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Summary

1. Large data sets containing precise movement data from free-roaming animals are now becom-

ing commonplace. One means of analysing individual movement data is through discrete, random

walk–based models.

2. Random walk models are easily modified to incorporate common features of animal move-

ment, and the ways that these modifications affect the scaling of net displacement are well studied.

Recently, ecologists have begun to explore more complex statistical models with multiple latent

states, each of which are characterized by a distribution of step lengths and have their own unimo-

dal distribution of turning angles centred on one type of turn (e.g. reversals).

3. Here, we introduce the compound wrapped Cauchy distribution, which allows for multimodal

distributions of turning angles within a single state. When used as a single state model, the parame-

ters provide a straightforward summary of the relative contributions of different turn types. The

compound wrapped Cauchy distribution can also be used to buildmultiple state models.

4. We hypothesize that a multiple state model with unimodal distributions of turning angles will

best describe movement at finer resolutions, while a multiple state model using our multimodal dis-

tribution will better describe movement at intermediate temporal resolutions. At coarser temporal

resolutions, a single state model using our multimodal distribution should be sufficient.We param-

eterize and compare the performance of these models at four different temporal resolutions (1, 4,

12 and 24 h) using data from eight individuals of Loxodonta cyclotis and find support for our

hypotheses.

5. We assess the efficacy of the different models in extrapolating to coarser temporal resolution by

comparing properties of data simulated from the different models to the properties of the observed

data. At coarser resolutions, simulated data sets recreate many aspects of the observed data; how-

ever, only one of the models accurately predicts step length, and all models underestimate the fre-

quency of reversals.

6. The single state model we introduce may be adequate to describe movement data at many reso-

lutions and can be interpreted easily. Multiscalar analyses of movement such as the ones presented

here are a useful means of identifying inconsistencies in our understanding of movement.
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Introduction

The details of animal movement decisions can have profound

implications for spatial population structure (Kareiva 1990;

Austin, Bowen & McMillan 2004), interspecific interactions

such as predation (Mitchell & Lima 2002; Moorcroft, Lewis

& Crabtree 2006) and seed dispersal (Russo, Portnoy &

Augspurger 2006; Levey, Tewksbury & Bolker 2008; Will &

Tackenberg 2008) as well as for the cascading effects of these

interactions on habitat structure and ecosystem functions

(Wiens et al. 1993; Creel et al. 2005; Fortin et al. 2005;

Kremen & Ostfeld 2005; Hollenbeck & Ripple 2008).
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Although the importance of movement in ecological pro-

cesses is increasingly recognized, researchers are only begin-

ning to determine the degree to which conclusions from a

single study can be applied more broadly. While simple mod-

els can accurately describe movement behaviour over short

time periods, the parameters underlying these models often

change over time leading to poor predictions over longer

time-scales (Morales & Ellner 2002; Gurarie, Andrews &

Laidre 2009). Factors such as behavioural complexity and

landscape structure complicate modelling of movement and

lead to analyses that are specific to the study species and land-

scape (Yang 2000; Jonsen,Myers & Flemming 2003;Morales

et al. 2004; Moorcroft & Lewis 2006; Forester et al. 2007;

Dalziel, Morales & Fryxell 2008; Fryxell et al. 2008).

Movement models differ greatly in their details, but they

can be grouped into a few classes based on criteria such as

their focus (e.g. detailed movement paths of individuals or

less frequent relocations from a population of individuals)

and whether they treat the movement process as continuous

or discrete. Here, we focus on random walk–based models, a

popular class of models that is generally applied to detailed

movement paths of individuals and treats movement as dis-

crete process. Randomwalk–based approaches to movement

data define the distance between relocations as ‘steps’ and the

difference in bearings between successive steps as ‘turning

angles’. Distributions of steps and turning angles can then be

used to fit random walk–based models that are modified to

account for common features of movement paths. The

tendency for step bearings to be positively correlated is

referred to as persistence in step orientation leading to corre-

lated random walk models (Kareiva & Shigesada 1983; Tur-

chin 1998; Bartumeus et al. 2008). Another set of

modifications include a bias towards either an absolute or rel-

ative position (Benhamou 2006). Often models incorporate a

bias towards a fixed point in the centre of the home range

(Borger, Dalziel & Fryxell 2008), which we refer to as a cen-

tring component. A third type of modification accounts for a

high proportion of reversals in movement paths. Reversals

may be common when features of the environment act as

either physical or behavioural barriers to movement or when

species slow down their movement and become involved in

movement bouts (Barraquand & Benhamou 2008). Assum-

ing that only one type of movement dominates, we can gener-

ally describe it using one parameter, the variance or spread

around the orientation that is expected (e.g. 0 for persis-

tence). Alternatively, some researchers refer to the mean and

variance in the cosine of the turning angles (Turchin 1998).

However, when faced with a histogram that shows evidence

of both persistence and reversals, such methods can provide

poor summaries (Fig. 1a).

One solution to this problem is to fit models that include

mixtures of different random walks (e.g. Morales et al.

2004). In the case of persistence, centring and reversals, such

a model would have three states (hereafter 3-state model).

Not only do these models allow us to account for mixtures of

different types of turns, they also can be configured to

account for nonindependence between step length and turn-

ing angle (Fig. 1b) by allowing persistent movements to have

different step lengths than reversals or by linking step length

to the turning angle and other covariates. This type of models

allows us to accommodate hidden structure in the data (such

as the order of turns) that cannot be inferred from histo-

grams.

Here, we develop a second solution, the compound

wrapped Cauchy distribution (see Methods), which allows

for either a unimodal or a multimodal distributions of turn-

ing angles within a single state. When used as a single-state

model (hereafter 1-state model), the parameters provide a

straightforward summary of the contributions of different

movement types (e.g. persistence, centring and reversals).

The compound wrapped Cauchy distribution can also be

used to build multiple state models in which the relative con-

tributions of persistence, centring and reversals vary by state.

The questions of whether mixture models based on unimo-

dal or multimodal distributions are appropriate or even nec-

essary will vary based on characteristics of the study species

and the frequency at which relocations are recorded.

Althoughwe know quite a bit about how different theoretical

Fig. 1. (a) Histogram of turning angles based on 12-h intervals

between relocations showing evidence of reversals (peaks at either

end of histogram) and persistence (smaller peak at 0). Dotted line

represents the probability distribution function predicted by maxi-

mum likelihood assuming a unimodal distribution of turning angles.

Solid line represents the probability distribution function assuming a

bimodal distribution of turning angles with persistence and reversal

components. (b) Average step length is greater when the absolute

value of the turning angle is closer to zero (based on 1-h intervals

between relocations).
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models scale (e.g. Smouse et al. 2010), we know far less about

how mixture models scale and the degree to which they are

appropriate at different temporal resolutions. We expect that

mixture models with unimodal distributions will be most

appropriate at finer resolutions. At these resolutions, latent

states may be synonymous with behaviours (e.g. foraging,

travelling to resting sites). However, if movement path are

sampled less frequently, then steps will quickly begin to rep-

resent groups of behaviours and mixture models based on

multimodal distributions will be more appropriate (Getz &

Saltz 2008; Nathan et al. 2008). As we consider step mea-

sured over still coarser resolutions and maintain a constant

temporal extent, we expect that 1-state models with multi-

modal distribution of turning angles will be sufficient.

Because states in mixture models based onmultimodal dis-

tributions represent groups of movement types, as opposed

to specific movement types, it is possible to assign states at

resolutions greater than the single step. (This approach

would be nonsensical for amixture model based on unimodal

distributions of turning angles.) Assigning states at the reso-

lution of the step can carry a hefty parameter penalty if mod-

els are being compared by an information criterion and may

lead to the false conclusion that a multistate model is not

appropriate. The use of effective parameters in a Bayesian

context lessens but does not entirely eliminate this parameter

penalty. If latent states reflect changes in the relative fre-

quency of behaviours, specifying a resolution for states, or a

few alternative resolutions, based on biological reasons, rep-

resents an a priori hypothesis about the temporal resolution

at which variation in movement behaviour is expected. For

example, if states are defined at a resolution of hours, then it

is likely that the diel cycles in activity will be an important

factor determining how states are assigned. On the other

hand, if seasonal variation linked to changes in mating

behaviour or availability of food is the primary driver of vari-

ation in movement, then defining states at coarser temporal

scales may bemore appropriate.

In addition to making predictions about the appropriate-

ness of different model structures at different temporal reso-

lutions, we can also predict how parameter values may

change based on findings from past studies (e.g. Bovet & Be-

nhamou 1988; Turchin 1998). Using a 1-state model with a

multimodal distribution of turning angles, we would expect

that persistent movement would be most common at finer

resolutions and that centring and reversals are likely to be

more important at coarser resolutions. We also expect that

the correlation between turning angle and step length will

degrade at coarser resolutions.

We test the above predictions by parameterizing four

movement models (Fig. 2) with movement data from Lo-

xodonta cyclotis (Matschie, 1900; forest elephants). Our data

set includes relocations from eight individuals collected at

four different temporal resolutions (1, 4, 12 and 24 h). We

use model comparison to evaluate the fit of these models to

observed data. After using these models to understandmove-

ment patterns at different temporal resolutions, we simulate

data using parameters estimated at the finest resolution (1 h)

to determine the relative efficacy of the suite of models in

reproducing movement observed at coarser temporal resolu-

tions. Comparing simulated data with observed data is an

important way to evaluatemodels and provides a useful com-

pliment to model comparison techniques, which only provide

information on relative performance (Gelman & Hill 2007;

Uriarte &Yackulic 2009).

Materials andmethods

DATA SOURCES

Our analyses focus on the movement paths of L. cyclotis. L. cyclotis

spends most of its day moving at relatively fast speeds, meaning that

there is a high signal-to-noise ratio in successive GPS relocations,

even at a temporal resolution as fine as 1 h. There is extreme varia-

tion among the movement paths of the eight individuals in our data

set, which gives us an opportunity to test the generality of different

Fig. 2. Schematic representation of four different models being com-

pared. The first column illustrates how many latent states are consid-

ered according to the model structure and the resolution at which

they are assigned. The second column illustrates how step orientation

is modelled. For this figure, the centre of the home range is at an

angle of approximately 3p ⁄ 4, corresponding to the peak in the first

row labelled C. Also labelled are the peaks corresponding to reversals

(R) and persistence (P). Curves with different shading and hash mark

signify the different probability distributions for each latent state.

The final column illustrates how step length is modelled. Note that in

the first two rows of the third column, the different curves are all

solid, to reflect differences as a result of the covariates; in the bottom

rows, the dashed curves illustrate that differences in latent states

determine both step orientation and step length.

Modellingmovement across scales 3

� 2011 TheAuthors. Journal ofAnimal Ecology� 2011 British Ecological Society, Journal of Animal Ecology



models across individuals. Animals were fitted with GPS collars

under supervision from the Field Veterinary Program of the Wildlife

Conservation Society following methods described by Blake, Doug-

las-Hamilton & Karesh (2001). Individuals were tracked for an aver-

age of 319 days during the period of 2000–2005. These eight

individuals were chosen from a larger data set based on their superior

coverage at 1-, 4-, 12- and 24-h temporal resolutions (Appendix S2,

Blake et al. 2008). The collars on all individuals were set to take mea-

surements at time intervals of 1-h or less for some portion of the study

and at 4-h intervals at least for the rest of the study. All animals were

adults and were drawn from three protected areas, three from Lopé

National Park (Gabon), one from Ivindo National Park (Gabon)

and four from Nouabalé-Ndoki National Park (Congo), and

included both sexes (six females; twomales).

DATA PROCESSING

To determine how temporal resolution influences model selection,

the data were resampled at 1, 4, 12, and 24-h resolutions. The original

data set included a series of relocations distributed throughout time

at semi-regular intervals. This semi-regularity was the result of

intended changes in sampling frequency as well as missed relocations

(Appendix S2). While the 4-, 12- and 24-h resolution data sets cover

the entire data sets, the 1-h data have more gaps. For each individual,

the median latitude and longitude of all relocations were calculated

and used as a proxy for the centre of the individual’s home or forag-

ing range. To prepare the original data for analysis at fixed temporal

resolution, the coordinates at 1-, 4-, 12- and 24-h intervals were calcu-

lated to create data sets of fixed time lengths. If coordinates were not

available at a given time, that point was excluded from further analy-

sis. For all points where the coordinates of the next interval were

available, the step length and orientation were determined; otherwise,

the point was ignored in our analyses. If the orientation of the last

step was also available, the turning angle was calculated as the differ-

ence in the orientations of the successive steps. For all data points

where the orientation of the last data step was missing, the missing

data values weremodelled using imputation (see Appendix S3).

MODEL COMPONENTS

The goal of this study was to evaluate the efficacy of different model

structures in reproducing movement data collected at different tem-

poral resolutions. To this end, a compound wrapped Cauchy distri-

bution was developed to characterize latent-state modes. This model

structure allows for the simultaneous estimation of the importance of

reversals, centring and persistence in explaining movement orienta-

tion. This distribution is used to build four movement models

(Fig. 2) for the eight individuals and at the four selected temporal res-

olutions (1, 4, 12 and 24 h).

The compound wrapped Cauchy distribution builds on the simple

wrapped Cauchy distribution, which takes the following form:

C / w; qjð Þ ¼ 1� q2

2p 1þ q2 � 2q cos /� wð Þð Þ eqn 1

where/ is the observed step orientation,w is the predicted step orien-

tation and q is a measure of the movement concentration around the

expectation. q is usually restricted to lie between zero and one, with

q = 0 indicating that/ is equally likely to take any value between)p
and p (or between 0 and 2*p), increasing values of q indicating higher

concentration around w, and q = 1 indicating that the distribution

has all its mass onw. If we were seeking tomodel only directed persis-

tent motion, w would be the orientation of the previous step. For

reversals, w would be equal to the orientation of the previous move-

ment plus or minus p. For centring,w would be the orientation to the

centre.

Generalizing from the wrapped Cauchy, the compound wrapped

Cauchy is defined as follows:

CC / N;uN; qNjð Þ ¼

PN

i¼1
C / wi;qijð Þ

N
eqn 2

whereN is the number of components included (e.g. centring, persis-

tence and reversals), wi is the predicted angle for the ith component

and qi is the concentration parameter for that component. (N.B. q’s
cannot be directly compared betweenmodels whereN differs.)

In all models, step lengths were assumed to be drawn from a

2-parameterWeibull distribution, which takes the following form:

Wðx t; kj Þ ¼ tkxt�1 expð�kxvÞ; x>0 eqn 3

where x are the observed step lengths and k and t are the estimated

parameters. t is referred to as the shape parameter for the distribu-

tion, while 1 ⁄ k is often referred to as the scale parameter. The expec-

tation of the Weibull distribution is given by Cð1þ 1=tÞ=k, where C
is the gamma function. A linear model of the covariates was linked to

k via a log link. For the purposes of this analysis, the absolute value

of the turning angle (on the interval [)p, p]) was used as covariate.

Inclusion of the absolute value of the turning angle allows for a rela-

tionship between movement length and orientation, as has been

observed in past studies (Morales et al. 2004).

MODELS

In the 1-state model, all steps for an individual are described by one

set of parameters. Step orientation is modelled using the compound

Cauchy distribution as a function of persistence, reversals and cen-

tring. Step length is modelled using turning angle. The assumptions

underlying this model are that parameters governing step orientation

are the same throughout the sampling period (i.e. there are not identi-

fiable discrete states) and that turning angle is negatively related to

step length – either because individuals are actually moving slower

whenmaking turns or because sampling introduces this effect.

In the second model, the 3-state model, each of the three compo-

nents of step orientation (persistence, reversals and centring) is given

a separate latent state with a compound Cauchy distribution where

the q’s for the other two components are set to zero. The assumption

in thismodel is that individual turns can actually be classified in terms

of the three components. The 3-state model shares the same structure

for determining step length as the 1-state model, and the parameters

governing step length do not vary between states.

Our third model, hereafter the 2-state model, has 2 latent states,

one of which is forced to have larger average step length. Each state

also has its own parameters determining the degree of persistence,

reversals and centring, and each step is assigned to one of the two

states. Thismodel represents coarser variation in the frequency of dif-

ferent turn types.

The fourth model, the 2-state (daily) model, is the same as in the 2-

state model except that latent states are assigned daily (i.e. all steps

on any given day belong to the same state). This model allows us to

ignore diel cycles in behaviour and focus only on variation at resolu-

tions>24 h, like those driven by seasonal variation in food availabil-

ity. It is possible that an even coarser resolution than daily is optimal

for assigning states; however, in this study, we were interested in

determining whether assigning states at a resolution greater than diel

cycles was advantageous in scaling up movement, not in determining
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the optimal resolution for assigning latent states. In each of the three

multistate models, the state in each time step was modelled as being

independent of the state in the previous time step (i.e. switching prob-

abilities were not estimated).

Models for all eight individuals were fit separately at the four dif-

ferent temporal resolutions using WinBUGS. All parameters were

given weakly informative or uninformative priors (see Appendix S3

for sample code including priors). Weakly informative priors were

chosen for some parameters to avoid portions of parameter space

which created errors in WinBUGS. For example, q’s very close to 1

were found to create problems so we constrained all q’s to values

between 0 and 0Æ95. We also used weakly informative parameters to

constrain the parameters associated with step length to areas of

parameter space that made sense based on summary statistics. Given

the large amount of data available and the weak nature of the infor-

mation content in these priors, it is unlikely that priors had much

influence on our parameter estimates. For each model, we initially

ran three chains for 20 000 iterations. If models had not converged,

models were rerun at 50 000 and then 100 000 iterations. We deemed

models to have converged when r-hat estimates for all parameters

were<1Æ1.Model results were compared using deviance information

criterion (DIC) values (Spiegelhalter et al. 2002; Gelman et al. 2004).

For the 1-state model, we were interested in calculating popula-

tion-level estimates for each parameter at each resolution. To accom-

plish this, we conducted meta-analyses where the parameter estimate

(and associated uncertainty) for each individual was treated as a ran-

dom effect drawn from a distribution defined by the populationmean

and variance. Although it is possible to calculate the population

mean and variance directly using hyperpriors in models that consider

all individuals at once, we chose to fit models for each individual sep-

arately for two reasons. First, because these models are novel and we

wanted to be sure that hyperpriors did not bias our inferences at the

individual level by obscuring differences between individuals. Sec-

ondly, fitting models for individuals independently is much quicker

because multiple WinBUGS models can be run concurrently. Using

parameter estimates from each individual in a meta-analysis should

provide similar values to hyperpriors. Meta-analyses were conducted

using R statistical software (R Development Team 2008 – package

rmeta for meta-analyses).

To assess the efficacy of each model in reproducing movement pat-

terns at coarser temporal scales, data from all four models [1-state, 3-

state, 2-state and 2-state (daily)] were simulated. For each individual,

we drew 30 sets of parameter values from the posterior distributions

of each of the fitted model for that individual at a 1-h resolution and

used these parameter values to simulate a newmovement path. Thus,

for each individual, we simulated 120 new paths (30 based on each of

the models) and we repeated this process for all eight individuals.

Detailed R code for simulations is given inAppendix S4. These simu-

lated data were subsampled to create 4-, 12- and 24-h data sets. For

each data set, we then removed any values that were missing in the

original data set so that all simulated data sets were of the exact same

length as the original data. Each set of simulated data was then used

to fit the 1-state model for all eight individuals at four temporal reso-

lutions (1, 4, 12 and 24 h).We fit the 1-state model to these simulated

data, because parameters in the 1-state model are easily interpreted

and provide the most straightforward summary of step length and

turning angles.

For each individual and model at each resolution, we summarized

the 30 simulations by combining the mean parameter estimates for

each simulation and determining the 2Æ5% and 97Æ5% quantiles, as

well as the mean and standard deviations. We calculated population-

level estimates for parameters for each model and resolution by com-

bining the mean and standard deviations estimated derived from the

30 simulations for each individual into ameta-analysis.

Results

As we predicted, the single-state model with a multimodal

distribution (1-state model) was favoured at the coarsest tem-

poral resolutions (12 and 24 h; Table 1, Appendix S1). Of

the two mixture models, we expected the mixture model

based on unimodal distributions (3-state model) to be

favoured at the finest temporal resolutions, and the mixture

model based on multimodal distributions to be favoured at

intermediate resolutions (2-state model). We found equal

support for the 2-state and 3-state models at the 1-h resolu-

tion and slightly greater support for the 2-state model at the

4-h resolution supporting these predictions. The fact that the

1-state model was preferred at coarser resolutions and more

complex models were preferred at finer resolutions is inde-

pendent of sample size. For example, at 12-and 24-h resolu-

tions, individuals 2 and 4 had greater sample sizes than most

of the other individuals at 1- and 4-h resolution (Appen-

dix S2), yet in the former case the simpler model was pre-

ferred and in the later instance more complex models were

preferred.

We included both 2-state and 2-state (daily) models to test

whether changes in the relative frequency of different move-

ment types occurredmostly at resolutions>24 h. The 2-state

(daily) model was preferred over the 2-state model for all

individuals at all temporal resolutions (excluding 24 h where

they are the same model). Even though the 2-state model

offered more flexibility for grouping steps into states than the

2-state (daily) model, the added cost of the additional effec-

tive parameters necessary to estimate a state at each step was

not justified. In other words, although the 2-state model

always had a lower deviance, the drop in deviance was not

justified by the increased number of effective parameters

(pD, see Appendix S1). Future research should focus on

determining whether this conclusion is general or conditional

on the absence of switching probabilities to explain transi-

tions between states.

The 1-state model provides a relatively straight forward

summary and allows us to test additional predictions. Based

on previous studies (e.g. Bovet & Benhamou 1988; Turchin

1998), we predicted that both the strength of persistence and

the correlation between step length and turn angle would

Table 1. Summary of model comparison results for eight individuals.

Each cell contains the number of individuals for which the

corresponding model had the lowest DIC value (was most favoured

by the data) of the fourmodels at each temporal resolution

1-state 3-state 2-state 2-state (daily)

1 h 0 4 0 4

4 h 1 3 0 4

12 h 6 0 0 2

24 h 8 0 0 0

Modellingmovement across scales 5
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degrade as we considered coarser temporal resolutions and

that the q’s associated with centring and reversals would

increase. All four predictions were supported in the parame-

ter estimates for individuals and in the overall population

estimates (Fig. 3, columns 1 and 6). We also found that step

length increased with resolution, which is expected based on

previous research (e.g. Bovet & Benhamou 1988; Turchin

1998).

To determine the relative efficacy of the suite of models in

reproducing movement observed at coarser temporal resolu-

tions, we used the parameter estimates for all four models at

the 1-h resolution to simulate movement trajectories and then

used the 1-statemodel to summarize the simulatedmovement

paths at all four temporal resolutions (1, 4, 12 and 24 h). All

four simulated data sets adequately recreated observed pat-

terns in three of the five parameters considered: the effect of

turning angle on step length, the q associated with persistence

and the q associated with centring (Fig. 3). However, only

one of the four simulated data sets, the 3-state model, accu-

rately estimated mean step length at coarser temporal resolu-

tions, and the simulated data sets did a poor job of predicting

the magnitude of the increase in the q associated with rever-

sals. For example, at both the 12 and 24 h, none of 960 simu-

lated data sets had mean estimated q’s as great as the

population mean derived from the observed data, and only 3

of 960 simulated data sets had estimates of q that were greater

than the individual with the lowest estimated q.

Discussion

We have introduced a novel means of quantifying the relative

roles of different components of step orientation (e.g. rever-

sals, persistence and centring). The compound wrapped Cau-

chy distribution allows us to fit multimodal distributions of

turning angles without the aid of multiple latent states and

provides straightforward summary statistics. The compound

wrapped Cauchy distribution can also be used to build mix-

ture models. These models differ from mixture models based

on unimodal distributions of turning angles in their interpre-

tation and in the temporal scales at which they can be appro-

priately applied. We expected that a mixture model based on

unimodal distributions (3-state model) would be more useful

when steps are measured at finer temporal resolutions and

that a mixture model based on multimodal distributions

Fig. 3. Comparison of simulated data sets with actual data. In the first column, black lines represent the 95%confidence intervals of the parame-

ter estimates for the eight individuals at the four temporal resolutions. In the second through fifth column, black lines represent the 5% and 95%

quantiles of the 30 parameter estimates derived from independent simulated data sets. In the final column, population-level means and 95% con-

fidence intervals from the simulated data sets are compared with the population-level means and 95%confidence intervals for the observed data.

Population-level parameter estimates derived from observed data are indicated by closed circles. Open shapes indicate population-level para-

meter estimates based on data that were simulated from the 1-state (circle), 3-state (triangles), 2-state (diamonds) or 2-state (daily; squares)

models.
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would be more appropriate at coarser resolutions (2-state or

2-state (daily) models). The 3-state and 2-state (daily) models

found roughly equal support at the 1- and 4-h resolutions;

however, the 2-state (daily) model was the best model for two

individuals at the 12-h resolution as compared with zero indi-

viduals for the 3-state model (Table 1). It would be interest-

ing to compare the two mixture models at even finer

resolutions to determine whether 3-state models were

favoured as intervals became finer. At coarser resolutions, we

expected that 1-state models would bemore useful.We found

strong evidence that 1-state models are sufficient to describe

movement inL. cyclotiswhen relocation events are separated

by 12 or 24 h.

Getz & Saltz (2008) provide a useful conceptual frame-

work to interpret our results. They define three components:

fundamental movement elements (e.g. a lunge, a turn or a

step), activities (e.g. foraging versus directed movements)

and canonical activity modes (CAMs) (mixtures of funda-

mental movement elements). Mixture models based on uni-

modal distributions are most analogous to activities, while

mixture models based on multimodal distributions are a

better representation of CAMs. Because CAMs are them-

selves heterogeneous groupings of fundamental movement

elements which include both steps and turns, it is necessary

that states allow for multimodal distributions of step orienta-

tion. Like Getz & Saltz (2008), we argue that most studies are

conducted at too coarse a resolution to characterize funda-

mental movement elements and therefore CAMs are the

focus of studies. In our study, when steps were measured at

finer resolutions, the CAMs were more distinct and states

were useful for grouping them; however, at coarser resolu-

tions, CAMs become more indistinguishable and states were

no longer necessary.

Finer temporal resolution of steps favours multistate mod-

els, but coarser resolution was preferred in the 2-state ⁄ 2-state
(daily) comparison. This result could be interpreted as evi-

dence that changes in behaviour at coarser temporal resolu-

tions (e.g. in response to the fruiting season) underlie the

need for latent states to describe movement of L. cyclotis.

Because our models assigned states independently, it would

be interesting to test whether our results generalize to the case

where starts are assigned based on switching probabilities.

Our results suggest that researchers should not assume that

defining latent states at the same resolution as steps is appro-

priate and should consider the biology of the species being

modelled in defining a priori hypotheses about the resolution

at which important behavioural changes occur. Recent

reviews (e.g. Nathan et al. 2008) have begun to address the

issue of the temporal resolution of states by emphasizing that

movement paths are structured at multiple temporal scales.

Our study provides some important lessons for researchers

applying movement models to various animal taxa. If we had

assumed that latent states should be defined at the same reso-

lution as steps, we would have concluded that the 2-state

structure did not adequately represent movement in L. cyclo-

tis. However, because we considered the probable resolution

of variation (larger than days), we found that the 2-state

(daily) model did provide a good representation at finer

resolutions.

Past studies have detailed the ways in which net displace-

ment increases over time in different theoretical models and

compared these predictions with observed data (e.g. Turchin

1998), however, much less emphasis has been placed on

understanding how the characteristics of step orientation

change with increasing temporal resolution (however, see

Bovet & Benhamou 1988; Benhamou 2004). We predicted

that the q associated with persistence would dominate at the

finest resolutions and decrease in importance with increasing

temporal resolution. Despite substantial individual variation

(Fig. 3, row 3 column 1) in the strength of this decline, the

decline in the persistence q is clear in the population level

trends (Fig. 3 column 6). We also predicted that the q’s asso-
ciated with centring and reversals would increase at coarser

temporal resolutions. Both q’s associated with centring and

those associated with reversals did in fact increase; however,

the q associated with centring exhibited a gradual increase,

whereas the q associated with reversals increased dramati-

cally between 4 and 12 h (Fig. 3 rows 4 and 5). Our final pre-

diction that the correlation between step length and turn

angle would degrade as we considered coarser temporal reso-

lutions was also supported.

One of the motivations for our study was to determine

whether models parameterized at fine temporal resolution

could recreate patterns of animal movement at coarser res-

olutions. The ability to scale up from short, fine-scale data

to longer extents and coarser resolutions is a critical issue

in the study of animal movement. For this reason, we sim-

ulated data sets using the appropriate model structures and

1-h resolution parameter estimates of the 1-state, 2-state

(daily) and 3-state models. When we compared these simu-

lated data with the observed data, we found that the data

simulated from the 1-state, 2-state, and 2-state (daily) mod-

els significantly underestimated mean step length at the 12-

and 24-h resolution. On the other hand, data simulated

from the 3-state model did adequately replicate the magni-

tude of the mean step length at 12- and 24-h resolution in

the observed data set. The combination of the failure of

the 1-state model and the success of the 3-state model is

interesting because the 1-state and 3-state models shared

exactly the same structure for determining step length. This

suggests that step orientation is playing an important role

in determining displacement over longer time-scales. The 2-

state (daily) also failed to predict step length at coarser

temporal scales, providing evidence that step orientation

and not latent states per se. is integral to accurately predict-

ing step length at coarser temporal scales. The results of

this examination of mean step length in simulated data sets

at coarser temporal resolutions suggest that we should be

focusing more on step orientation if we hope to understand

how mean displacement varies over different temporal reso-

lutions. The difference in mean step length between the

data simulated from the different models also suggests why

simulating from fine-scale observations to test the ability of

models to capture coarser scale movement can illustrate
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key differences between models that are not obvious from

model comparison at a given temporal scale. By providing

a means with which to compare models back to data, our

simulations served a similar role to the probes discussed in

Dalziel, Morales & Fryxell (2008).

Another important distinction between the simulated data

sets and the observed data was all four simulated data sets

grossly underestimated the magnitude of the increase in

reversals at 12- and 24-h resolutions. One explanation for the

sudden rise in reversals is that it represents a fundamental

aspect of the habitat structure of L. cyclotis which is not

included in our models. At the Nouabalé-Ndoki park, indi-

viduals have been observed congregating at the same forest

clearings (bais) on consecutive nights, leaving bais early in

the morning and returning to them in the evening (Blake

2002). Given these facts, we might expect a rise in reversals at

the 12-h resolution because measurements were centred on

noon and midnight and at this resolution, individuals would

move from bais and then reverse their path back to return to

the same locations. However, this would not explain why

reversals remained a prominent feature of movement paths

at the 24-h resolution. In addition, the sudden rise in reversals

was also found in individuals from the Lopé park, where bais

are not believed to have an important role in structuring

L. cyclotis behaviour.

A second nonexclusive explanation is that we are ignoring

higher-order autocorrelation in step orientation. Although

we account for first-order autocorrelation, the increased

likelihood that a step will have the same orientation as the

previous step, we do not account for second-order autocorre-

lation, the increased likelihood that a right-hand turn will be

preceded by another right-hand turn (or vice versa). At 10- to

20-min temporal resolutions, the movement of Loxodonta

africana (Blumenbach, 1797; savanna elephants) exhibits evi-

dence of second-order autocorrelation leading to looping

behaviour (Dai et al. 2007). It seems plausible that this loop-

ing behaviour is occurring over longer intervals inL. cyclotis.

To our knowledge, very little effort has been devoted to

incorporating second-order autocorrelation into movement

models even though its potential importance to our under-

stating of animal movement has been noted elsewhere (Tur-

chin 1998; Fischhoff et al. 2007). It is also possible that

analysing movement as a continuous, rather than a discrete

process, and focusing on velocity rather than step length and

turning angles may better address these autocorrelation

issues (Gurarie, Andrews& Laidre 2009).

The last few decades have seen an explosion in the amount

of attention given to studies of animal movement that couple

observational data with statistical models (Holyoak et al.

2008; Nathan et al. 2008). There has been a corresponding

increase in model complexity coupled with attempts to apply

parameters of animal movement estimated from field data to

other areas in ecology, including the study of biotic interac-

tions (e.g. seed dispersal and pollination) and spatial popula-

tion structure. In all these applications, the ability of models

to adequately represent patterns not only at the scale at

which they are fitted but also over larger temporal scales is an

important consideration (Johnson et al. 1992; Turchin 1998).

Here, we have shown that the choice of temporal resolution

determines which model structures are preferred. We have

also illustrated the existence of important gaps in our under-

standing and interpretation of animal movement data by

comparing the data structure of simulated data with

observed data. We are only beginning to explore how latent

states should be defined and interpreted, how the choice of

latent states affects our understanding of step length and how

animal movement decisions can be scaled up. The study of

these questions across a broad range of animal taxa should

offer important insights into our understanding of animal

movement.
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