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Abstract. Studies simultaneously evaluating the importance of safe-site and seed
limitation for plant establishment are rare, particularly in human-modified landscapes. We
used spatially explicit neighborhood models together with data from 10 0.5-ha mapped census
plots in a fragmented landscape spanning 1000 km2 to (1) evaluate the relative importance of
seed production, dispersal, and safe-site limitation for the recruitment of the understory herb
Heliconia acuminata; and (2) determine how these processes differ between fragments and
continuous forests. Our analyses demonstrated a large degree of variation in seed production,
dispersal, and establishment among and within the 10 study plots. Seed production limitation
was strong but only at small spatial scales. Average dispersal distance was less than 4 m,
leading to severe dispersal limitation at most sites. Overall, safe-site limitation was the most
important constraint on seedling establishment. Fragmentation led to a more heterogeneous
light environment with negative consequences for seedling establishment but had little effect
on seed production or dispersal. These results suggest that the effects of fragmentation on
abiotic processes may be more important than the disruption of biotic interactions in driving
biodiversity loss in tropical forests, at least for some functional groups. These effects may be
common when the matrix surrounding fragments contains enough tree cover to enable
movement of dispersers and pollinators.

Key words: Amazonian forest; Heliconia acuminata; landscape modification; safe-site limitation; seed
limitation; seedling recruitment.

INTRODUCTION

Seedling recruitment is a critical bottleneck in the

population dynamics of many plant species (Horvitz and

Schemske 1994, Wenny 2000). Theoretical and empirical

studies also suggest that patterns of seedling establish-

ment can have major consequences for the structure and

composition of plant communities (Wright 2002, Levine

and Murrell 2003). While the importance for seedling

establishment of factors ranging from seed predation to

gap dynamics are often studied independently (e.g.,

Clark and Clark 1989), we still know little regarding the

relative importance of individual factors for the

establishment of seedlings in most ecological communi-

ties.

Successful seedling establishment is generally thought

to be limited by either low seed abundance or a limited

number of microsites in which seeds can safely

germinate, become established, and grow (i.e., seed

limitation and safe-site limitation, respectively; reviewed

in Turnbull et al. 2000). Low seed abundance can result

from either limited production or the limited dispersal of

available seeds, while the factors defining safe sites can

be both biotic (e.g., competitors, seed predators) or

abiotic (e.g., light levels, soil chemistry). If populations

are safe-site limited, then increased seed availability will

not result in elevated seedling establishment; additional

seeds will simply be arriving in sites where they are

unlikely to germinate or thrive. Although the extent to

which seedling recruitment is seed- or safe-site-limited

remains controversial (Crawley 1990), there is an

increasing awareness that their relative importance

varies spatially and temporally (Turnbull et al. 2000).

Nevertheless, studies simultaneously assessing their

relative importance remain rare.

Deforestation in the tropics is continuing at rates that

lack historical precedent (Hansen et al. 2008), resulting

in the extensive fragmentation of species-rich rain forests

(Bierregaard et al. 2002). One of the most common

consequences of fragmentation is reduced seedling

recruitment, particularly for shade-tolerant or forest

understory species (e.g., Benitez-Malvido et al. 1999,

Bruna 2002, Melo et al. 2007). Because fruit production
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and disperser abundance are often lower in fragments,

these reductions in seedling density have often been

attributed to seed limitation (Cardoso da Silva and

Tabarelli 2000, Bruna 2002). However, biotic and

abiotic changes that follow fragment isolation could

also affect the number of available safe sites. For

instance, in some locations fragmentation may lead to

more seed predators (Burkey 1993), generalist herbi-

vores (Terborgh et al. 2001), and intense competition

due to an influx of pioneer tree taxa (Sizer and Tanner

1999). Finally, fragments often have higher air temper-

atures, reduced relative humidity, and elevated levels of

photosynthetically active radiation (Kapos et al. 1997;

E. M. Bruna, unpublished data), all of which can inhibit

germination or result in seed and seedling mortality.

Processes influencing seedling recruitment are often

spatially heterogeneous, which could have important

consequences for patterns of safe-site and seed limita-

tion. For instance, the density and distribution of

reproductive plants is rarely homogeneous, which can

affect pollinator behavior and therefore spatial patterns

of fruit abundance (e.g., Feinsinger et al. 1986, 1991).

Most seed dispersal is also highly localized: although

some seeds can be dispersed long distances, estimated

mean dispersal distances are frequently less than 20 m

(Horvitz and Schemske 1994, Clark et al. 1999). The

spatial distribution of seed predators is also influenced

by the distribution of seed sources, which alters post-

dispersal patterns of seed abundance (Schnurr et al.

2004). Finally, plants are sessile organisms that engage

in competition for resources with nearest neighbors,

which are themselves spatially variable in their size and

abundance. Despite an increasing appreciation of how

neighborhood effects influence population and commu-

nity dynamics, the application of spatially explicit

approaches to elucidate patterns of safe-site and seed

limitation remains virtually unexplored (but see Muller-

Landau et al. 2002).

Safe-site and seed limitation are often evaluated with

experimental seed additions and by manipulating

environmental factors presumed to influence seed

germination (e.g., litter abundance; Bruna 1999). How-

ever, seed addition experiments that comprehensively

test for seed limitation can be very labor intensive, and

many environmental factors that influence seedling

establishment are difficult to manipulate in the field

(e.g., relative humidity, temperature). An alternative

approach that can overcome these shortcomings is

spatially explicit neighborhood models (reviewed in

Muller-Landau et al. 2002). These models use spatially

explicit data on the distribution of potential seed

sources, the size and location of competitors, and other

biotic or abiotic variables that may affect seedling

establishment to parameterize spatially explicit models.

The models can then be used to predict seed dispersal

and seedling establishment limitation. They have proven

particularly useful for systems in which the processes

affecting establishment operate at scales that make

experimental manipulations prohibitive.
Here we use spatially explicit neighborhood models to

elucidate the relative importance of safe-site and seed
limitation for recruitment of the Amazonian understory

herb Heliconia acuminata and to test competing
hypotheses explaining differences in seedling abundance

between fragments and continuous forest. Our focal
species is the subject of an ongoing demographic study
in the Brazilian Amazon (Bruna 2003), and the results of

previous work suggest this system is an excellent one
with which to investigate mechanisms of safe-site and

seed limitation in tropical understory plants. For
instance, the abundance of seedlings in a demographic

plot is positively correlated with the number of flowering
plants that were present during the reproductive season

(Bruna 2002), suggesting seed limitation. Evidence for
seed limitation also comes from a two-year seed-sowing

experiment in which seed additions to both continuous
forest and forest fragments always resulted in seedling

establishment (Bruna 2002). However, seedling estab-
lishment was lower in forest fragments (Bruna 1999,

2002), suggesting changes in fragments influence safe-
site abundance. We address the following questions: (1)

Is seed limitation in H. acuminata the result of low seed
abundance or limited dispersal, and does the relative
importance of these factors vary between forest frag-

ments and continuous forest sites? (2) Are safe sites
defined by biotic or abiotic conditions in the locations

where seeds are dispersed and seedlings establish, and
how does this differ between fragments and continuous

forest sites?

METHODS

Study system and site

All field work was conducted at the Biological

Dynamics of Forest Fragments Project (BDFFP)
located 70 km north of Manaus, Brazil (28300 S, 608

W; see Plate 1). The BDFFP’s 1000-km2 landscape is
dominated by non-flooded, high-diversity forests (de
Oliveira and Mori 1999). In addition to large expanses

of continuous forest, the BDFFP has several forest
fragment reserves ranging in size from 1 to 100 ha. These

fragments were isolated from 1980–1984 by felling of
surrounding forests and, in most cases, burning the

downed trees once they dried. The regenerating vegeta-
tion around the fragments is cleared periodically to

insure their continued isolation. The soils in the BDFFP
reserves are highly weathered oxisols, which, despite

their relatively high clay content, have poor water
retention capacity (Laurance et al. 1999). Mean annual

temperature is 268C (range 19–398C), and mean annual
rainfall ranges from 1900 to 2300 mm. There is a

pronounced dry season from June to December. For a
description of the field sites and BDFFP history see
Bierregaard et al. (2002).

Heliconia acuminata (Heliconiaceae) is a perennial,

understory monocot native to central Amazonia and the
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Guyanas (Berry and Kress 1991). In the BDFFP

reserves H. acuminata flowers and fruits once per year

(January–March). Most reproductive plants have one

inflorescence with a total of 20–25 flowers; in our study

sites H. acuminata is pollinated by two hummingbird

species: the long-tailed hermit Phaethornis superciliosus

and the straight-billed hermit Phaethornis bourcieri

(Bruna and Kress 2002). Each flower produces a

maximum of three seeds (1.9 6 0.02 seeds [mean 6

SE], based on dissection of n¼873 ripe fruits). The seeds

germinate 6–7 months later at the onset of the rainy

season and rarely beyond then (Bruna 2002). These

discrete flowering, fruiting, and germination seasons

greatly facilitate surveys for newly established seedlings,

and the lack of clonal reproduction (Bruna and Kress

2002) simplifies the interpretation of seedling emergence

patterns.

The seeds of all Neotropical Heliconia species are

exclusively bird-dispersed (Berry and Kress 1991). In

our study sites the primary dispersers are white-necked

thrush (Turdus albicollis) and several species of manakin

(Pipra erythrocephala, P. pipra, P. serena, Corapipo

gutturalis, Schiffornis turdinus; P. Stouffer, personal

communication; M. Anciães, unpublished data). These

species can be divided into two broad categories based

on their fruit-handling techniques. Thrushes are larger

birds that perch to swallow fruits and may regurgitate

seeds locally or defecate them at longer distances. In

contrast, manakins are smaller birds that swallow fruits,

immediately move away from the fruiting plant, and

regurgitate seeds (Stiles 1979; M. Anciães, personal

observation).

In January 1998, a series of permanent demographic

plots (each 50 3 100 m) were established in the BDFFP

reserves in which all H. acuminata were marked with an

aluminum tag and measured. All plots were subdivided

into 50 10 3 10 quadrats to facilitate the surveying and

mapping of plants (Bruna and Kress 2002). Since their

establishment the plots have been censused annually,

and all plants have been mapped. The present study is

based on data collected in plots located in continuous

forest (N ¼ 6) and 1-ha fragments (N ¼ 4) during the

2006 and 2007 censuses. In 2006 we mapped all

established plants to the nearest meter; we also recorded

the number of inflorescences produced by each repro-

ductive plant. In 2007, we recorded and mapped all new

seedlings (Fig. 1).

Modeling framework

We used inverse models parameterized with observa-

tional data (reviewed in Muller-Landau et al. 2002) to

characterize H. acuminata seed production, dispersal,

and seedling establishment and to evaluate the factors

influencing seed and safe-site limitation and how they

differ between fragments and continuous forests. This

method assumes that observed spatial variation in

seedling abundance is a multiplicative function of seed

production, which is based on the size of potential seed

sources, and local dispersal, which is modeled with a

dispersal kernel that adjusts for proximity of the sources

to seedling quadrats (e.g., Fig. 1). The density of

dispersed seeds can then be modified by biotic and

abiotic drivers of establishment.

To estimate seedling recruitment, we calculated the

total number of seedlings in the 2007 census in each

demographic plot’s 50 10 3 10 m quadrats (Table 1).

Although this spatial scale is coarse relative to the size of

adult H. acuminata plants, the low seedling density (0.83

6 0.85 seedlings/quadrat) made it necessary to use this

quadrat size to obtain robust parameter estimates for

our model (Kobe and Vriesendorp 2009).

The total number of seeds, t, produced by a

reproductive plant during the 2006 flowering season

was estimated as a function of its number of inflores-

cences (m) as follows:

t ¼ a 3 m

1þ ða=bÞ3 m
ð1Þ

where the parameter a determines the steepness in the

increase in seed production with the number of

inflorescences and b determines the asymptote of the

inflorescence–seed production relationship. Implicit in

this functional form is the assumption that the number

of seeds per inflorescence will decrease with the total

number of inflorescences within an individual plant

FIG. 1. The spatial distribution of flowering
parents of the understory herb Heliconia acumi-
nata (solid gray circles) and seedling counts in 10
3 10 quadrats (open circles) at the Florestal plot.
Size is proportional to the number of inflores-
cences and seedling counts, respectively. The
study was conducted at the Biological Dynamics
of Forest Fragments Project (BDFFP) located 70
km north of Manaus, Brazil.
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because of pollination limitation or limited resource

availability.

Heliconia acuminata is bird dispersed, and most seeds

are dispersed some distance from the parent plant (M.

Anciães, unpublished manuscript). For this reason, we

chose a lognormal dispersal function, which is well

suited to a variety of dispersal mechanisms, including

the passage of seeds by animals (Greene and Johnson

1992). The kernel takes the following form:

f ðdÞ ¼ 1

g
exp� 1

2

ln½d=X0�
Xb

� �2

ð2Þ

where d is the observed distance between the flowering

plan and the seedling quadrat, X0 is the distance at

which maximum recruitment occurs (i.e., the mode of

the dispersal kernel), Xb determines the breadth or

spread of the dispersal kernel, and g is a normalization

constant equal to the arcwise integration of the dispersal

kernel (Ribbens et al. 1994).

Combining local seed production and the dispersal

kernel results in a model for the potential number of

seedlings (R) in a 103 10 m quadrat i over the course of

a single reproductive season:

Ri ¼
Xn

k¼1

a 3 mk

1þ ða=bÞ3 mk
f ðdikÞ ð3Þ

where mk is the number of inflorescences of k ¼ 1 . . . n
plants within the maximal dispersal distance (in meters)

suggested by our model and dik is the distance from

quadrat i to plant k, and f( ) is the appropriate dispersal

kernel.

Our previous studies and knowledge of the natural

history of this system allow us to exclude several factors

that may define safe sites in other systems. For instance,

predation of H. acuminata seeds in both fragments and

continuous forest is very limited (Bruna 1999), as is

seedling herbivory by both vertebrates and invertebrates

(Bruna 2002). There is also no evidence that fungal

pathogens are a major source of H. acuminata seedling

mortality (E. M. Bruna, personal observation), and

community-wide rates of seedling infection in Central

Amazonia are extremely low (Benitez-Malvido et al.

1999). Finally, under identical conditions, seeds from

fragments are not less likely to germinate than those

from continuous forest (Bruna 1999), suggesting the

effects of inbreeding on recruitment are limited.

Therefore, we emphasize mechanisms that our previous

empirical work suggests are most relevant and that have

been shown to strongly influence seedling recruitment in

other herbs: canopy cover (a surrogate for the amount of

light reaching the forest floor) and the density of

established conspecific plants (Flinn and Vellend 2005,

Schleuning et al. 2009). To this end, we modified the

basic inverse model to account for the following factors.

1. Density-dependent interactions with established H.

acuminata.—The density of established (.12 cm height)

H. acuminata plants in the 50 3 100 m demographic

plots varies eightfold (Bruna and Kress 2002), and there

is also substantial variation in density at the 10 3 10 m

scale within census plots (Table 1). There is therefore the

potential for seedlings to be competing with previously

established plants, most of which are orders of

magnitude greater in biomass. We incorporated densi-

ty-dependent interactions in the model by first calculat-

ing the number of established plants in each of the 10 3

10 m quadrats of each plot and estimating the effects

that this increase in conspecific density would have on

seedling recruitment. The total number of seedlings Sdi
potentially recruited in quadrat i becomes

Sdi ¼
Xn

k¼1

a 3 mk

1þ ða=bÞ3 mk
f ðdikÞ þ g 3 Pi ð4Þ

where Pi is the number of adult plants in quadrat i and g

is the estimated density dependence parameter. Using

this formulation, negative density dependence is

straightforward to interpret. However, positive density

dependence may be indicative of favorable conditions

for establishment or increased pollinator visitation

(Feinsinger et al. 1986, 1991), thereby confounding

biotic and abiotic drivers of seedling establishment.

However, previous research at the site has demonstrated

thatH. acuminata reproductive success is independent of

TABLE 1. Number of reproductive parents of the understory herb Heliconia acuminata in 2006, seedlings in 2007 in the 10 study
plots, and percentage of 10 3 10 quadrats within each plot with no seedlings.

Plot name Size No. inflorescences in 2006 No. seedlings in 2007 Quadrats without seedlings (%) GLI

2107 1 ha 10 8 42 0.088 (0.034)
2108 1 ha 30 11 40 0.086 (0.056)
5751 1 ha 27 9 41 0.091 (0.026)
5753 1 ha 6 6 46 0.141 (0.117)

5750 CF 56 44 29 0.049 (0.021)
5756 CF 35 34 31 0.031 (0.004)
Cabo Frio CF 5 18 36 0.096 (0.032)
Dimona CF 2 8 43 0.031 (0.013)
Florestal CF 37 41 27 0.071 (0.0211)
Porto Alegre CF 3 8 43 0.130 (0.057)

Notes: Mean and SD (in parentheses) values for gap light index (GLI) were calculated from hemispheric photos. The study was
conducted at the Biological Dynamics of Forest Fragments Project (BDFFP) located 70 km north of Manaus, Brazil. CF stands for
continuous forest.
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local flower density (Bruna et al. 2004). This allows us to

interpret positive density dependence with established

plants as a proxy for habitat favorability, an approach

often used in plant ecology (e.g., Iverson and Prasad

1998). Although a positive or a negative value of g could

mask some density dependence of the opposite sign, this

approach allows us to identify the predominant effect.

2. Abiotic factor: light levels.—We used hemispherical

photography to quantify growing-season light availabil-

ity in each of the 50 10 3 10 m quadrats in each study

plot. Photographs were taken on a leveled platform at 1

m from the ground in the center of the quadrat. We used

a thresholding algorithm that ensures objective and

repeatable results (Jonckheere et al. 2005) to calculate

percentage of light transmission as a measure of

available light at each quadrat in each plot. Inspection

of the data suggested that seedling recruitment increased

with light availability up to a point, but fell off abruptly

beyond this threshold (Fig. 2A). For this reason, the

effect of light availability on H. acuminata establishment

was calculated as a function of two estimated parame-

ters: Lth determines the light level (transmission, TR)

beyond which seedling establishment stops and L

determines the slope of the relationship between light

availability and seedling recruitment below the thresh-

old. The effect of light transmission on quadrat i

becomes

f ðTRiÞ ¼
L 3 TRi if TRi , Lth

0 if TRi � Lth :

�
ð5Þ

Combining Eqs. 4 and 5, the total number of seedlings Si

expected to establish at quadrat i is

Si ¼ Sdi f ðTRiÞ: ð6Þ

Model comparison

To assess the importance of each individual process

on seedling recruitment and how their relative impor-

tance varied between fragments and continuous forests,

we compared alternative candidate models using Akaike

information criterion (AIC; Burnham and Anderson

2002). These models described the basic mechanisms and

potential effects of fragmentation on seed production,

seed dispersal, and seedling establishment. For instance,

to determine the importance of dispersal we compared a

model that incorporated a dispersal kernel (Eq. 2) with a

null model that assumed that seeds were evenly

distributed across quadrats. We examined the impor-

tance of individual biotic and abiotic factors on

recruitment by comparing a basic set of models that

include all potential combinations of the biotic and

abiotic processes we considered.

To quantify the effects of fragmentation on seed

production, dispersal, and establishment, we included

models that assumed that each of these processes can

vary between fragments and continuous forests. For

instance, fragmentation could affect the effectiveness of

pollinators (parameters a and/or b in Eq. 1), disperser

movement and the shape of the dispersal kernel

(parameter X0 in Eq. 2), or the effect that light

availability has on establishment (parameter L or Lth

in Eq. 5).

For all analyses we assumed that the expected density

of recruits in a quadrat follows a negative binomial

distribution, reflecting the high degree of clumping

observed in the data (Clark et al. 1998). We used

simulated annealing, a global optimization algorithm, to

find the parameter values that maximized the likelihood

of observed recruitment densities. We also calculated

asymptotic 95% support limits for all the parameters.

For the goodness-of-fit calculations, seedling densities

were log transformed as log(seedlings þ 1) to reduce

deviation from normality (Zar 1996). A list of estimated

parameters is provided in Table 2.

FIG. 2. (A) Light availability (gap light index, GLI; higher
values are associated with greater light availability) and seedling
densities per quadrat in our study plots. (B) Distribution of
light in 10 3 10 m quadrats in 1-ha (n ¼ 200) and continuous
forest (CF; n ¼ 300) plots.
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Assessing seed and safe-site limitation

To estimate potential seed production limitation, we

used data on the number of inflorescences for repro-

ductive plants in each plot together with a mean of 20

fruits with three seeds per fruit produced per inflores-

cence. This is a conservative estimate with respect to

tests of seed production limitation because this number

is the maximum observed seed production and we

assume no seed predation (Bruna and Kress 2002). Seed

production limitation at each study plot was calculated

as the proportion of 103 10 quadrats at which no seeds

arrived, estimated stochastically as a Poisson seed rain

with equal expectation across all quadrats. The propor-

tion of quadrats (n) at which none of the seeds produced

in the plot (s) arrive is

source limitation ¼ expð�s=nÞ: ð7Þ

We then used seed production numbers and our

estimated dispersal kernels to determine dispersal

limitation at the quadrat level as the proportion of 10

3 10 m quadrats in each plot that failed to receive seeds.

Finally, the difference between dispersal limitation and

patterns of established seedlings provided an index of

safe-site limitation, calculated as 1 � r/a, where r is the

number of quadrats with established seedlings and a is

the proportion of quadrats that would receive seeds

according to our estimates of seed production and

dispersal (see Clark et al. 1998). Finally, to assess the

effects of fragmentation on seedling recruitment pro-

cesses, we compared the values of all limitation metrics

between fragments and continuous forests. All analyses

were conducted using R statistical software (R Devel-

opment Core Team 2008).

RESULTS

Our analyses demonstrated both seed and safe-site

limitation of H. acuminata recruitment at the study site,

with large variation in the magnitude of the processes

that determine seed production, dispersal, and estab-

lishment among and within the 10 study plots (Tables 1

and 3). The most parsimonious model, which included

dispersal, positive density-dependent interactions with

established plants, and a positive effect of light on

seedling establishment below a threshold value (Appen-

dix A), produced a moderate fit to the data (R2¼0.23), a

result we expected in light of the complex behavior of

animal dispersers in heterogeneous landscapes (Russo et

al. 2006). Results highlighted the importance of light

and habitat favorability (as reflected by density of

established plants) as the primary factors limiting

recruitment of H. acuminata in these forests.

Seed limitation

Assuming that each inflorescence produces 20 fruits

with three seeds per fruit (Bruna and Kress 2002) and no

dispersal or safe-site limitation, we found virtually no

seed production limitation across the study plots at a

scale of 10 3 10 m (Table 3). However, these numbers

change drastically if we evaluate seed production

limitation at a finer spatial grain (Kobe and Vriesendorp

2009). For instance, at 13 1 m scales there would not be

enough seeds to reach 0.01–78% of the quadrats at the

study plots.

The AIC values indicated that a model that includes

dispersal was a better fit to the data than a null model

that assumes seeds are evenly distributed between

TABLE 2. Definitions of estimated model parameters.

Parameter Description

a linear effect of number of inflorescences on seed
production

b asymptote of the relationship between number
of inflorescences and seed production

X0 mode of the dispersal kernel
Xb variance of the dispersal kernel
g effect of adult density on recruitment
L effect of light transmission on seedling establishment
Lth maximum light transmission threshold for

seedling establishment

TABLE 3. Estimated limitation in seed production and dispersal and seedling establishment of the understory herb Heliconia
acuminata in the study plots.

Site
No.

inflorescences
Estimated

seed production
Production
limitation

Dispersal
limitation

Establishment
limitation

2107 10 600 ,0.000001 0.42 0.72
2108 30 1800 ,0.000001 0.30 0.71
5751 27 1620 ,0.000001 0.02 0.82
5753 6 360 0.00075 0.54 0.83
5750 56 3360 ,0.000001 0.00 0.58
5756 5 300 0.0067 0.02 0.61
Cabo Frio 2 120 0.09 0.52 0.42
Dimona 2 120 0.09 0.64 0.61
Florestal 37 2220 ,0.000001 0.16 0.45
Porto Alegre 3 180 ,0.000001 0.68 0.56

Notes: Total seed production was calculated by assuming that each inflorescence produces 20 flowers each with three seeds
(Bruna and Kress 2002) and all seeds are distributed evenly among quadrats. Dispersal limitation was calculated by simulating
dispersal of produced seeds using estimated parameters for Eq. 2 and calculating the percentage of quadrats that received no seeds.
Seedling establishment limitation was calculated as the proportion of quadrats to which seeds are estimated to disperse but where
seedlings fail to establish. See Methods: Assessing seed and safe-site limitations for more details.
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quadrats (Appendix A). Moreover, our inverse modeling

results suggest that most seeds are dispersed short

distances from reproductive plants, which is consistent

with the potential importance of dispersal limitation

(Table 4). Since collection of dispersed seeds is not
feasible in our study system, we could not evaluate the

degree of dispersal limitation at the sites directly.

However, we used parameter values from our estimated

dispersal kernel together with data on the location and
reproductive effort (number of inflorescences) of repro-

ductive plants to estimate seed dispersal limitation at the

study sites (see Methods: Assessing seed and safe-site

limitation). Results from these simulations show severe

dispersal limitation at a 10 3 10 m scale (Table 3). We
also demonstrated large variation between and within

plots in the magnitude of dispersal limitation with the

percentage of quadrats that did not receive any seeds

ranging from 0% in plot 5750 to 68% in plot PA-CF.

We examined the effects of fragmentation on seed

limitation using two complementary approaches. First,
we determined whether seed production or seed dispers-

al limitation differed between fragments and continuous

forests (Table 3). Second, we varied parameters a and b

in Eq. 1 and parameter X0 in Eq. 2 to assess whether

fragmentation influences either seed production or the
mode of the dispersal kernels and hence the degree of

dispersal limitation. Results from these two approaches

provided consistent answers. First, model comparison

showed that the data do not support a difference in the
shape of the relationship between inflorescence number

and seed production or in dispersal kernels between

fragments and continuous forests (Appendix B). Second,

we found no differences in seed production limitation (t

¼ 0.066, P¼ 0.47) or seed dispersal limitation (t¼�0.09,
P ¼ 0.46) between 0.5-ha plots in forest fragments and

continuous forests, although both seed production and

seed dispersal limitation were far more variable within

and between plots in continuous forests than in
fragments (Table 3).

Safe-site limitation

We considered abiotic and biotic factors that can

influence seedling recruitment in H. acuminata. The

former included the potential effects of light while the

latter accounted for density-dependent interactions with

conspecifics. Of these factors, models were most

improved by inclusion of positive density dependence

with established plants (Appendix A). A higher number

of established plants in the plot, regardless of their

reproductive status, was associated with greater seedling

recruitment. The most parsimonious model also includ-

ed effects of light. We found a threshold light

transmission beyond which seedling establishment fails,

as well as a linear positive relationship between light

availability and seedling recruitment below the threshold

(Figs. 2A and 3).

We also examined whether fragmentation affected the

importance of the factors determining safe-site limita-

tion in our system. Mean light levels were higher in

fragments than in continuous forests (t test on log-

transformed light transmission data, t ¼ 8.7013, df ¼
478.351, P , 2.2 3 10�16; Fig. 2B). The most

parsimonious model included differences between con-

tinuous forests and fragments in the effects of light

availability on seedling recruitment. Parameter L in Eq.

5, which determines the magnitude of the effect of light

on recruitment, increased fivefold from fragments to

continuous forests (Fig. 3). We failed to detect any

effects of fragmentation on light threshold levels or on

density-dependent interactions with conspecifics (Ap-

pendix B).

Given that seedling establishment rates and our

calculations of seed dispersal were based on data

collected at the same spatiotemporal scales, we could

also calculate safe-site limitation at each of our 10 study

plots (Table 3). These calculations demonstrate that

seedling establishment limitation is stronger in frag-

ments than in continuous forests (mean ¼ 0.77 in

fragments vs. 0.53 in CF, t ¼ 5.01, P ¼ 0.0002), which

TABLE 4. Maximum-likelihood parameter estimates (MLE)
and support intervals (SI) for the most parsimonious model.

Parameters MLE Lower SI Upper SI

a 0.67 0.41 1.00
b 4.60 1.00 10.00
Lfrag 4.10 3.36 11.62
LCF 21.48 20.19 45.04
Conspecific density dependence (g) 0.03 0.03 0.04
X0 3.64 2.22 4.18
Xb 0.82 0.66 0.86
Lth 0.33 0.28 0.40

Notes: Key to parameters: Lfrag, effect of light transmission
on seedling establishment in fragments; LCF, effect of light
transmission on seedling establishment in continuous forest. See
Table 2 for explanations of other parameter abbreviations.

FIG. 3. The relationship between light availability (gap light
index, GLI) and light multiplier, parameter L, the effect of light
transmission on seedling establishment. We assumed a linear
increase in seedling establishment with light up to a threshold
level beyond which establishment did not occur. See Table 3 for
parameter values.
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is consistent with the hypothesis that the seed germina-

tion or seedling establishment environment is less

favorable in fragments.

DISCUSSION

Studies simultaneously evaluating safe-site and seed

limitation of seedling establishment are rare (but see

Flinn 2007, Jacquemyn and Brys 2008), particularly in

tropical systems. Furthermore, most studies investigat-

ing recruitment in the tropics have focused on trees (e.g.,

Muller-Landau et al. 2002), despite the fact that herbs

and other understory plants can represent up to 25% of

the diversity in tropical forests (Gentry and Emmons

1987). Our results suggest that the effects of fragmen-

tation on the recruitment of herbaceous species are more

complex than previously suggested (Cardoso da Silva

and Tabarelli 2000, Bruna 2003) and that they extend

beyond a simple safe-site vs. seed limitation dichotomy.

Effects of inflorescence abundance and potential dispersal

on seed limitation

Seed limitation is strong for many plant species (Flinn

and Vellend 2005, Svenning and Wright 2005). In our

system the number of inflorescences, and therefore

number of potential seeds produced, varied 20-fold

across the study plots (Table 1). Although seed

production limitation at the scale of a 10 3 10 m

quadrat, that is, the percentage of quadrats that did not

produce at least one seed, was similar among study

areas, these rates varied from 0.1% to 78% among sites

at a scale of 131 m, indicating that seed input limitation

at the scale occupied by a reproductive adult plant can

be extremely high (Table 3; Kobe and Vriesendorp

2009). This result is not surprising since forests in

Central Amazonia have among the lowest recorded

levels of plant fertility in the tropics (Gentry and

Emmons 1987).

Although previous work suggested there was a large

influx of seeds from continuous forest into nearby forest

fragments (Bruna 2003), our results suggest this is not

the case: the mean estimated dispersal distance for H.

acuminata was ,4 m (Table 4, Fig. 1), resulting in

strong dispersal limitation across and within sites (range

2–68%). Previous efforts to describe the dispersal kernel

of vertebrate dispersed seeds have focused primarily on

measuring movement patterns and seed passage rates of

frugivores (e.g., Westcott and Graham 2000), and there

has been some criticism in the literature of seed dispersal

kernels derived from seedling quadrat or seed trap data

(e.g., Holbrook and Loiselle 2007). However, the short

mean dispersal distances we estimated for H. acuminata

are consistent with those of other understory herbs

(Cain et al. 1998, Svenning and Skov 2002) and the

foraging behavior of H. acuminata’s dispersers. Many

frugivores cache food, have nest sites to which they

return after foraging (e.g., Russo et al. 2006), or swallow

and digest seeds for relatively long periods (e.g.,

Westcott and Graham 2000). Manakins, however, rarely

swallow seeds but rather regurgitate them after a few

minutes while perching on nearby trees (Stiles 1979).

Radio telemetry data and foraging experiments con-

ducted at the study site further support our conclusion

that short-distance dispersal is prevalent inH. acuminata

(M. Uriarte, M. Anciães, and E. M. Bruna, unpublished

data). This pattern has also been observed for other

Heliconia species, possibly resulting from their large seed

sizes relative to bird gut size (Stiles 1979, Schleuning et

al. 2009). We are therefore confident that the estimated

dispersal kernels accurately reflect dispersal limitation

for H. acuminata.

Effects of fragmentation on seed production

and dispersal limitation

Our results showed that the relationship between

inflorescence number and seed production (Eq. 1) did

not vary between fragments and continuous forest. This

suggests that pollination rates were relatively unaffected

by fragmentation, perhaps because hummingbirds ap-

pear to readily move through the secondary growth

surrounding fragments (Antongiovanni and Metzger

2005, Stouffer et al. 2006). However, the effects of

fragmentation on seed production are likely to differ

with mating systems and pollinator behavior (Aizen and

Feinsinger 1994). By altering plant resources (e.g.,

water, light, nutrients), fragmentation may also affect

maternal resource limitation, which could lead to

differential seed production between fragments and

continuous forests without any pollination decline

(e.g., Aizen and Feinsinger 1994). Although we did not

explicitly test for effects of the abiotic environment on

seed production, model comparison failed to support

consistent differences in seed production between

fragments and continuous forests, and previous obser-

vations suggest per capita seed production is similar in

these two habitat types (Bruna and Kress 2002).

However, seed production was far more variable within

and between plots in continuous forests than in

fragments with very high seed production in some of

the continuous forest plots (Table 1). These large

populations probably indicate habitat suitability (e.g.,

edaphic control) at some but not all of the continuous

forest sites.

The magnitudes of seed dispersal limitation were

comparable for fragments and continuous forests (Table

3). Moreover, model comparison failed to support the

notion that disperser behavior lead to different dispersal

distances for seeds in fragments vs. continuous forests

(Appendix B). We therefore find little support for the

hypothesized increases in dispersal limitation following

fragmentation, which contrasts sharply with work in

other systems documenting limited immigration of seeds

into forest fragments (Flinn and Vellend 2005, Cordeiro

et al. 2009). Previous research at the study site has

demonstrated that, despite having lower population

densities in forest fragments (Stouffer et al. 2006), H.

acuminata’s avian frugivores readily move among
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fragments (M. Anciães, unpublished data). However,

species differ considerably in their response to fragmen-

tation and the resulting landscape matrix (Van Houtan

et al. 2007). The extent to which seed dispersers, and

hence plant seed shadows, are affected by fragmentation

depends on dispersers’ range sizes, fidelity to natal

territory, and physical and behavioral limits (Sodhi et al.

2004).

Effects of abiotic and biotic factors on safe-site limitation

In contrast to the limited effect of fragmentation on

dispersal limitation, our models suggest major effects of

fragmentation on the availability of safe sites; safe-site

limitation, that is, the percentage of quadrats that failed

to receive at least one seed, varied from 45% to 82%

across study sites. In contrast to previous studies

demonstrating the importance of fragmentation on

disperser behavior and plant colonization (see review

in Flinn and Vellend 2005), biotic factors, specifically

negative density-dependent interactions among seedlings

and established plants, appeared relatively unimportant.

Rather, abiotic factors seem to be the most important

control on seedling establishment.

Two abiotic factors appear to exert major and positive

influences on seedling establishment. Light availability

influenced seedling establishment at two levels. Seedlings

failed to establish above threshold values of canopy

opening, implying limitation by high light (Fig. 2).

Elevated levels of photosynthetically active radiation are

associated with higher air temperatures and reduced

relative humidity (Kapos et al. 1997; E. M. Bruna,

unpublished data), increasing the risk of seed and

seedling desiccation or mortality. Below the estimated

threshold value, however, seedling establishment in-

creased with light levels (Fig. 3). Slight increases in light

availability also led to greater seedling growth and

survival in an experimental study with another Amazo-

nian Heliconia species (Schleuning et al. 2009), and

similar results have been observed for tropical tree

seedlings (Montgomery and Chazdon 2002).

The second abiotic factor, habitat favorability, as

reflected in the strong positive effects of established

plant density on seedling establishment, may reflect

underlying soil quality. Understory herbs tend to have

specific microhabitat requirements (Whigham 2004),

and in a site near ours, Costa et al. (2005) found strong

links between soil structure and herb distribution and

abundance. Furthermore, fine-scale spatial variation in

soil properties and soil chemistry have previously been

shown to influence the probability of seed germination

(reviewed in Baskin and Baskin 1998). Studies of tree

dynamics at some sites in the BDFFP have uncovered

links between tree biomass, soil texture, and nutrient

properties (Laurance et al. 1999); however, little is

known of how these properties influence seed germina-

tion. Experiments manipulating variables that have been

shown to be key for germination of plants in other

tropical systems (e.g., leaf litter, water availability,

PLATE 1. Continuous forest at the Biological Dynamics of Forest Fragments Project (BDFFP), in Brazil, fragmented by the
BR-174 highway. Highways are a leading cause of habitat fragmentation in tropical forests. Photo credit: E. M. Bruna.

May 2010 1325FRAGMENTATION AND SEEDLING RECRUITMENT



herbivory) would help in elucidating the importance of

these factors of plant recruitment.

Safe-site limitation, specifically, the effect of light on

seedling establishment, appears to be the critical driver

of differences in population demography of H. acumi-

nata between fragments and continuous forests (Fig. 3).

To our knowledge no other studies have compared

spatial heterogeneity in light availability in fragments

and continuous forest, nor how this heterogeneity

influences seedling recruitment. One of the most

common consequences of fragmentation is reduced

seedling establishment, particularly for forest understory

species such asH. acuminata (e.g., Benitez-Malvido et al.

1999, Bruna 2002). After isolation, increased light levels

often lead to seed dessication or high rates of seedling

mortality for shade-tolerant species (Bruna 2002). These

effects could be manifest either through different

thresholds for establishment or different responses to

ambient light levels in fragments and forest. Our results

suggest that plants in continuous forests respond more

strongly to slight increases in light levels (Fig. 3).

Understory light levels were greater and more spatially

heterogeneous in fragments than in continuous forests,

possibly creating an environment in which higher

photosynthetic activity is associated with greater evapo-

transpiration and lower net carbon assimilation (Kita-

jima 1994). Minimizing water losses rather than

maximizing carbon gain may be a more sensible strategy

for shade-tolerant species in stressful environments

(Walters and Reich 2000).

Two important caveats to our conclusions bear

discussion. First, we examined the importance of seed

vs. safe-site limitation during one season, uncovering

high spatial variation in the importance of these two

factors within quadrats in a 0.5-m plot and between

plots. A number of studies suggest that temporal

variation in the factors that drive recruitment is likely

to have important effects on plant population dynamics

(Schupp 1990, Connell and Green 2000, Ibáñez et al.

2007), so that the relative importance of safe-site and

seed limitation will vary spatially and temporally

(Turnbull et al. 2000). For instance, the abundance of

disperser, pollinator, and predator populations can all

vary from year to year (Pascarella 1998). In addition,

interannual differences in climate (e.g., rainfall) may

also lead to variation in seed production (Wright 2005)

and seedling establishment (Ibáñez et al. 2007), both of

which can in turn affect frugivore populations (Wright

et al. 1999). Given the importance of light in limiting

seedling establishment for H. acuminata, a result we

believe is potentially indicative of dessication, dry years

may drive interannual variation in seedling establish-

ment for this species. Understanding how this variation

interacts with the spatial processes that determine plant

recruitment, particularly in the context of human

habitat modification, is a critical component of biodi-

versity conservation. The methods presented in this

paper can easily incorporate interannual variation in

seed production (Eq. 1) or in the processes that drive

safe-site limitation (Eqs. 4–6) by estimating separate

parameters for each year for which data are available,

which we believe is a fruitful avenue for future research.

Second, remnant forest patches are rarely protected

from hunting, fire, or other forms of human disturbance

like those at the BDFFP are, and all of these factors

could exacerbate the factors leading to low plant

recruitment in fragments and biodiversity loss (Galetti

et al. 2009). Our study provides much-needed empirical

data on how the strength of both pre-dispersal and post-

dispersal factors influence recruitment in an Amazonian

understory plant, as well as how the pattern of limitation

varies spatially. However, we believe it is essential to

conduct similar studies in a diversity of fragmented

landscapes, as well as with a broader diversity of plant

functional groups, to better predict the consequences of

fragmentation on plant recruitment (Flinn and Vellend

2005). To date dispersal mechanisms have received the

most attention, with studies suggesting less dispersal

limitation for wind- and vertebrate-dispersed species

(Flinn and Vellend 2005, Muscarella and Fleming 2007,

Cordeiro et al. 2009). Furthermore, most of the

attention in tropical systems has focused on tree species

(e.g., Norden et al. 2009), despite the fact that

understory plants represent up to 25% of the plant

diversity in tropical forests (Gentry and Emmons 1987).

Future research should move beyond these systems to

explore the effectiveness of key traits associated with

plant performance and functional strategies in predict-

ing the relative importance of dispersal and safe-site

limitation (Grime 1977, Reich et al. 1997, Westoby et al.

2002, Wright et al. 2004). For instance, shade-tolerant

species are predominantly dispersed by animals and

exhibit a contrasting set of functional traits from the

pioneers, such as large seed size, low fecundity, longer

life span, high-density wood, low specific leaf area, and

low leaf N content (Wright et al. 2004). These

characteristics may lead to greater dispersal limitation

and a greater availability of safe sites relative to

pioneers. An understanding of the importance of life-

history traits on seed and safe-site limitation, coupled

with adult plant performance data, can be used to

evaluate population viability and to identify the

demographic transitions most critical to population

establishment and growth (Bruna 2003).
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