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Abstract. Species employ diverse strategies to cope with natural disturbance, but the
importance of these strategies for maintaining tree species diversity in forests has been
debated. Mechanisms that have the potential to promote tree species coexistence in the context
of repeated disturbance include life history trade-offs in colonization and competitive ability
or in species’ ability to survive at low resource conditions and exploit the temporary resource-
rich conditions often generated in the wake of disturbance (successional niche). Quantifying
these trade-offs requires long-term forest monitoring and modeling.

We developed a hierarchical Bayes model to investigate the strategies tree species employ to
withstand and recover from hurricane disturbance and the life history trade-offs that may
facilitate species coexistence in forests subject to repeated hurricane disturbance. Unlike
previous approaches, our model accommodates temporal variation in process error and
observations from multiple sources. We parameterized the model using growth and mortality
data from four censuses of a 16-ha plot taken every five years (1990–2005), together with
damage data collected after two hurricanes and annual seed production data (1992–2005).

Species’ susceptibilities to hurricane damage as reflected by changes in diameter growth and
fecundity immediately following a storm were weak, highly variable, and unpredictable using
traditional life history groupings. The lower crowding conditions (e.g., high light) generated in
the wake of storms, however, led to greater gains in growth and fecundity for pioneer and
secondary-forest species than for shade-tolerant species, in accordance with expectation of life
history. We found moderate trade-offs between survival in high crowding conditions, a metric
of competitive ability, and long-distance colonization. We also uncovered a strong trade-off
between mean species fecundity in low crowding conditions, a metric of recovery potential,
and competitive ability. Trade-offs in competitive and colonization ability, in addition to
successional niche processes, are likely to contribute to species persistence in these hurricane-
impacted forests. The strategies species employ to cope with hurricane damage depend on the
degree to which species rely on sprouting, repair of adult damage, changes in demographic
rates in response to enhanced resource availability after storms, or long-distance dispersal as
recovery mechanisms.
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INTRODUCTION

A large number of hypotheses to explain tree species

coexistence in tropical forests have been put forth and

tested (reviewed in Wright 2002). Evidence supports the

notion that these communities are open, dynamic

systems where natural and human disturbance acting

at multiple spatial and temporal scales (e.g., treefall

gaps, fire, wind) impede competitive exclusion (Vander-

meer et al. 1996, Uriarte et al. 2009), and where dispersal

limitation, chance, and history act together to promote

high species richness (Hubbell and Foster 1986).

Mechanisms that have the potential to promote species

coexistence in the context of repeated disturbance

include life history trade-offs between species in

colonization and competitive ability (i.e., the competi-

tion–colonization hypothesis; Tilman 1994) or in the

ability to survive at low resource conditions (e.g., low

light in the forest understory) and to exploit the

temporary resource-rich conditions (e.g., higher light

in the understory) often generated in the wake of

disturbance (i.e., the successional niche hypothesis,

sensu Pacala and Rees 1998). A trade-off between

susceptibility to disturbance and responses to post-

disturbance resource-rich conditions may also contrib-
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ute to the maintenance of species diversity in forests

(Zimmerman et al. 1994, Loehle 2000).

Understanding the importance of these trade-offs in

maintaining species composition in tree communities

requires estimates of the relative contribution of several

demographic mechanisms that may contribute to

successional diversity in the presence of periodic

disturbance. First, both the disturbance itself and the

high resource conditions generated in its wake may alter

juvenile and adult tree growth and survival (Uriarte et

al. 2004, Comita et al. 2009). Tree species’ ability to

produce new sprouts and branches in response to

damage and higher resource availability may also

impact growth and survival (Putz and Brokaw 1989,

Zimmerman et al. 1994, Bellingham 2000). Second,

fecundity of reproductive trees may be affected by

individual tree damage and by subsequent changes in

resource availability. Quantifying this effect requires

observations of species-specific variation in fecundity

schedules as the community recovers from disturbance.

Third, enhanced resource conditions after disturbance

may influence rates of seedling establishment. Finally,

shade tolerance, the ability of tree species to tolerate the

low light resource conditions between disturbance

events, is a critical aspect of understanding life history

strategies in communities subject to periodic distur-

bance, because quiescent periods between individual

disturbance events offer a window of time in which some

species may reach reproductive size classes and therefore

remain an important component of the community

(Clark 1996, Uriarte et al. 2009). As such, shade

tolerance must be considered in any investigation of

the role of life history trade-offs in mediating succes-

sional dynamics (Pacala et al. 1996).

In order to assess the role of life history trade-offs

among species in fostering diversity in tree communities

subject to periodic disturbance, we must first define and

quantify two key aspects of species-specific responses to

disturbance: susceptibility to damage and subsequent

survival and recovery in terms of growth and reproduc-

tive output. Species’ susceptibility to damage includes

not only the probability of being damaged, but also the

immediate demographic consequences of damage for

individual trees, in terms of reduced growth, survival, or

fecundity. Thus, susceptibility refers to the immediate

negative consequences of being damaged adjusted by the

probability of damage. In contrast, recovery refers to

changes in demographic rates from pre-disturbance to

post-disturbance conditions. Recovery occurs over a

longer period, namely the time over which resources

establish a clear trajectory toward pre-disturbance

conditions. As such, recovery must incorporate repair

of damage as well as the potential for increased diameter

growth, survival, or reproduction via seeds or sprouting

in response to the high resource conditions (e.g.,

elevated understory light levels) that often follow

disturbance events. Recovery must also include the

potential for species to colonize sites that become

available as a result of disturbance (i.e., canopy gaps

created by treefalls).

In this paper, we employ a hierarchical Bayes model

to examine species-specific variation in responses to

disturbance in the wake of two major hurricanes in a

tropical tree community in Puerto Rico. We also

investigate whether species exhibit the life history

trade-offs that may allow them to persist in the context

of repeated disturbance. To this end, we use demo-

graphic census data for 10 tree species collected in four

censuses of a permanent 16-ha mapped Luquillo Forest

Dynamics Plot (LFDP) taken at approximately 5-year

intervals, together with annual seed trap data collected

over 13 years (1992 through 2005) in the same site, and

assessments of damage after each of the two hurricanes.

The 10 species represent a range of life history strategies,

successional stages, and responses to hurricane damage

(Table 1; see also Uriarte et al. 2009). Specifically we ask

the following questions:

(1) How do tree species vary in growth, fecundity, and

survival responses to hurricane damage (susceptibility)

and to the high resource (low crowding and high

understory light) conditions generated in the wake of a

hurricane (recovery). Our expectation is that species

strategies in response to disturbance will vary widely in

susceptibility and recovery, and that species with low

susceptibility to hurricane damage will recover quickly

from damage. In other words, we predict a negative

correlation between susceptibility and recovery. We also

expect that recovery strategies will depend on the degree

to which species rely on sprouting, repair of adult

damage, increased growth and survival of juvenile and

adult trees in response to enhanced resource availability

after storms, or long-distance seed dispersal (coloniza-

tion) as recovery mechanisms.

(2) Are there life history trade-offs among species in

their ability to tolerate the low light conditions between

hurricane disturbance events and recovery potential

after a hurricane? We expect that shade-tolerant species

that typically suffer little damage during a storm will

redirect few resources to repair and increased growth,

whereas species that suffer significant damage (shade

intolerant) will have a strategy that either ensures rapid

repair of damage with reduced seed output as resources

are directed to repair the damage, or increases seed

output to enable population recovery via recruitment of

new individuals. These responses may be mediated by

competition–colonization trade-offs (low shade toler-

ance and long-distance colonization) or by successional

niche processes (high shade tolerance and recovery

potential).

METHODS

Study area and species selection.—The Luquillo Forest

Dynamics Plot (LFDP) is a 16-ha forest plot (southwest

corner 188200 N, 658490 W) located in the Luquillo

Mountains of northeastern Puerto Rico. The plot is 500

m N–S and 320 m E–W. The forest is classified as
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subtropical wet in the Holdridge life zone system.

Elevation ranges from 333 m to 428 m a.s.l. All of the

soils are formed from volcaniclastic sandstone. The

LFDP contains 89 species of trees with stems � 10 cm

dbh (diameter at breast height) distributed across 72

genera and 38 families (Thompson et al. 2002). Forty-

five of these species are rare (,1 stem/ha of dbh � 10

cm) and over 75% of species have fewer than 5 stems/ha.

We limited our analyses to a group of 10 tree species that

represent a broad range of life history strategies (Table

1).

Tree censuses and hurricane damage.—Hurricane

Hugo, a category 4 tropical storm, struck the forest in

September 1989, causing significant damage (Zimmer-

man et al. 1994). The first LFDP census started in 1990

and was completed in 1993. The initial survey recorded

several qualitative and quantitative observations on tree

damage resulting from the hurricane. For these analyses,

damage observations were classified into three categories

to represent the degree of hurricane injury for each stem

with dbh � 10 cm: (1) no damage or light damage

(�25% of crown volume removed by the storm), (2)

medium damage (25–75% of crown volume lost through

a combination of branch damage and crown break), or

(3) heavy or complete damage (.75% of the crown lost,

stem snapped, root break or tip-up); see Uriarte et al.

(2004). Many damaged trees sprout and contribute

significantly to the structure of the forest. In the

censuses, one stem (usually the largest diameter) on a

multiple-stemmed plant is designated as the main stem.

All sprouts that arise either along the whole length of a

prone stem or from the base of the stem and also have

dbh � 1 cm are tagged and measured and associated

with the main stem.

The second LFDP census was carried out between

November 1994 and October 1996 and included all live

stems with dbh � 1 cm, together with the status (dead or

alive) of all stems tagged in the first census. The third

and fourth censuses were completed in 2000–2001 and

2005–2006, respectively. As the forest was recovering

from Hurricane Hugo, Hurricane Georges struck Puerto

Rico in September 1998 with winds up to 150 km/h

(category 3). Georges severely damaged 16% and

defoliated 27% of adult trees in the LFDP (J. Thompson

and J. K. Zimmerman, unpublished data). Between

November 1998 and April 1999, we selected 40 points

in a regular 60 3 60 m grid across the LFDP. In a 30 3

30 m square around each of these center points, we

assessed the degree of hurricane damage to all trees with

dbh � 10 cm using methods similar to those described

for Hurricane Hugo.

Seed counts.—Seeds were collected from 120 traps

placed at every 8 m of established trails at a distance 8 m

perpendicular to the trail (Appendix A: Fig. A1). The

traps had surface area of 0.16 m2 and were constructed

using 1-mm mesh mounted 80–100 cm above the

ground. Data analyzed here were counts of seeds

collected biweekly (once every two weeks) beginning in

1 April 1992 and continuing through the end of

December 2005. To ensure sufficient data for robust

parameter estimation, our analyses were restricted to

those species having seeds that were found in at least 150

trap collections during the 13-year sampling period. For

modeling purposes, we summed the number of seeds of

each species collected in each trap over a year as a

measure of annual seed input per species at the site.

HIERARCHICAL BAYES MODELS OF GROWTH, SURVIVAL,

AND FECUNDITY

The adoption of a hierarchical Bayes (HB) framework

allows us to coherently combine demographic data

collected at different temporal (i.e., 5-year interval vs.

TABLE 1. Seed mass, sexual system, and successional status of 10 selected species at the Luquillo Forest Dynamics Plot (LFPD),
Puerto Rico.

Species (and family) Code
Seed

mass (g)
Sexual
system

Successional
status

Mean and
(maximum) size (cm)

Sapling
mortality (%)

Alchorneopsis floribunda (Euphorbiaceae) ALCFLO 0.007 dioecious pioneer 7.57 (48.99) 35.2
Casearia arborea (Flacourtiaceae) CASARB 0.05 bisexual secondary 4.42 (51.70) 26.83
Casearia sylvestris (Flacourtiaceae) CASSYL 0.006 bisexual secondary 3.61 (27.08) 16.4
Dacryodes excelsa (Burseraceae) DACEXC 1.24 dioecious late 19.65 (85.25) 8.68
Guarea guidonia (Meliaceae) GUAGUI 0.4 bisexual late 12.21 (104.7) 37.89
Homalium racemosum (Flacourtiaceae) HOMRAC 0.011 bisexual late 17.85 (124.7) 15.85
Laetia procera (Flacourtiaceae) LAEPRO 0.007 bisexual late 6.54 (51.59) 10.14
Manilkara bidentata (Sapotaceae) MANBID 0.594 bisexual late 9.92 (85.36) 6.32
Schefflera morototoni (Araliaceae) SCHMOR 0.03 bisexual pioneer 4.06 (68.32) 40.48
Tabebuia heterophylla (Bignoniaceae) TABHET 0.01 bisexual secondary 9.19 (70.38) 21.07

Notes: To determine successional status, we used the primary forest species definition from Smith (1970) and additional studies
(Devoe 1989, Lugo and Zimmerman 2002) that combine species-specific characteristics of seed size, seedling regeneration under
different light conditions, and relative densities of various life history stages in this forest type. Species were classified as pioneers if
their seeds germinate only in gaps where full sunlight arrives at ground level for at least part of the day; these species have high
sapling mortality and low seed mass in the shade. Secondary-forest species are species dominating forests that develop after human
disturbance; they generally have high sapling/adult ratios and low seed mass but can germinate in partial shade. Late-successional
species are those that dominate forests undisturbed by humans; they tend to have large seed sizes (low dispersal ability) and high
shade tolerance, and they can reach large diameters. Here, Guarea guidonia appears to be an outlier. We classified it as late-
successional because it persists in mature forests where other late-successional species dominate. Dry seed mass was from J. Forero-
Montaña (unpublished data).
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biweekly) and spatial (i.e., individual tree, seed trap)

scales and from different ontogenetic stages (e.g., seed,

tree) to identify relationships among life history

schedules and how they vary across species (Fig. 1,

Table 2). HB models can also accommodate multiple

sources of variation and uncertainty at different scales.

This approach allows us to capture how interactions at

one scale, say variation among individuals in response to

resource availability, or in these same responses within

individuals across years, relate to processes and obser-

vations at another, such as variation between species in

responses to changing resource environments. This is a

critical issue in understanding variability and constraints

in the expression of life history trade-offs because species

do not respond as an aggregate unit to changing

resources, rather individuals do. Using an HB frame-

work allows us to aggregate individual tree responses to

the species scale while incorporating variation among

individuals and across time.

The HB approach also allows us to model growth,

fecundity, and mortality risk of each tree as latent states

that are not directly observed but are rather inferred

(through a statistical model) from measured data. These

latent demographic states respond to variables that are

observed in several ways. There is both individual (e.g.,

size, wind damage) and population-level variation in

demographic rates between years (e.g., year effects on

demographic rates); see Fig. 1. Each of these latent

states is influenced not only by covariates but also by

process misspecification: the extent to which the model

structure fails to capture existing relationships between

relevant environmental covariates and demographic

rates. Because information enters the model in many

ways, there is substantial correlation among observa-

tions, which can be properly integrated if we allow that

the underlying process is stochastic. For instance,

fecundity estimates are informed by seed trap data,

observations of maturation status, tree size, and

hurricane damage, as well as interannual variability

(Fig. 1). Exploiting the conditional independence of

each data set, together with the underlying process

stochasticity, allows us to marginalize across data sets

and, thus, draw proper inference on demographic rates

(Clark et al. 2010). Here we provide a brief summary of

the model, with emphasis on the responses to hurricane

disturbance. Detailed descriptions of the modeling

approach and computation are provided in Clark et al.

(2010). A list of parameters included in the model

presented here is provided in Appendix B.

Gender and maturation.—The gender of a tree remains

constant, whereas maturation status changes from

immature to mature depending on covariates. Matura-

tion was treated as a binary response (mature/imma-

ture). Because the transition from immature to mature

cannot be observed, it was treated as a hidden Markov

process (Clark et al. 2004). Probability of maturation (h)
increases with tree size and with favorable resource

conditions. The probability of maturation for tree i at

time t is estimated using a logit link to diameter (D) and

the inverse of crowding (�ln[1/NCI]):

logitðhi;tÞ ¼ bh
0 þ bh

1Di;t � bh
2lnðNCIÞi;t: ð1Þ

The Neighborhood Crowding Index (NCI) accounts

for neighbor crowding effects on growth and fecundity,

a measure of resource availability (Uriarte et al. 2004).

For tree i with m neighbors within a 15 m radius, NCI

takes the following form:

NCIfocal;m ¼
Xnm

i¼1

ðDBHiÞ2=ðdistanceiÞ2: ð2Þ

The formulation in Eq. 1 assumes that probability of

maturation increases with the inverse of NCI (i.e., lower

crowding increases resources, potentially leading to

higher probability of reaching mature status). The

choice of a 15-m neighborhood was based on previous

analyses about the scale at which neighborhood

interactions influence tree growth and mortality (Uriarte

et al. 2004). NCI for each individual was calculated

using trees at the closest census date.

Maturation status and gender identification for the

dioecious species Dacryodes excelsa were determined by

repeated visits to all trees in the plot with dbh � 10 cm

over the course of two years (2006–2007) (Forero-

Montaña et al. 2010). For D. excelsa, the unconditional

probability that individual i is female is termed the

female fraction Pr (Hi ¼ 1) ¼ / for observations in any

year t. The species Alchorneopsis floribunda is also

dioecious but no information on the sex of individuals is

available. For this species, and for D. excelsa individuals

for which gender was unavailable for some years,

information enters solely though seed rain data. If seed

density near an individual is high, then the probability

that it is female is large, and vice versa. See Clark et al.

(2004, 2010) for details.

Seed rain and fecundity.—Fecundity (annual seed

production per individual) can rarely be observed

directly in forest canopies. However, we can infer

fecundity from seed trap data that are linked to

individual trees via a dispersal model (Clark et al.

2010). Seed counts for each species in each trap depend

on the tree location relative to seed traps as well as the

tree size, maturation status, gender, and previous

hurricane damage of potential parent trees (Fig. 1).

For each species, the vector of expected seed densities

(st) in seed traps 1 through k in year t is

st ¼ TðcBAþKt ftÞ ð3Þ

where T is the vector of seed trap areas, BA is the basal

area of the species in the plot, c is a fitted parameter,

Kt is the k by nt matrix of dispersal kernel values, and

ft is the length of the nt vector of fecundities that

includes all fecund trees in the plot for that year. The

first term allows for seed inputs from outside the

mapped plot and the second term is a measure of

source strength. The dispersal kernel (K ) is assumed to
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follow a two-dimensional Student’s t distribution, with

scale parameter u (Clark et al. 2010). Seed count data

follow a Poisson distribution. In addition to being

informed by seed trap data, fecundity also depends on

tree size and hurricane damage. The relationship

between size, damage, and fecundity is captured by a

bivariate state-space model for diameter growth and

fecundity.

TABLE 2. Summary of data used in the model.

Data Time span Spatial extent
Frequency
of sampling Data collected

Trees with dbh . 1 cm 1990–2005 16 ha 5 years diameter, location, status
Damage to trees with dbh . 10 cm 1990 16 ha NA tree damage, Hurricane Hugo (1990)
Damage to trees with dbh . 10 cm 1998 40 30 3 30 m plots NA tree damage, Hurricane Georges (1998)
Seeds 1992–2005 120 0.5-m2 traps biweekly counts

FIG. 1. A simplified directed acyclic graph of interactions and data for tree i in year t. Latent states are blue and include annual
estimates of diameter (D), diameter growth (g), hurricane damage (h), maturation probability (h), maturation status (Q), fecundity
( f ), gender, mortality risk (q), and resource availability (NCI). Latent states are not directly observed, but are rather inferred
(through the statistical model) from other variables that are directly measured (data). Data are shown in pink and include 5-year
diameter measurements D0, 5-year survival observations, hurricane damage h0, gender observations, and our index of resources,
NCI0, also measured at 5-year intervals (see Table 2). Seed data (s) are collected in seed traps (k) at the 0.5-m2 scale rather than at
the tree scale. Fecundity for tree i in year t is informed by seed counts collected in year t in the subset of the 120 seed baskets that
fall within the estimated seed dispersal kernel (K ) of tree i. The seed dispersal kernel is estimated at the species scale but takes into
account differences in fecundity between individual trees within a species and provides an estimate of maturation status.
Successional niche processes will lead to trade-offs between high shade tolerance and recovery potential. Tolerance is defined by
mortality risk, diameter growth, and fecundity responses to low resource (�ln[NCI]) conditions. Recovery is defined by the change
in individual tree diameter growth, mortality risk, or fecundity between low and high resource conditions. Relevant demographic
parameters for this trade-off are highlighted with a blue halo. Colonization–competition trade-offs will be determined by the
response of individual tree mortality risk, diameter growth, and fecundity to low resources (boxes with halos) and the ability of
species to colonize new sites, which is determined by fecundity and the estimated seed dispersal kernel, estimated from seed counts
and locations.
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Diameter growth and fecundity.—Diameter growth is

informed by census data collected at 5-year intervals, by

observations of damage collected after Hurricanes Hugo

and Georges, and by a state-space model that includes

fecundity. Because census data were collected at 5-year

intervals, we modeled diameter growth using a two-step

process. First, we used census data to model means and

standard deviations for diameter and diameter incre-
ments for each tree-year (J. S. Clark et al. 2007),

recognizing that there is no individual year information

beyond the interpolation bounded by 5-year observa-

tions. When information is missing, e.g., for diameter in

year t, then the model for year t is parameterized using

data augmentation (Elerian et al. 2001). Data augmen-

tation refers to one of several numerical devices to deal

with missing information. In our case, the basic

timescale of inference is annual, so augmentation for

missing census years is a sensible approach. As is often
the case, it is implemented here as an efficient

computational device and not for purposes of drawing

inference on annual fluctuations in growth. In other

words, we are modeling growth at the annual scale, but

focusing inference at multiyear scales. Uncertainty

associated with this interpolation is described by

posterior estimates of diameter growth (J. S. Clark et

al. 2007). These posterior estimates are then used as

priors in the second step following the approach

outlined in Clark et al. (2010). Seed trap data are

available at the annual scale so no data augmentation is
required to model fecundity.

The second step of the analyses is a state-space model

for growth and fecundity. Once trees are mature,
fecundity depends on covariates, including size, hurri-

cane damage, and neighborhood crowding (Eq. 2) as

covariates that are likely to affect demography, together

with individual and year effects. Year effects reflect

annual variation in demographic rates that are shared by

the whole population. These effects capture some level

of demographic synchronicity among individuals due to

masting and climate variation. There are also individual

differences beyond those accounted for by covariates.

Individual random effects allow us to account for
genetic and environmental variation (e.g., soil water or

nutrient status) not included in the model. There is error

in the model itself. Because both diameter growth and

fecundity are response variables, we include them

together as a multivariate regression within the state-

space model. This approach allows us to explicitly

include error covariance between growth and fecundity

beyond that which is accommodated by covariates. The

growth–fecundity state model is

yi;t ¼ xi;t�1Aþ bt þ ri þ ei;t ð4Þ

where the response vector yi,t for tree i in year t includes

both growth and fecundity (23 1 dimension), bt are year

effects, ri are random individual effects, and ei,t is the

error term. A is the matrix of estimated parameters with

dimensions 2xp, where p is the number of covariates

included in the growth–fecundity state-space model. The

vector xi,t�1 includes all the fixed covariates: hurricane

damage (h), a categorical variable that can take three

values (see Methods: Tree censuses and hurricane

damage), diameter (D), diameter growth (g) in the

previous time interval, and an index of neighborhood

crowding (NCI), taking the following form:

xi;t�1 ¼ ð5Þ
½1 hi;t�1lnðDi;t�1Þ lnðDi;t�1Þ2 �lnðNCIÞ lnðgi;t�1Þ�:

Previous studies have demonstrated that trees can

regrow branches and repair damaged crowns within

relatively short time periods of 3–4 years (e.g., Walker

1991), so trees that were recorded as damaged in this

study were assumed to recover to a healthy status within

a 4-year period. However, in that 4-year period, damage

may have affected tree diameter growth and fecundity

(Uriarte et al. 2004). The effects of damage on growth

and fecundity may not necessarily change monotonically

during the recovery period because trade-offs between

diameter and fecundity vary together with shifts in

resource availability (e.g., changes in light availability)

that may alter tree demography in unexpected ways. For

this reason, the effects of damage were modeled with a

nonparametric approach, using a 4 3 1 multinomial

vector (h in Eq. 5) for both medium and complete

damage categories (see Field methods). This formulation

allows for a 4-year recovery period, in line with field

observations (Walker 1991).

The ln (D) term in Eq. 5 accounts for increases in

fecundity and growth with size, whereas the ln (D)2

captures senescence effects. The growth term gi,t�1
accounts for potential trade-offs between growth and

fecundity across years. Again, although annual estimates

of growth are available in the form of posterior

distribution, we interpret the posteriors aggregated over

4-year intervals, the hypothesized period of recovery

from hurricane damage. This formulation assumes that

growth and fecundity increase with the inverse of NCI

[�ln (NCI)], our index of neighborhood crowding (Eq.

2).

Growth and fecundity conditionally depend on

several sources of data. Fecundity depends on both

seed and tree data. The growth model depends on prior

mean growth calculated in the first step of the analyses,

fixed covariates for growth (hurricane damage, size,

diameter growth in the previous time interval, and

neighborhood crowding), seed data, and survival

probability. An additional model for growth was fitted

using all juvenile trees. The model is univariate but

includes the same covariates as the adult model. Details

are provided in Clark et al. (2010).

Survival.—To avoid unrealistic assumptions about the

functional form relating growth rate to survival, we used

a nonparametric approach that combines the effects of

diameter growth rate and tree size on survival (Metcalf

et al. 2009). In the Metcalf et al. (2009) model, each
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individual each year has two mortality risks, one

associated with tree diameter (lD) because mortality
risk can increase with size and age due to physiological

decline, and a second one resulting from slow growth
(lg), which is related to overall individual health. Then,

the probability that individual i survives from year t� 1
to t is calculated as

qij;t ¼ 1� ðlgij;t�1
þ lDij;t�1

� lgij;t�1
lDij;t�1

Þ: ð6Þ

Priors for each bin are determined using a beta density
(Appendix B) that is constrained only to represent a

monotonically increasing effect for tree size (Metcalf et
al. 2009). This approach allows us to separate the

distinct effects of growth and size on mortality (Clark et
al. 2010).

Prior distributions.—The analysis includes both infor-
mative and noninformative prior distributions. In

Appendix C we provide a detailed summary of prior
distributions and the rationale for our choices.

Computation and model evaluation.—The posterior
distribution was simulated with Metropolis-within-

Gibbs, based on conditional posteriors detailed in Clark
et al. (2010). Computational procedures are described in

detail in Clark et al. (2010). A summary of model
evaluation results is provided in Appendix D.

MODEL INTERPRETATION AND RESULTS

To facilitate interpretation of model output, we
provide a brief description of the parameters, simula-

tions, and approach used to answer the questions posed
in the introduction before presenting the results. (1)

How do tree demographic responses to damage (sus-
ceptibility) and to the high light conditions generated in

the wake of hurricane disturbance (recovery) vary across
species? (2) Are there life history trade-offs in the ability

of species to tolerate the low light condition between
hurricane disturbance events and population recovery

potential after a hurricane?

Species variation in susceptibility and recovery following

hurricane damage and disturbance

To assess variation among species in demographic
susceptibility to hurricane damage, we compared species-

specific estimates of the immediate effects of medium
and severe damage levels on growth and fecundity in the

year immediately following the hurricane (first entry of
vector h in Eq. 5). To assess potential effects of damage

on survival, we used model output to quantify the effects
of (1) diameter growth at a species mean size (dbh), and

(2) diameter on maturation probability at a species mean
crowding (NCI) levels (Eqs. 1 and 2) on the probability
of survival (Eq. 6).

Contrary to our predictions, the immediate responses

of species to storm damage were not completely
consistent with traditional life history assumptions.

For instance, diameter growth for the pioneer Schefflera
morototoni did not change significantly in response to

severe damage (Fig. 2). Rather, species responses to

severe hurricane damage varied, with some exhibiting

lower diameter growth following severe damage (e.g.,

Alchorneopsis floribunda, Casearia arborea, Manilkara

bidentata), and others displaying weak or neutral

responses (e.g., Laetia procera, Tabebuia heterophylla).

Storm damage of medium severity (e.g., loss of branches

rather than the whole crown) did not have a substantial

effect on diameter growth of any of the species.

Regardless of its severity, the posterior densities of

hurricane damage on tree fecundity overlapped zero for

most species, with only one species (A. floribunda)

showing an increase in seed production following

damage of medium severity (Fig. 2).

The tendency for diameter growth to decrease in

response to hurricane damage indirectly affects proba-

bility of survival, because slow growth is associated with

higher mortality risk (Fig. 3a). For instance, reductions

in average diameter growth in the wake of a severe storm

for the late-successional species Dacryodes excelsa and

for the secondary-forest species C. arborea were similar

in magnitude, decreasing ;0.7 cm after the hurricane

(Fig. 2a). However, the effect of a reduction in growth of

this magnitude on the probability of survival is

substantially greater for C. arborea than for D. excelsa

(Fig. 3a). Overall, the probability of mortality for

pioneer and secondary-forest species increases steeply

below a species-specific diameter growth rate threshold.

The range of growth rates at which this threshold occurs

does not follow the expectation from traditional life

history groupings. For instance, at a relatively high

growth rate of 0.5 cm/yr, probability of mortality is

greater for L. procera, a late-successional species, than

for C. arborea, a secondary-forest species (Fig. 3a, b).

Damaged-induced reductions in diameter growth may

also extend the time required for trees to reach

reproductive maturity (Fig. 3c, d). These effects would

be particularly marked for species that grow slowly and

become mature at relatively large diameters, such as D.

excelsa and M. bidentata.

Species recovery during high resource conditions

generated in the wake of a hurricane.—Tree species differ

in their recovery from wind disturbance, at the

individual tree level through repair of damage and

sprouting, and at the population level through juvenile

response to enhanced resource availability, seed pro-

duction, and colonization of new sites. To assess this

variation in responses, we estimated recovery of

damaged individuals by comparing changes in hurricane

effects on growth and fecundity standardized across

species from the first to the fourth year following a

hurricane (i.e., the first and last values of the 4 3 1

multinomial vector h in Eq. 5 using all the trees that fell

in each category).

Recovery through seed production and tree growth and

survival response to enhanced resource availability was

assessed by quantifying changes in demographic rates for

all undamaged trees while accounting for variation in

crowding conditions between individuals and over time.
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Specifically, we compared demographic rates of individ-

uals with low (0–30% quantiles) and high (70–100%

quantiles) values of observed crowing conditions. We also

used the estimates of individual fecundity (Eq. 5) together

with seed dispersal kernels to quantify the potential for

long-distance dispersal when new sites become available

for colonization after hurricanes open up the canopy. This

critical component of population-level recovery was

defined here as the fraction of seeds reaching a patch

.50 m from the source tree. The final component of

recovery, sprouting rate, was calculated directly from the

census data (Table 3; see Methods: Tree censuses).

Recovery from damage through repair was highly

variable across species, ontogenetic stages, and demo-

graphic processes. Heavily damaged individuals from

the 10 focal species increased fecundity considerably

over the 4-year period following a hurricane (Fig. 4; note

log scales). Individuals with heavy damage also exhib-

ited slight decreases in the probability of mortality over

the same time period, whereas the recovery of diameter

growth was either positive or showed no change.

Medium-damaged individuals showed small post-hurri-

cane changes in fecundity and positive increases in

diameter growth rate consistent with the slight decrease

in probability of mortality.

Responses to enhanced resource availability after

storms were evaluated by quantifying demographic rates

at high and low crowding conditions (as proxies for low

vs. high light availability). When evaluated at the low

and high ends of this crowding continuum, species

displayed a range of responses (Fig. 5). Interestingly,

both pioneers and late-successional species showed

stronger responses to favorable, low crowding condi-

tions (i.e., greater growth, fecundity, and survival

probability) than secondary-forest species. Overall,

demographic responses were greater for adult trees than

saplings, with two exceptions: saplings of Guarea

guidonia and D. excelsa displayed greater diameter

FIG. 2. Susceptibility of species to severe (solid circles) and intermediate (open circles) hurricane damage (see Methods: Tree
censuses and hurricane damage for details on damage classification). The ln-transformed values for diameter growth were originally
measured in cm, and ln-transformed fecundity estimates were based on seed counts from seed traps. Lines cover 2.5–97.5%
quantiles. Please refer to Table 1 for species abbreviations.
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FIG. 3. (a) Posterior mean mortality risk plotted against diameter growth rate. These are nonparametric fits where we assume
monotonic priors. (b) Posterior mortality probability distribution (density, not normalized) at diameter growth ¼ 0.1 cm and
species mean diameter. (c) Maturation probability (h) as a function of diameter at species mean crowding (�ln (NCI)) conditions.
(d) Diameter distribution (density, not normalized) at which posterior probability of maturation (h)¼ 0.5. Please refer to Table 1
for species abbreviations.

TABLE 3. Number of stems with dbh . 1 cm across the censuses of the Luquillo 16-ha FDP, seed-basket years, and the impact of
Hurricane Hugo on the proportion of adult trees damaged and the proportion of stems (dbh .1 cm) with basal sprouts.

Species No. trees No. seed-baskets

Proportion of adult trees
Proportion of stems
with basal sproutsMedium damage Severe damage

Alchorneopsis floribunda 416 262 0.18 0.38 0.22
Casearia arborea 8385 485 0.08 0.29 0.54
Casearia sylvestris 4193 214 0.15 0.16 0.57
Dacryodes excelsa 1735 533 0.3 0.05 0.04
Guarea guidonia 1034 366 0.33 0.14 0.61
Homalium racemosum 355 400 0.22 0.24 0.28
Laetia procera 344 564 0.07 0.06 0.01
Manilkara bidentata 2330 152 0.31 0.1 0.15
Schefflera morototoni 4605 852 0.31 0.1 0.5
Tabebuia heterophylla 945 431 0.25 0.14 0.6

Notes: Seed-basket years are the number of baskets through the study years with nonzero seed counts. Tree damage categories
after Hurricane Hugo are defined in Methods.
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growth responses than adults of the same species (Fig.

5d). Production of sprouts varied by an order of

magnitude among species, with a greater proportion of

secondary-forest trees than pioneers and late-succes-

sional trees sprouting after Hurricane Hugo (Table 3).

Some secondary-forest species such as T. heterophylla,

however, had a proportion of sprouting individuals

comparable to those of some late-successional species

(G. guidonia).

We combined estimates of fecundity (Eq. 5) and seed

dispersal kernels derived from location of adults and seed

traps to quantify species potential for long-distance

dispersal as the proportion of seeds dispersed .50 m

from the source tree. Long-distance colonization ability

varied by one order of magnitude among species and

showed a moderate negative correlation with seed mass (r

¼�0.46, n¼10,P¼0.08). The late-successional speciesM.

bidentata had the lowest long-distance colonization ability

(proportion of seeds ¼ 0.003) while the wind-dispersed

secondary-forest species T. heterophylla had the highest

(proportion of seeds¼ 0.032). These proportions did not

entirely align with expectations based on life history

groupings. For example, long-distance colonization abil-

ity for the pioneer S. morototoni was low (proportion of

seeds ¼ 0.007) and similar to that of Homalium race-

mosum, a late-successional canopy dominant.

Our analyses suggest that species find different ways

to persist in a hurricane-impacted forest. First, we found

a moderate relationship (r ¼�0.73, P ¼ 0.02) between

the ability of adult trees to recover from severe damage

through repair, as evidenced by a compound metric that

incorporates recovery in all demographic parameters

(diameter growth, fecundity, and survival; Fig. 5d), and

the response of sapling growth and survival to increased

resource availability. Second, species exhibited a strong

negative correlation between the percentage of stems

that initiated basal sprouts in response to hurricane

damage and the compound demographic response (i.e.,

changes in fecundity, growth, and survival) of adults to

low crowding conditions (Fig. 6).

Relationship between species damage susceptibility and

recovery.—To quantify the relationship between suscep-

FIG. 4. Recovery response vectors by species to two levels of damage: severe and intermediate (medium). Response vectors were
calculated using posterior estimates for the demographic rates of individual that fell within each damage category. Arrows point
from time 1 (the year following the hurricane) to time 3 (three years later). Please refer to Table 1 for species abbreviations.
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tibility to damage during a hurricane and species’ ability

to exploit the high resource conditions generated after

disturbance, we examined correlations between stan-

dardized mean posterior values for damage effects on

growth, survival, and fecundity and our three metrics of

recovery potential: repair of damage, demographic

response to changes in crowding as a proxy for resource

availability, and long-distance dispersal ability (See

Results: Species recovery during high resource condi-

tions). To examine variation in recovery responses while

accounting for the probability of damage, we also

assessed correlations between the percentage of individ-

uals (�10 cm dbh) of each species in each of the two

hurricane damage categories, the percentage of individ-

uals that were recorded with sprouts after the hurricane

(Table 3), and the recovery metrics.

Contrary to our expectations, we found weak but

positive relationships between the immediate hurricane

impacts on adult tree growth, survival, and fecundity

(susceptibility) and recovery potential. Although these

relationships were largely not significant, we found a

significant positive relationship between species’ reduc-

tions in diameter growth rate in the year immediately

following hurricane damage (susceptibility), and one of

our recovery metrics, namely long-distance dispersal

ability (r ¼ 0.64, P ¼ 0.04). Specifically, species that

experienced greater proportional decreases in diameter

growth rate in response to damage of medium severity

were better long-distance colonizers.

Life history trade-offs in shade tolerance between

hurricanes and recovery after a hurricane

To assess the magnitude of life history trade-offs

between species in survival at low resource levels (high

crowding) and the ability to exploit the high resource

(low crowding) conditions that occur after disturbance

(successional niche), we examined correlations between

species-specific growth and fecundity at high crowding

conditions and posterior mean values for long-distance

colonization ability. We also examined correlation

between species demographic rates at high and low

crowding conditions characterized as before (See Re-

sults: Species recovery during high resource conditions).

FIG. 5. Resource response vectors by species for two size classes (mature individuals, 40 cm dbh; immature individuals, 10 cm
dbh). Arrows point from demographic rates at high crowding (low resource) conditions to low crowding (high resource) conditions.
For panel (d) we calculated multidimensional demographic Euclidian distances standardized to the range of values observed within
each species (black, adults; red, juveniles). Please refer to Table 1 for species abbreviations.
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In agreement with expectations from the coloniza-

tion–competition hypothesis, our analyses showed mod-

erate life history trade-offs in the ability of species to

colonize sites .50 m from source trees and adult

survival at high crowding (low resource) conditions (r

¼�0.74, P¼0.02; Fig. 7a), in that species with the ability

for long-distance colonization had lower survival in high

crowding conditions. We also found a trade-off in the

ability of species to exploit the temporary resource-rich

conditions often generated in the wake of disturbance by

increasing seed production (fecundity) and their ability

to survive at high crowding conditions (r ¼�0.66, P ¼
0.03; Fig. 7b), providing some support for the succes-

sional niche hypothesis.

DISCUSSION

Response to disturbance constitutes an important axis

of differentiation in tree life histories (Clark 1996,

Loehle 2000). We examined variation among 10 tree

species in demographic responses to hurricane damage,

further partitioning these responses into susceptibility

and recovery. By incorporating covariates collected at

several temporal and spatial scales and across different

ontogenetic stages, our hierarchical Bayes model pro-

vides unique insights into the demographic processes

and life history trade-offs that mediate tree community

responses to disturbance.

Species-specific variation in susceptibility and recovery

from hurricane damage

Susceptibility to damage was relatively low; posterior

means for the effects of damage on diameter growth

often overlapped zero, especially for individuals that

suffered medium levels of damage (e.g., branch loss).

Walker (1991) also showed that, even after severe

hurricane damage, some tree species in this forest can

initiate leaf production as early as two weeks after a

storm. Rapid recovery may minimize the effects of

hurricane damage on diameter growth. Thus, while

species exhibit clear differences in the probability of

being damaged during a hurricane (Zimmerman et al.

1994), the consequences of damage appear to be minor,

at least in the short term, although reduced growth rate

may increase the risk of mortality.

The effects of hurricane damage on fecundity were

less apparent than those on diameter growth, and one

species (A. floribunda) exhibited a positive effect of

hurricane damage on fecundity. This is an unexpected

result, given that larger trees, which tend to be more

FIG. 6. Relationship between species’ sprouting ability
(proportion of stems with basal sprouts) and adult response
to low crowding conditions. Responses to enhanced resource
availability after storms were evaluated by quantifying demo-
graphic rates at high and low crowding conditions (as proxies
for low vs. high light availability) for adults. See Fig. 5 for
details on quantifying the overall adult demographic response,
and refer to Table 1 for species abbreviations.

FIG. 7. Trade-offs (a) between low-resource survival and
probability of long-distance dispersal and (b) between low-
resource survival and high-resource fecundity. Please refer to
Table 1 for species abbreviations.
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fecund, are also more likely to suffer hurricane damage

(Uriarte et al. 2009). At least two potential reasons may

account for this result. First, we started collecting seeds

in 1992, well after the Hurricane Hugo struck the plot in

1989. As a result, our analysis primarily captures the

effect on fecundity for Hurricane Georges, which was a

weaker storm than Hurricane Hugo (Canham et al.

2010). Second, as for diameter growth, rapid recovery

may have obscured the initial post hurricane damage

responses, particularly after the structural effects of

Hurricane Hugo on large trees, which were also the most

fecund (Zimmerman et al. 1994).

In contrast to susceptibility, recovery from hurricane

damage exhibited a clear, albeit variable pattern. At the

individual repair level (i.e., growth and fecundity), adults

from some species suffered relatively little damage and

recovered rapidly (e.g., the late-successional D. excelsa

and L. procera), others recovered rapidly from heavy

damage (e.g., the pioneers A. floribunda and S. morotoni),

whereas others exhibited weak recovery despite suffering

heavy damage (e.g.,C. arborea). Species recovery was also

assessed as the response to enhanced resource availability

after hurricanes. Favorable resource conditions (i.e., low

crowding) increased the rate of diameter growth for all

species. In general, the magnitude of this increase was

greater for pioneer and late-successional species relative to

secondary-forest species. Secondary-forest species such as

C. arborea and T. heterophylla also exhibited weak

positive fecundity responses to increased resources relative

to other functional groups, although these patterns were

highly variable.

Recovery of diameter growth and fecundity after

storms may hinge on the degree to which individual

species rely on sprouting as a means to regain lost

biomass after disturbance. In a study of vegetative

reproduction of trees in Barro Colorado Island,

Paciorek et al. (2000) suggested that sprouting ability

is poor for both the most shade-intolerant and most

shade-tolerant species but variable for intermediate

shade-tolerant species. Our results are consistent with

this suggestion. Secondary-forest species such as C.

arborea and C. sylvestris have high sprouting ability and

appear to rely on sprouting to recover biomass rather

than increasing diameter growth as a strategy to recover

from disturbance. Pioneer species seem to have low

sprouting ability in this analysis, possibly accruing a

greater benefit from broad dissemination of seeds to new

sites after damage, given the high likelihood that they

will suffer severe damage during the storms (Zimmer-

man et al. 1994). In contrast to secondary-forest species,

shade-tolerant species are unlikely to suffer complete

canopy loss or tip-ups during storms (Zimmerman et al.

1994). As a result, they may be primed to take

advantage of greater light levels within the canopy after

storms by increasing both diameter growth rate and

fecundity. This may be due to these tree species having

better structural support (generally higher wood density)

than secondary species and large labile carbon reserves

that can be used for recovery after damage (Clark and

Clark 1992). Given the important effects of hurricane

regimes on forest structure and composition (Uriarte et

al. 2009), these results suggest that differences in

recovery rates among species may have a greater

influence on forest dynamics than differences in the

probability or effect of damage on trees (Putz and

Brokaw 1989). Sprouting, in particular, can be the

dominant pathway of regeneration for some species,

representing an important axis of life history differen-

tiation (Dietze and Clark 2008).

The range of responses to disturbance observed in this

study do not entirely align with the life history

characteristics associated with traditional ecological

groupings of tropical tree species (Swaine and Whitmore

1988). Parallel research in grassland ecosystems during

the past decade has also found that traditional classifi-

cation schemes based on growth form or functional

groups are not useful in predicting ecosystem function

(Wright et al. 2006) or the response of species to

environmental change (Reich et al. 2001, C. M. Clark

et al. 2007). Recent research suggests that multiple traits,

rather than membership in functional groups, may

control the response of species to changing environmen-

tal conditions (Reich et al. 2001). Although functional

groupings assume that these traits can be used to classify

species, a large body of research calls the broad validity

and consistency of this assumption into question (e.g.,

Craine et al. 2001, Wright et al. 2007). Understanding

species responses to the changing resource environments

that accompany disturbance will benefit from a trait-

based approach that examines how species-specific

variation in traits across environmental gradients mod-

ulates demographic rates (Webb et al. 2010).

Life history trade-offs in response to disturbance

Life history trade-offs in colonization and competitive

ability, or in the ability of species to survive under low

resource conditions and exploit the temporary resource-

rich conditions that may be generated after a distur-

bance could contribute to the maintenance of tropical

forest tree species diversity. As in previous studies (e.g.,

Hubbell and Foster 1986, Pacala et al. 1996), we found

life history trade-offs between the ability of species to

survive at low resource conditions (high crowding

survival) and to exploit the temporary resource-rich

conditions often generated in the wake of disturbance

(low crowding) in accordance with the expectation of the

successional niche hypothesis. Trade-offs between colo-

nization ability and high crowding (low light) survival

are also apparent in our data, as predicted by

competition–colonization theory.

In a similar analysis of tree growth and mortality data

across 11 plots in North Carolina, Clark et al. (2010)

found weaker trade-offs in demographic responses to

changes in resource availability than those found in this

study. Several mechanisms may explain this difference.

The inclusion of data from 11 plots in the Clark et al.
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(2010) study may have increased the range of environ-

mental conditions experienced by species and, as a

result, may have decreased the likelihood of finding

trade-offs in species’ aggregated responses. Examining

life history trade-offs in individuals distributed across a

natural environmental gradient may hinder the detection

of trade-offs. Although plausible, this mechanism is

unlikely to be the cause of the weaker trade-offs

observed at the North Carolina sites because recent

analyses of paired individuals, one in the experimental

gap matched with one in the understory (J. S. Clark,

unpublished data), both with pre- and posttreatment

response, show similar patterns (i.e., weak trade-offs). A

second, and more likely possibility, is that there are true

differences in the expression of trade-offs that are driven

by variation in environmental conditions among the two

sites. One important difference between the two sites is

seasonality, which may impose very different dynamics

among tree species. The forest in Puerto Rico is largely

aseasonal in temperature and precipitation (Zimmerman

et al. 2007), potentially leading to more intense

competition for resources and less room for temporal

partitioning of resources. At higher latitudes, lower sun

angles also reduce the contrast between light gaps and

shaded understory (Ricklefs 1977). A second difference

is the relationship between sprouting and other life

history characteristics. Dietze and Clark (2008) found

that the resprouting of North American tree species was

only weakly correlated with other life history trade-offs,

in contrast to the strong trade-offs encountered in this

study. The generality of our conclusions may hinge on

the frequency and extent of canopy disturbance, which is

far greater at the Puerto Rico site.

Trade-offs, such as those demonstrated here, can help

to promote diversity in the context of environmental

variation, including disturbance (Loehle 2000). The

detail of inference available here shows that species

employ diverse strategies to withstand and recover from

hurricane damage. These strategies depend on the degree

to which individual species rely on sprouting, repair of

adult damage, demographic responses (e.g., greater

sapling growth) to enhanced resource availability after

storms, or long-distance dispersal as recovery mecha-

nisms (Bellingham 2000). It is possible that species

exhibiting enhanced juvenile growth after storms do so as

an alternative to repairing damaged adults, a strategy

that may allow them to increase potential seed produc-

tion from established reproductive adults. Similarly,

allocation of resources to developing sprouts under the

favorable resource conditions that typically follow

storms may come at the cost of compensatory responses

in adult fecundity or surviving stem diameter growth.

Finally, some species rely on colonization of new sites as

the primary recovery mechanism (e.g., T. heterophylla,

the only wind-dispersed species in the set), whereas

others employ mixed strategies (e.g., A. floribunda).

As with other studies before, our results lend support

to the notion that tree life histories may obey

multidimensional trade-offs (e.g., shade tolerance vs.

ability to grow quickly in full sun or to disperse) that can

mediate the maintenance of species diversity in forest

ecosystems (Clark and Clark 1992). Unlike previous

research, our study highlights the rich array of species

responses to disturbance. As such, this study provides

insights into coexistence mechanisms in forests subject

to repeated disturbance. This is a critical need in a world

in which the frequency and intensity of many types of

global and human-driven disturbance are expected to

increase (Clark et al. 2001).
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