biodiversity 
benefits varied by –1.20 ×​ 10–06 between the 10 and 1,000 runs simulations). 
Alternative scenarios involved the removal of components of this model, such as 
the removal of the total cost denominators (c +​ e) to maximize benefits regardless 
of cost, or the addition of further constraints for the scenarios that limited the 
area of restoration within each state. Exact solutions to this linear programming 
problem were found using the software Gurobi (v.6.5.1).

Scenarios. We evaluated 382 restoration scenarios. These included 360 that 
combined 10 different weights to the objectives of maximizing biodiversity 
conservation, maximizing carbon sequestration and minimizing total cost with 
variations in the maximum area of the planning unit allowed to be restored (35, 65 
and 100%) (Supplementary Fig. 7), and six restoration project sizes (1, 5, 10, 25, 50 
and 100 ha).

Another 20 scenarios repeated some of the above combinations but restricted 
restoration to within state borders by allocating the Legal Reserves deficit of 
each state only within state borders. We repeated this last exercise allowing 
restoration within state borders or outside the state in priority areas for biodiversity 
conservation. Finally, we also ran a scenario whereby the restoration target was 
uniformly distributed to farms below the 20% threshold of Legal Reserve in the 
Atlantic Forest (our Baseline scenario). These scenarios reflect a range of possible 
implementations of the Native Vegetation Protection Law.

We contrasted these restoration scenarios in terms of both cost-effectiveness 
(that is, benefits per unit of cost) and trade-off curves between biodiversity 
conservation and carbon sequestration.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The R package with the workflow for species distribution 
modelling is available and can be installed from https://github.com/Model-R/
Model-R. A repository with example data can be found at https://github.com/
Model-R/Back-end/releases/tag/coordenador-IIS.

Data availability
The datasets generated during the current study are available from the 
corresponding author upon reasonable request. A free online platform for 
integrated land-use planning including these datasets will be available at www.iis-
rio.org/ilup from 2019.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection The Methodology did not involve direct sampling, so data was acquired from other studies.

Data analysis The following software were used in the study: 
R Studio 
QGIS Geographic Information System 
Gurobi  
 
The script to generate all the Environmental Niche Models used in this study  is available at https://github.com/Model-R 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. A free online platform for integrated land-use 
planning including these datasets will be available at www.iis-rio.org/ilup from 2019.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Our approach combines the most comprehensive multi-criteria database on large-scale restoration ever compiled for any region in 
the world with innovative breakthroughs in systematic conservation planning methods, including multicriteria linear programming 
(LP) and the first ever accounting for economic and ecological efficiencies of scale in systematic planning. Our approach is 
customizable to any specific socioecological context and set of objectives, allowing it to be readily adapted to any region of the world. 
Other key capabilities are precision (LP can deliver exact optimum solutions that are superior to the approximations of standard SCP 
software) and the ability to apply this approach to large areas at high resolution (our application had 1.3 million planning units) yet 
calculate solutions quickly. The latter leads to a crucial advantage of our method, the ability to map out a solution space consisting of 
hundreds of combinations of multiple objectives in a few hours and focus attention on the outcomes of these scenarios (as opposed 
to contentious and subjective a priori weighting common in multicriteria approaches). 

Research sample We applied and tested our approach in the global biodiversity hotspot of the Atlantic Rainforest which is poised to undergo a large-
scale restoration effort of up to 5 million hectares as part of Brazil´s new National Restoration Plan. 

Sampling strategy The study was conducted in the Atlantic Forest due to its status as a biodiversity hotspot and because it is poised to undergo a large-
scale restoration effort of up to 5 million hectares as part of Brazil´s new National Restoration Plan.

Data collection Data on amphibian occurrence was obtained from Lemes et al. (2014), with updates from the authors, and comprised 114 endemic 
species (3,786 occurrences). Data on bird occurrence was obtained from the Global Biodiversity Information Facility database and 
comprised 223 endemic species (12,085 occurrences). Data on plants occurrence was obtained from NeoTropTree and SpeciesLink, 
and comprised 846 endemic species and 44, 024 records. The original plant names were based on the NeoTropTree database and 
updated according to the List of Species of the Brazilian Flora, using R package ‘flora’, which is based on the List’s Integrated 
Publishing Toolkit database.

Timing and spatial scale We applied and tested our approach in the global biodiversity hotspot of the Atlantic Rainforest which is poised to undergo a large-
scale restoration effort of up to 5 million hectares as part of Brazil´s new National Restoration Plan. 

Data exclusions We cleaned the data for each species by deleting: i) records that fell out of the environmental layers, ii) duplicated records, iii) non-
duplicated records that fell in the same planning unit (1 km-pixel). The species’ endemism status was assessed by consulting 
amphibian experts, following reference Stotz et al. (1996) for birds, and the Brazilian Flora 2020 for woody plants. 

Reproducibility Methodology is fully described under the Methods section in a way that can be reproduced by other studies. Furthermore, The 
datasets generated during the current study are available from the corresponding author on reasonable request. A free online 
platform for integrated land-use planning including these datasets will be available at www.iis-rio.org/ilup from 2019.

Randomization The Methodology did not involve direct sampling, so data was acquired from other studies. Therefore, "randomization" was not 
applicable.

Blinding The Methodology did not involve direct sampling, so data was acquired from other studies. Therefore, "blinding" was not applicable.

Did the study involve field work? Yes No
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