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Chapter 1

Perturbation Methods: An

Introduction

The equilibrium conditions of a wide variety of dynamic stochastic general
equilibrium models can be written in the form of a nonlinear stochastic
vector difference equation

Etf(yt+1, yt, xt+1, xt) = 0, (1.1)

where Et denotes the mathematical expectations operator conditional on
information available at time t. The vector xt denotes predetermined (or

state) variables and the vector yt denotes nonpredetermined (or control)
variables. The initial value of the state vector x0 is an initial condition for

the economy. (Beyond the initial condition, the complete set of equilibrium
conditions also includes a terminal condition, like a no-Ponzi game con-
straint. We omit such a constraint here because in the lectures we focus on

approximating stationary solutions.) The state vector xt can be partitioned
as xt = [x1

t ; x2
t ]
′. The vector x1

t consists of endogenous predetermined state

variables and the vector x2
t of exogenous state variables. Specifically, we

assume that x2
t follows the exogenous stochastic process given by

x2
t+1 = h̃(x2

t , σ) + η̃σεt+1,

where both the vector x2
t and the innovation εt are of order nε × 1.1 The

vector εt is assumed to have a bounded support and to be independently
and identically distributed, with mean zero and variance/covariance matrix

1It is straightforward to accommodate the case in which the size of the innovations
vector εt is different from that of x2

t .
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2 Stephanie Schmitt-Grohé

I . The eigenvalues of the Jacobian of the function h̃ with respect to its first
argument evaluated at the non-stochastic steady state are assumed to lie

within the unit circle.
The solution to models belonging to the class given in equation (1.1) is

of the form:

yt = ĝ(xt) (1.2)

and
xt+1 = ĥ(xt) + ησεt+1. (1.3)

The vector xt of predetermined variables is of size nx × 1 and the vector yt

of nonpredetermined variables is of size ny ×1. We define n = nx +ny . The
function f then maps Rny × Rny × Rnx × Rnx into Rn.

The matrix η is of order nx × nε and is given by

η =

[

∅
η̃

]

.

The shape of the functions ĥ and ĝ will in general depend on the amount

of uncertainty in the economy. The key idea of perturbation methods is to
interpret the solution to the model as a function of the state vector xt and
of the parameter σ scaling the amount of uncertainty in the economy, that

is,

yt = g(xt, σ) (1.4)

and
xt+1 = h(xt, σ) + ησεt+1, (1.5)

where the function g maps Rnx × R+ into Rny and the function h maps
Rnx × R+ into Rnx .

Given this interpretation, a perturbation methods finds a local approx-

imation of the functions g and h. By a local approximation, we mean an
approximation that is valid in the neighborhood of a particular point (x̄, σ̄).

Taking a Taylor series approximation of the functions g and h around the
point (x, σ) = (x̄, σ̄) we have (for the moment to keep the notation simple,

let’s assume that nx=ny=1)

g(x, σ) = g(x̄, σ̄) + gx(x̄, σ̄)(x − x̄) + gσ(x̄, σ̄)(σ − σ̄)

+
1

2
gxx(x̄, σ̄)(x − x̄)2 + gxσ(x̄, σ̄)(x − x̄)(σ − σ̄)

+
1

2
gσσ(x̄, σ̄)(σ − σ̄)2 + . . .
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h(x, σ) = h(x̄, σ̄) + hx(x̄, σ̄)(x− x̄) + hσ(x̄, σ̄)(σ − σ̄)

+
1

2
hxx(x̄, σ̄)(x− x̄)2

+hxσ(x̄, σ̄)(x− x̄)(σ − σ̄)

+
1

2
hσσ(x̄, σ̄)(σ − σ̄)2 + . . . ,

The unknowns of an nth order expansion are the n-th order derivatives of

the functions g and h evaluated at the point (x̄, σ̄).
To identify these derivatives, substitute the proposed solution given by

equations (1.4) and (1.5) into equation (1.1), and define

F (x, σ) ≡ Etf(g(h(x, σ)+ ησε′, σ), g(x, σ), h(x, σ)+ ησε′, x) (1.6)

= 0.

Here we are dropping time subscripts. We use a prime to indicate variables

dated in period t + 1.
Because F (x, σ) must be equal to zero for any possible values of x and

σ, it must be the case that the derivatives of any order of F must also be

equal to zero. Formally,

Fxkσj (x, σ) = 0 ∀x, σ, j, k, (1.7)

where Fxkσj (x, σ) denotes the derivative of F with respect to x taken k times
and with respect to σ taken j times.

As will become clear below, a particularly convenient point to approxi-

mate the functions g and h around is the non-stochastic steady state, xt = x̄
and σ = 0. We define the non-stochastic steady state as vectors (x̄, ȳ) such

that
f(ȳ, ȳ, x̄, x̄) = 0.

It is clear that ȳ = g(x̄, 0) and x̄ = h(x̄, 0). To see this, note that if σ = 0,

then Etf = f . The reason why the steady state is a particularly convenient
point is that in most cases it is possible to solve for the steady state. With

the steady state values in hand, one can then find the derivatives of the
function F .

In principle, however, one can approximate the functions g and h around
any arbitrary point (xt, σ) provided one can find the derivatives of F (x, σ)

evaluated at that point. For example, Dedola, Schmitt-Grohe, and Uribe
(2002) approximates the functions g and h around a point xt 6= x̄ and σ = 0.
This approach is useful in cases where one can find the exact determinis-

tic solution of a model but needs to resort to approximation techniques to
characterize the solution to the stochastic economy.
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In what follows we will show how to use the derivatives Fxkσj (x, σ) to
identify the derivatives of the functions g and h. In chapter 2 we show how

to find the first derivatives of g and h with respect to x and σ. Finding
the first order approximation involves solving a system of equations that is
quadratic in the first derivatives of h and g. We then show in chapter 3

how to find the second-order derivatives of the functions h and g. This step
involves solving systems of linear equations. In this sense, it is easier to find

the second-order terms than it is to find the first order terms. In fact, given
the n-th order derivatives of h and g, the (n+1)-th order derivatives can

be obtained by solving a linear system of equations. At least conceptually
it is easy to envision how to compute, say a 5-th order approximation. In

practice this has not been done for anything but very simple models with at
most 2 or 3 state variables. The reason is that the system of linear equations

that must be solved in such a case becomes quite large and the setup of such
system can become challenging.



Chapter 2

Linear Perturbation

Methods

In this lecture, we explain in detail how to solve for linear approximations to
the policy function h and g. In addition, we show how to use the solution to

compute second moments and impulse response functions. Throughout, we
will use a simple real business cycle economy to illustrate how to implement

the method. We will review this model next.

2.1 Example economy: The neoclassical growth

model

For simplicity, we will assume that labor is supplied inelastically.1 House-
holds are assumed to have the following preferences over a single consump-

tion good, ct,

maxE0

∞
∑

t=0

βt c1−γ
t

1− γ
0 < β < 1, γ > 0, and γ 6= 1.

Here β denotes the discount factor and γ is a parameter measuring the
inverse of intertemporal rate of substitution. The period-by-period budget

constraint of the household is given by

Atk
α
t = ct + kt+1 − (1− δ)kt, (2.1)

1This simplification and others that we will introduce along the way mainly serve
to keep the exposition short but are fairly inconsequential for the ease with which the
computational method exposited here can be implemented.

5
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where kt is the capital stock. In period t, the capital stock is predetermined.
The variable At denotes exogenous technological change and is assumed to

evolve over time as

(At+1 − 1) = ρA(At − 1) + σηAεt+1

where εt+1 ∼ N (0, 1), ηA is the standard deviation of the innovation to the
technology shock, and 0 ≤ ρA < 1 indicates the degree of serial correlation

of the technology variable At. The household should also be subject to some
kind of borrowing limit, which we ignore here, as we will focus on stationary
solutions to the problem.

The Lagrangian of the household’s optimization problem takes the form

L = E0

∞
∑

t=0

βt

{

c1−γ
t

1 − γ
+ λt [Atk

α
t − ct − kt+1 + (1− δ)kt]

}

.

The first-order optimality conditions are (2.1), and

c−γ
t = βEtc

−γ
t+1[αAt+1k

α−1
t+1 + 1 − δ]. (2.2)

The variable kt is an endogenous predetermined variable, so it belongs
to the vector x1

t of endogenous predetermined state variables. The variable

At belongs to the vector x2
t of exogenous state variables. Consumption, ct,

being non-predetermined, is an element of the vector yt.

To show that the equilibrium conditions of this model can be expressed
in the form given in equation (1.1), let yt = ct and xt = [x1

t ; x2
t ] = [kt; At]

′.

Then

Etf(yt+1, yt, xt+1, xt) = Et







y−γ
1t − βy−γ

1t+1[αx2t+1x
α−1
1t+1 + 1− δ]

y1t + x1t+1 − x2tx
α
1t − (1 − δ)x1t

(x2t+1 − 1)− ρA(x2t − 1)






,

where xit and yit denote, respectively, the i-th element of the vectors xt and

yt.

2.2 Exercises

The following three exercises give examples of economies where the vector

xt contains several lagged values of either endogenous or exogenous states,
or of endogenous nonpredetermined variables.
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1. Exogenous process with arbitrary AR structure: Suppose that the
technology shock process instead of following an AR(1) would follow

and AR(l) process with l > 1.2 Show how to write the problem in the
form given in equation (1.1). First consider the case l = 2, and then
show the general case for a finite l.

2. Time-to-Build: Suppose that the production of capital is subject to
gestation lags. Specifically, in order to build s units of capital available

in period t + J the household has to invest s/J units of goods for J
consecutive periods starting in period t. The evolution of the capital

stocks is then given by

kt+J = (1 − δ)kt+J−1 + st. (2.3)

Investment in each period is equal to the sum of investments in each
project initiated in the past J−1 periods including the current period:

it = J−1

J−1
∑

i=0

st−i (2.4)

given k0, s−i, i = 0, 1, . . . , J − 1,

where st−i denotes the number of investment projects initiated in pe-
riod t − i that will be productive in period t − i + J .

Show how to write the equilibrium conditions that is like the economy

described in the text but for the assumption of time to build. Then
show how the complete set of equilibrium conditions can be expressed

in the form given in equation (1.1).

3. Habit Formation: Consider a preference specification featuring habit
formation. Specifically, assume that instead of deriving utility from

consumption, ct, households derive utility from an object ht given by

ht = ct − θst−1

where st−1 denotes the stock of habit in consumption, which is assumed
to evolve over time according to the following law of motion

st = ρst−1 + (1− ρ)ct.

2An autoregressive process of order l, or AR(l), is given by: Xt = A1Xt−1 +A2Xt−2 +
. . . + AlXt−l + σεt, where the matrices Ai for i = 1, 2, . . . , l are of size n × n where n is
the length of the vector Xt.
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The parameter ρ ∈ [0, 1) measures the speed of adjustment of the
stock of habit to variations in consumption. Assume that all aspects

of the economy other than the preference specification, are as in the
example economy described in the text. Show how to write the equi-
librium conditions of the habit formation economy in the form given

in equation (1.1).

2.3 Policy Function: the general case

We are looking for approximations to g and h around the point (x, σ) = (x̄, 0)
of the form

g(x, σ) = g(x̄, 0) + gx(x̄, 0)(x− x̄) + gσ(x̄, 0)σ

h(x, σ) = h(x̄, 0) + hx(x̄, 0)(x− x̄) + hσ(x̄, 0)σ

As explained earlier,

g(x̄, 0) = ȳ

and

h(x̄, 0) = x̄.

The remaining unknown coefficients of the first-order approximation to g

and h are identified by using the fact that, by equation (1.7), it must be the
case that:

Fσ(x̄, 0) = 0.

and
Fx(x̄, 0) = 0

To find those derivatives let’s repeat equation (1.6)

F (x, σ) ≡ Etf(g(h(x, σ)+ ησε′, σ), g(x, σ), h(x, σ)+ ησε′, x)

= 0.

Taking derivative with respect to the scalar σ we find:

Fσ(x̄, 0) = Etfy′ [gx(hσ + ηε′) + gσ] + fygσ + fx′(hσ + ηε′)

= fy′ [gxhσ + gσ] + fygσ + fx′hσ

This is a system of n equations. Then imposing

Fσ(x̄, 0) = 0.
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one can identify gσ and hσ :

[

fy′gx + fx′ fy′ + fy

]

[

hσ

gσ

]

= 0

This equation is linear and homogeneous in gσ and hσ . Thus, if a unique
solution exists, we have that

hσ = 0.

and
gσ = 0.

These two expressions represent an important theoretical result. They show

that in general, up to first order, one need not correct the constant term of
the approximation to the policy function for the size of the variance of the

shocks.
This result implies that in a first-order approximation the expected val-

ues of xt and yt are equal to their non-stochastic steady-state values x̄ and
ȳ. In this sense, we can say that in a first-order approximation the certainty

equivalence principle holds, that is, the policy function is independent of
the variance-covariance matrix of εt. This is an important limitation of

first-order perturbation techniques. Because in many economic applications
we are interested in finding the effect of uncertainty on the economy. For
example, up to first-order the mean of the rate of return of all all assets

must be same. Thus, first-order approximation techniques cannot be used
to study risk premia. Another important question that can in general not be

addressed with first-order perturbation techniques is how uncertainty affects
welfare. This question is at the heart of the recent literature on optimal fiscal

and monetary stabilization policy. Because in a first-order accurate solution
the unconditional expectation of a variable is equal to the non-stochastic

steady state, any two policies that give rise to the same steady state yield,
up to first-order the same level of welfare.

To find gx and hx differentiate (1.6) with respect to x to obtain the
following system

Fx(x̄, 0) = fy′gxhx + fygx + fx′hx + fx

Note that the derivatives of f evaluated at (y′, y, x′, x) = (ȳ, ȳ, x̄, x̄) are
known. The above expression represents a system of n×nx quadratic equa-

tions in the n×nx unknowns given by the elements of gx and hx. Imposing

Fx(x̄, 0) = 0
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the above expression can be written as:

[fx′ fy′ ]

[

I

gx

]

hx = −[fx fy]

[

I

gx

]

Let A = [fx′ fy′ ] and B = −[fx fy]. Note that both A and B are known.

We thus have the following system of n × nx equations:

A

[

I
gx

]

hx = B

[

I
gx

]

(2.5)

Also, let P the matrix of eigenvectors of the matrix hx such that

hxP = PΛ,

where Λ is diagonal. (The matlab command eig.m produces such a decom-

position). Finally, let

Z ≡

[

I

gx

]

P.

Then the above expression can be written as:

AZΛ = BZ,

We can then map the above problem into a generalized eigenvalue prob-
lem. For given n × n matrices A and B, there exists a matrix V and a

diagonal matrix D such that (using the matlab command [V,D]=eig(B,A)):

A[V1 V2]

[

D11 ∅
∅ D22

]

= B[V1 V2]

Assume, without of loss of generality, that all the eigenvalues of D11 have
modulus less than unity. Then we have:

Λ = D11

[

I
gx

]

P = V1 =

[

V11

V12

]

So that

hx = V11D11V
−1
11

and

gx = V12V
−1
11
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What regularity conditions are needed to use this solution algorithm?
We need that the matrix P is invertible. This will be the case as long as

the the eigenvectors of hx are all linearly independent. The matlab program
gxhx.m posted on the course webpage implements this generalized eigenvalue
procedure to finding hx and gx.

2.3.1 An alternative procedure: The Schur Decomposition

Method

Rather than using the generalized eigenvalue decomposition one can use
the Schur decomposition3 to find the find gx and hx. The matlab program

gx_hx.m on our webpage implements the Schur Decomposition Method for
finding hx and gx.

Let x̂t ≡ xt − x̄, then postmultiplying the above system equation (2.5)
by x̂t we obtain:

A

[

I

gx

]

hxx̂t = B

[

I

gx

]

x̂t

Consider for the moment, a perfect foresight equilibrium. In this case,
hxx̂t = x̂t+1.

A

[

I

gx

]

x̂t+1 = B

[

I

gx

]

x̂t

We are interested in solutions in which

lim
t→∞

|x̂t| < ∞

We will use this limiting conditions to find the matrix gx. In particular,

we will use the Schur decomposition method.
To solve the above system, we use the generalized Schur decomposition

of the matrices A and B.4 The generalized Schur decomposition of A and
B is given by upper triangular matrices a and b and orthonormal matrices

q and z satisfying:5

qAz = a

and

qBz = b.

3The exposition of the Schur decomposition method is adapted from Martin Uribe’s
manuscript ‘Lectures in Open Economy Macroeconomics,’ which is available online at his
website: www.econ.duke.edu/∼uribe.

4More formal descriptions of the method can be found in Klein (2000).
5Recall that a matrix a is said to be upper triangular if elements aij = 0 for i > j. A

matrix z is orthonormal if z′z = zz′ = I .
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Let
st ≡ z′[I ; gx]x̂t.

Then we have that

ast+1 = bst

Now partition a, b, z, and st as

a =

[

a11 a12

0 a22

]

, b =

[

b11 b12

0 b22

]

; z =

[

z11 z12

z21 z22

]

; st =

[

s1
t

s2
t

]

,

where a22 and b22 are of order ny × ny, z12 is of order nx × ny, and s2
t is of

order ny × 1. Then we have that

a22s
2
t+1 = b22s

2
t ,

or
b−1
22

a22s
2
t+1 = s2

t .

Assume, without loss of generality, that the ratios abs(aii/bii) are decreasing
in i. Suppose further that the number of ratios less than unity is exactly
equal to the number of control variables, ny, and that the number of ratios

greater than one is equal to the number of state variables, nx. By construc-
tion, the eigenvalues of b−1

22
a22 are all less than unity in modulus.6 Thus,

the requirement limj→∞ |s2
t+j| < ∞ is satisfied only if s2

t = 0. In turn, by
the definition of s2

t , this restriction implies that

(z′12 + z′22gx)x̂t = 0.

Because this condition has to hold for any value of the state vector, x̂t, it

follows that it must be the case that

z′12 + z′22gx = 0.

Solving this expression for gx yields

gx = −z′22

−1
z′12.

The fact that s2
t = 0 also implies that

a11s
1
t+1 = b11s

1
t ,

6Here we are applying a number of properties of upper triangular matrices. Namely,
(a) The inverse of a nonsingular upper triangular matrix is upper triangular. (b) the
product of two upper triangular matrices is upper triangular. (c) The eigenvalues of an
upper triangular matrix are the elements of its main diagonal.
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or

s1
t+1 = a11

−1b11s
1
t

Now

s1
t = (z′11 + z′21gx)x̂t.

Replacing gx, we have

s1
t = [z′11 − z′21z

′

22

−1
z′12]x̂t.

Combining this expression with the equation describing the evolution of st

shown two lines above, we get

x̂t+1 = [z′11 − z′21z
′

22

−1
z′12]

−1a11
−1b11[z

′

11 − z′21z
′

22

−1
z′12]x̂t;

so that

hx = [z′11 − z′21z
′

22

−1
z′12]

−1a11
−1b11[z

′

11 − z′21z
′

22

−1
z′12].

We can simplify this expression for hx by using the following restrictions:

I = z′z =

[

z′11z11 + z′21z21 z′11z12 + z′21z22

z′12z11 + z′22z21 z′12z12 + z′22z22

]

to write:7

hx = z11a
−1
11 b11z

−1
11 .

2.4 Local Existence and Uniqueness of Equilib-

rium

In the above discussion, we assumed that the number of eigenvalues of D

with modulus greater than unity is exactly equal to the number of control
variables, ny, and that the number of eigenvalues of D with modulus less

than one is equal to the number of state variables, nx. In this case there is a
unique local equilibrium. But not for every economy this is the case. Let’s

first consider the case that the number of eigenvalues of D with modulus

7To obtain this simple expression for hx, use element (2, 1) of z′z to get z′

12z11 =
−z′

22z21. Premultiply by z′

22

−1
and post multiply by z−1

11
to get z′

22

−1
z′

12 = −z21z11
−1.

Use this expression to eliminate z′

22

−1
z′

12 From the square bracket in the expression for
hx. Then this square bracket becomes [z′

11 + z′

21z21z11
−1]. Now use element (1, 1) of z′z

to write z′

21z21 = I − z′

11z11. Using this equation to eliminate z′

21z21 from the expression
in square brackets, we get [z′

11 + (I − z′

11z11)z11
−1], which is simply z−1

11
.
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greater than unity is equal to m < ny, which is less than the number of
control variables. Then the requirement that we wish to study equilibria

in which limj→∞Et|x̂t+j| < ∞ will only yield m restrictions, rather than
ny restrictions. It follows that one can choose arbitrary initial values for
ny − m elements of y0 and the resulting first-order solution will still be

expected to converge back to the steady state. In this case the equilibrium
is indeterminate.

On the other hand, if the number of eigenvalues of D with modulus
greater than unity is greater than the number of control variables, ny, then

no local equilibrium exists. Let again m denote the number of eigenvalues of
D greater than unity in modulus and assume that m > ny. Then in order to

ensure that limEt|x̂t+j| < ∞ we must set m elements of [x0y0] equal to zero.
This implies that m− ny elements of x0 must be functions of the remaining

nx − (m − ny) elements. But this can never be the case, because x0 is a
vector of predetermined or exogenous variables and therefore its elements
can take arbitrary values. In this case, we say no local equilibrium exists.

2.5 Second Moments

Start with the equilibrium law of motion of the deviation of the state vector

with respect to its steady-state value, which is given by

x̂t+1 = hxx̂t + σηεt+1, (2.6)

Covariance Matrix of xt

Let

Σx ≡ Ex̂tx̂
′

t

denote the unconditional variance/covariance matrix of x̂t and let

Σε ≡ σ2ηη′.

Then we have that

Σx = hxΣxh′

x + Σε.

We will describe two numerical methods to compute Σx.

Method 1

One way to obtain Σx is to make use of the following useful result. Let A,
B, and C be matrices whose dimensions are such that the product ABC
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exists. Then
vec(ABC) = (C′ ⊗ A) · vec(B),

where the vec operator transforms a matrix into a vector by stacking its
columns, and the symbol ⊗ denotes the Kronecker product. Thus if the vec

operator is applied to both sides of

Σx = hxΣxh′

x + Σε,

the result is

vec(Σx) = vec(hxΣxh′

x) + vec(Σε)

= F vec(Σx) + vec(Σε),

where

F = hx ⊗ hx.

Solving the above expression for vec(Σx) we obtain

vec(Σx) = (I − F )−1vec(Σε)

provided that the inverse of (I−F ) exists. The eigenvalues of F are products

of the eigenvalues of the matrix hx. Because all eigenvalues of the matrix hx

have by construction modulus less than one, it follows that all eigenvalues

of F are less than one in modulus. This implies that (I −F ) is nonsingular
and we can indeed solve for Σx. One possible drawback of this method is
that one has to invert a matrix that has dimension n2

x × n2
x.

Method 2

The following iterative procedure, called doubling algorithm, may be faster
than the one described above in cases in which the number of state variables

(nx) is large.

Σx,t+1 = hx,tΣx,th
′

x,t + Σε,t

hx,t+1 = hx,thx,t

Σε,t+1 = hx,tΣε,th
′

x,t + Σε,t

Σx,0 = I

hx,0 = hx

Σε,0 = Σε
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Other second moments

Once the covariance matrix of the state vector, xt has been computed, it

is easy to find other second moments of interest. Consider for instance the
covariance matrix Ex̂tx̂

′

t−j for j > 0. Let µt = σηεt.

Ex̂tx̂
′

t−j = E[hj
xx̂t−j +

j−1
∑

k=0

hk
xµt−k]x̂′

t−j

= hj
xEx̂t−jx̂

′

t−j

= hj
xΣx

Similarly, consider the variance covariance matrix of linear combinations of

the state vector xt. For instance, the co-state, or control vector yt is given
by yt = ȳ + gx(xt − x̄), which we can write as: ŷt = gxx̂t. Then

Eŷtŷ
′

t = Egxx̂tx̂
′

tg
′

x

= gx[Ex̂tx̂
′

t]g
′

x

= gxΣxg′x

and, more generally,

Eŷtŷ
′

t−j = gx[Ex̂tx̂
′

t−j]g
′

x

= gxh
j
xΣxg′x,

for j ≥ 0.

2.6 Impulse Response Functions

The impulse response to a variable, say zt in period t + j to an impulse in
period t is defined as:

IR(zt+j) ≡ Etzt+j − Et−1zt+j

The impulse response function traces the expected behavior of the system
from period t on given information available in period t, relative to what

was expected at time t − 1. Using the law of motion Etx̂t+1 = hxx̂t for the
state vector, letting x denote the innovation to the state vector in period 0,

that is, x = ησε0, and applying the law of iterated expectations we get that
the impulse response of the state vector in period t is given by

IR(x̂t) ≡ E0x̂t − E−1x̂t = ht
x[x0 − E−1x0] = ht

x[ησε0] = ht
xx; t ≥ 0.

The response of the vector of controls ŷt is given by

IR(ŷt) = gxh
t
xx.
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2.7 Matlab Code For Linear Perturbation Meth-

ods

Martin Uribe and I have written a suite of programs that are posted on
www.columbia.edu/~mu2166. The program gxhx.m computes the matrices

gx and hx using the generalized eigenvalue method. The program mom.m
computes second moments. The program ir.m computes impulse response

functions.
There are a number of other programs out there to compute the ma-

trices gx and hx. For example, Paul Klein of the University of West-
ern Ontario has written Matlab programs that compute the matrices hx

and gx given A, B, and nx, using the Schur decomposition methods that

we also discussed in the lecture notes (but not in class). To use this al-
ternative method one needs to use a set of programs consisting of three

files, solab.m, qzswitch.m, and qzdiv.m, which are available on Paul Klein’s
website, http://www.ssc.uwo.ca/economics/faculty/klein/. The programs

qzswitch.m and qzdiv.m were created by Chris Sims of Princeton Univer-
sity. The files qzswitch.m and qzdiv.m are needed to arrive at a Schur

decomposition in which the ratios abs(aii/bii) are decreasing in i. The pro-
gram solab.m, then uses the matrices a and b to find the matrices gx and

hx.

2.8 Exercises

The following exercises ask you to apply first-order perturbation methods
to numerically analyze the real business cycle model.

1. How does depreciation affect the response of consumption to a positive
technology shock? Plot the initial response of consumption to a one

percent increase in At as a function of δ. Consider values of δ between
0 and 1. Give intuition for your findings. (Use the set of programs for
the neoclassical growth model that are posted on our Second-Order

Approximation website.)

2. How does the persistence of the technology shock affect the response of
hours? Use the neoclassical growth model we studied earlier. However,

now assume that labor supply is endogenous. In particular, the utility
function now is given by

u(c, h) =
[c(1− ht)

ξ]1−γ − 1

1 − γ
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and that the production function is Cobb Douglas in capital and hours.
To calibrate this economy impose that in steady state households

spend 20 percent of their time working (hss = 0.2) and that the labor
share in value added is 70 percent (1 − α) = 0.7. Assume that the
rate of depreciation is 10 percent per year. Find the steady state of

the economy and the parameter value for ξ. Then plot the initial re-
sponse of hours to a one percent increase in the technology shock as a

function of the serial correlation coefficient ρA. Provide intuition for
your findings.

3. How does the value of the Frisch elasticity of labor supply affect (a)

the volatility of hours relative to that of output; (b) the correlation
between hours and output; (c) the correlation between hours and labor
productivity; (d) the correlation between output and labor productiv-

ity;



Chapter 3

Second-Order Perturbation

Methods

Most models used in modern macroeconomics are too complex to allow for
exact solutions. For this reason, researchers have appealed to numerical

approximation techniques. One popular and widely used approximation
technique that we studied in the previous lecture is a first-order perturba-

tion method delivering a linear approximation to the policy function. One
reason for the popularity of first-order perturbation techniques is that they

do not suffer from the ’curse of dimensionality.’ That is, problems with a
large number of state variables can be handled without much computational

demands. Because models that are successful in accounting for many aspects
of observed business cycles are bound to be large, this advantage of perturba-
tion techniques is of particular importance for policy evaluation. However,

first-order approximation techniques suffer from serious limitations when
applied to welfare evaluation. The problem is that when welfare is evalu-

ated using a first-order approximation to the equilibrium laws of motion of
endogenous variables, some second- and higher-order terms of the equilib-

rium welfare function are omitted while others are included. Consequently,
the resulting criterion is inaccurate to order two or higher. This inaccuracy

may result in spurious welfare rankings. For instance, in a recent paper
Jinill Kim and Sunghyun Kim show that in a simple two-agent economy, a

welfare comparison based on an evaluation of the utility function using a
linear approximation to the policy function may yield the erroneous result
that welfare is higher under autarky than under full risk sharing. Similarly,

Tesar (1995) reports that the welfare gains from risksharing a negative in
some cases. Again this erroneous finding is due to the fact that she uses

19
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first order approximations to the decision rules. If welfare were directly ap-
proximated to first order then, as we saw in the previous class, all policies

that imply the same non-stochastic steady state will give rise to the same
level of welfare up to first-order. So, for example, the welfare gains from
risk sharing should be zero.

In general, to be able to measure welfare gains from different stabiliza-
tion policies or from different risk sharing arrangements requires a correct

second-order approximation of the equilibrium welfare function, which in
turn requires a second-order approximation to the policy function. This is

what we will study in this chapter. First, we derive an accurate second-order
approximation to the solution of discrete-time rational expectations models

whose equilibrium conditions can be expressed as in equation (1.1).

In today’s lecture we will show that for any model belonging to this

general class, the coefficients on the terms linear and quadratic in the state
vector in a second-order expansion of the decision rule are independent of the

volatility of the exogenous shocks. In other words, these coefficients must be
the same in the stochastic and the deterministic versions of the model. Thus,

up to second order, the presence of uncertainty affects only the constant term
of the decision rules. But the fact that only the constant term is affected by

the presence of uncertainty is by no means inconsequential. For it implies
that up to second order the unconditional mean of endogenous variables
can in general be significantly different from their non-stochastic steady

state values. Thus, second-order approximation methods can in principle
capture important effects of uncertainty on, for example, average rate of

return differentials across assets with different risk characteristics or on the
average level of consumer welfare. An additional advantage of higher-order

perturbation methods is that like their first-order counterparts, they do not
suffer from the curse of dimensionality. This is because given the first-order

approximation to the policy function, finding the coefficients of a second-
order approximation simply entails solving a system of linear equations.

3.1 Finding the second-order approximation

The second-order approximations to g and h around the point (x, σ) = (x̄, 0)
are of the form

[g(x, σ)]i = [g(x̄, 0)]i + [gx(x̄, 0)]ia[(x− x̄)]a + [gσ(x̄, 0)]i[σ]

+
1

2
[gxx(x̄, 0)]iab[(x − x̄)]a[(x − x̄)]b
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+
1

2
[gxσ(x̄, 0)]ia[(x − x̄)]a[σ]

+
1

2
[gσx(x̄, 0)]ia[(x − x̄)]a[σ]

+
1

2
[gσσ(x̄, 0)]i[σ][σ]

[h(x, σ)]j = [h(x̄, 0)]j + [hx(x̄, 0)]ja[(x− x̄)]a + [hσ(x̄, 0)]j[σ]

+
1

2
[hxx(x̄, 0)]jab[(x − x̄)]a[(x − x̄)]b

+
1

2
[hxσ(x̄, 0)]ja[(x− x̄)]a[σ]

+
1

2
[hσx(x̄, 0)]ja[(x− x̄)]a[σ]

+
1

2
[hσσ(x̄, 0)]j[σ][σ],

where i = 1, . . . , ny, a, b = 1, . . . , nx, and j = 1, . . . , nx.
Here we are using a notation suggested by Collard and Juillard (2001a).

So, for example, [fy′ ]
i
α is the (i, α) element of the derivative of f with re-

spect to y′. The derivative of f with respect to y′ is an n × ny matrix.

Therefore, [fy′ ]
i
α is the element of this matrix located at the intersection

of the i-th row and α-th column. Also, for example, [fy′ ]
i
α[gx]

α
β [hx]βj =

∑ny

α=1

∑nx

β=1

∂f i

∂y′α
∂gα

∂xβ
∂hβ

∂xj .

The unknowns of this expansion are [gxx]
i
ab, [gxσ]ia, [gσx]ia, [gσσ]i, [hxx]jab,

[hxσ]ja, [hσx]ja, [hσσ ]j, where we have omitted the argument (x̄, 0). These

coefficients can be identified by taking the derivative of F (x, σ) with respect
to x and σ twice and evaluating them at (x, σ) = (x̄, 0). By the arguments

provided earlier, these derivatives must be zero. Specifically, we use Fxx(x̄, 0)
to identify gxx(x̄, 0) and hxx(x̄, 0). That is,1

[Fxx(x̄, 0)]ijk =
(

[fy′y′ ]
i
αγ [gx]

γ
δ [hx]δk + [fy′y]

i
αγ [gx]

γ
k + [fy′x′ ]iαδ[hx]

δ
k + [fy′x]iαk

)

[gx]
α
β [hx]

β
j

+[fy′ ]
i
α[gxx]

α
βδ[hx]δk[hx]βj

+[fy′ ]
i
α[gx]αβ [hxx]βjk

+
(

[fyy′ ]
i
αγ[gx]γδ [hx]

δ
k + [fyy]

i
αγ [gx]

γ
k + [fyx′ ]iαδ[hx]δk + [fyx]iαk

)

[gx]
α
j

+[fy]
i
α[gxx]

α
jk

1At this point, an additional word about notation is in order. Take for example the
expression [fy′y′ ]iαγ. Note that fy′y′ is a three dimensional array with n rows, ny columns,
and ny pages. Then [fy′y′]iαγ denotes the element of fy′y′ located at the intersection of
row i, column α and page γ.
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+
(

[fx′y′ ]
i
βγ[gx]γδ [hx]δk + [fx′y]

i
βγ [gx]

γ
k + [fx′x′ ]iβδ[hx]δk + [fx′x]iβk

)

[hx]βj

+[fx′ ]iβ[hxx]βjk

+[fxy′ ]
i
jγ [gx]

γ
δ [hx]

δ
k + [fxy]

i
jγ [gx]γk + [fxx′ ]ijδ[hx]

δ
k + [fxx]ijk

= 0; i = 1, . . .n, j, k, β, δ = 1, . . .nx; α, γ = 1, . . .ny.

Since we know the derivatives of f as well as the first derivatives of g and h
evaluated at (y′, y, x′, x) = (ȳ, ȳ, x̄, x̄), it follows that the above expression

represents a system of n × nx × nx linear equations in the n × nx × nx

unknowns given by the elements of gxx and hxx.

Similarly, gσσ and hσσ can be obtained by solving the linear system
Fσσ(x̄, 0) = 0. More explicitly,

[Fσσ(x̄, 0)]i = [fy′ ]
i
α[gx]

α
β [hσσ]β

+[fy′y′ ]
i
αγ [gx]

γ
δ [η]δξ[gx]

α
β [η]βφ[I ]φξ

+[fy′x′ ]iαδ[η]δξ[gx]
α
β [η]βφ[I ]φξ

+[fy′ ]
i
α[gxx]

α
βδ[η]δξ[η]βφ[I ]φξ

+[fy′ ]
i
α[gσσ]α (3.1)

+[fy]
i
α[gσσ]α

+[fx′ ]iβ [hσσ]β

+[fx′y′ ]
i
βγ [gx]

γ
δ [η]δξ[η]βφ[I ]φξ

+[fx′x′ ]iβδ[η]δξ[η]βφ[I ]φξ
= 0; i = 1, . . . , n; α, γ = 1, . . . , ny; β, δ = 1, . . . , nx; φ, ξ = 1, . . . , nε.

This is a system of n linear equations in the n unknowns given by the

elements of gσσ and hσσ .
Finally, we show that the cross derivatives gxσ and hxσ are equal to zero

when evaluated at (x̄, 0). We write the system Fσx(x̄, 0) = 0 taking into

account that all terms containing either gσ or hσ are zero at (x̄, 0). Then
we have,

[Fσx(x̄, 0)]ij = [fy′ ]
i
α[gx]

α
β [hσx]βj + [fy′ ]

i
α[gσx]

α
γ [hx]γj + [fy]

i
α[gσx]

α
j + [fx′ ]iβ[hσx]βj

= 0; i = 1, . . .n; α = 1, . . . , ny; β, γ, j = 1, . . . , nx. (3.2)

This is a system of n × nx equations in the n × nx unknowns given by the
elements of gσx and hσx. But clearly, the system is homogeneous in the

unknowns. Thus, if a unique solution exists, it is given by

gσx = 0
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and
hσx = 0.

These equations represent an important theoretical result. They show that

in general, up to second-order, the coefficients of the policy function on the
terms that are linear in the state vector do not depend on the size of the

variance of the underlying shocks.
This result implies that the second-order approximation to the policy

function of a stochastic model belonging to the general class given in equa-

tion (1.1) differs from that of its non-stochastic counterpart only in a con-
stant term given by 1

2
gσσσ2 for the control vector yt and by 1

2
hσσσ2 for the

state vector xt.
As we stressed above what is simple about finding the second order terms

of the functions g and h that it only involves linear operations. This suggests
that one can postulate the problem in matrix form. This is what is done,

numerically, in the programs gxx hxx.m and gss hss.m.

3.2 Implementing Second-Order Methods

3.2.1 Computing the derivatives of f

Computing the derivatives of f , particulary, second derivatives, can be

daunting task. It is almost impossible to do this by hand for any but the
most simple of models. And most of us would get lost in algebra mistakes.

So clearly one must resort to the computer for finding those derivates. Here
one has two options. One is to try to find the numerical derivatives. But

this is not the way we approach the problem in Schmitt-Grohe and Uribe
(JEDC 2004). We instead make use of the capabilities of symbolic math soft-

ware. The particular one we use is the MATLAB Toolbox Symbolic Math.
Symbolic Math can handle analytical derivatives. We wrote programs, that
compute the analytical derivatives of f and evaluate them at the steady

state. The program anal deriv.m computes analyltical derivatives of f and
the program num eval.m evaluates the analytical derivatives of f . You can

check these programs out on the Second-Order Approximation website.

3.2.2 Which steady state to approximate around

In general, the second-order method exposited here can be used to compute
welfare in the neighborhood of an arbitrary steady state.

However, in a monetary or fiscal policy stabilization problem, the steady
state of the economy depends on the assumed policy. Suppose we wish
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to evaluate the welfare consequences of alternative monetary stabilization
policies with the objective to pick the best of those. In such an exercise one

can, in principle, freely pick the steady state level of inflation around which
the economy should be stabilized. For example, one could study the case in
which inflation is stablized around, say 5 percent of inflation per year. But if,

in the particular model studied the optimal inflation rate in the steady state
is, say 0 percent per year, such a research strategy, may lead to the following

problem. The benevolent policy maker may want to use stabilization policy
to get the mean of inflation down, that is down from 5 percent to something

closer to 0 percent. And the welfare gains from influencing the mean may be
larger than stabilizing the economy around the deterministic steady state.

For this reason, the accuracy of the approximation may be poor. Therefore,
if one uses second-order approximation methods to find the best among a

class of suboptimal policies, one should approximate the economy around
the Ramsey steady state.

In other contexts, that is when one is not using the second-order approx-

imation to find the best constrained policy, the perturbation method can be
applied successfully to any arbitrary non-stochastic steady state. Say, if we

want to characterize risk premia, then the accuracy of the second-order per-
turbation method should be independent of the Ramsey optimality of the

point around which the solution is approximated.

3.2.3 How to construct second-order accurate time series

Suppose one wishes to simulate a time series path of the approximate solu-

tion for xt and yt. One possibility of proceeding is to start with an initial
value of the state, say x0, and then to use the second-order approximation

to the function h iteratively to produce a time path. That is, iterate on:
(Assume w.l.g. that the steady state value of x is zero.)

xi
1 = hi

xx0 + x′

0h
i
xxx0 + σηiε1.

In this way one can obtain time series for xt and yt conditional upon a partic-
ular value of x0. This procedure is second-order accurate, but it introduces

some higher-order terms into the expansion. These extra higher order-terms
do not in general increase accuracy of the approximation as they do not cor-

respoind to higer-order coefficients in a Taylor expansion. In practise they
often lead to explosive time paths for xt. To see what goes wrong let (this

example is taken from Kim, Kim, Schaumburg, and Sims)

xt+1 = ρxt + αx2
t + εt+1; 0 < ρ < 1
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Note that this system has two steady states. One at x̄ = 0 and the other at
x̄ = (1− ρ)/α. Linearizing ths system around x = x̄ yields:

x̂t+1 = ρx̂t + εt+1

Given the assumpmtion that ρ < 1, this system is sstable in the neigh-

borhood of x = 0. But the sysstem is unstable in the neighborhood of
x = (1− ρ)/α. Thus, once xt > (1− ρ)/α, the system will diverge.

Therefore, one should choose among the second-order accurate expan-
sions the o ne that implies stability. A stable solution can be obtained by

‘PRUNING’ (a term coined by Chris Sims) out the the extraneous higher-
order terms in each iteration by computing the projections of the second-

order terms based on a first-order expansions. L
Let xf

t be the first-order iterate of xt given some x0., that is , xf
0 = x0,

and let xs
t be the second-order iterate of xt given x0 and set xs

0 = 0. Then

define
xf

t+1
= hxxf

t + σηεt+1

and

xis
t+1 = hi

xxs
t +

1

2
xf ′

t hi
xxxf

t +
1

2
+ hi

σσσ2

The program simu 2nd.m posted on our Second Order website constructs

such time series.

3.2.4 How to compute unconditional first moments

First note that the variance of either xt or yt are correct to second-order

accuracy when computed from the first-order approximation alone. (That
is, you can use the program mom.m to find the second-oder accurate second-
moments.) Then, suppose that the unconditional expectation of xt exists,

we can approximate this from its law of motion (assume without loss of
generality that xSS = 0:

xi
t+1 ≈ hi

xxt +
1

2
x′

th
i
xxxt +

1

2
hi

σσσ2 + σηiεt+1

Note that eh scalar
x′

th
i
xxxt = x′

t ⊗ x′

tvec(hi
xx)

and that Ex′

t ⊗ x′

t = vec(Σx)
′. We then have that :

Ex′

th
i
xxxt = Ex′

t ⊗ x′

tvec(hi
xx)

= (vec(Σx))
′vec(hi

xx)
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It follows that

Ext+1 = hxExt +











vec(h1
xx)

′

vec(h2
xx)

′

. . .

vec(hnx
xx)′











vec(Σx)/2 +
1

2
hσσσ2

Ext = (I − hx)−1





















vec(h1
xx)

′

vec(h2
xx)

′

. . .
vec(hnx

xx)′











vec(Σx)/2 +
1

2
hσσσ2











The program unconditional means.m computes unconditioanl means.

3.3 Second-order accurate welfare approximations

Suppose we wish to evaluate the welfare consequences of alternative mon-

etary policy arrangements. How should welfare be measured? Welfare is
defined as the present dicounted value of lifetime utility. One could mea-
sure this either using the conditional expectation of lifetime utility or the

unconditional expection:

Conditional Welfare Measures

Let Vt denote the time t value of the present disounted value of lifetime
utility. For example, in the case of the economy desribed in section 2.1

above we have:

Vt ≡ Et

∞
∑

j=0

βjU(ct+j)

What we are looking for is a second-order accurate approximation to

Vt. At first instinct one may think that one way to obtain Vt is to find a
second-order accurate time series for ct and then just use the sample mean

of say 1000 simulated paths for
∑T

t=0 βtU(ct) for some rather large T . This
way of proceeding is however unneccarily cumbersome and may introduce

some errors stemming from the fact that one uses a sample path. Instead
the way to proceed is to write Vt recursively as:

Vt = U(ct) + βEtVt+1

Then add this expression the vector valued function f and make Vt an
element of the vector of endogenous non-predetermined variables yt. In this
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way, once one has computed second-order approximations to the function g,
one has the second-order approximation of Vt in hand. The idea is that we

can express Vt as some non-linear function of the state vector xt and of the
scalar parameter σ, that is,

Vt = gV (xt, σ)

where, here the function gV is just one element of the function g that we

introduced earlier. It maps Rnx ×R+ into R. And by making Vt one row of
f , we can obtain the second-order accurate approximation to the function

gV .

Clearly, the level of welfare will depend on the initial state being consid-
ered, that is, on the value of the state vector xt. Depending on the particular
question one would like to address, one may consider a number of relevant

initial values for xt and average over those to obtain an average value of
conditional welfare levels.

Welfare cost measures

Often in comparing alternative policies that are consistent with the same

non-stochastic steady state equilibrium, one would like to put the welfare
differences into perspective. Saying that the welfare of policy A is, say, 255.3,

and that associated with policy B is, say 248.7, only tells us that policy
A welfare dominates policy B. But often we are interested in asking how
much better policy A is than policy B. One way of quantifying these welfare

differences is to ask what percentage of the consumption stream associated
with policy A, households are willing to give to be as well off, under policy

A as under policy B. Let cA
t the contingent plan for consumption associated

with policy A and cB
t the contingent plan for consumption associated with

policy B. We can then implicitly define the welfare cost of adoptiong policy
B rather than policy A as the value of λ such that

V B
t = Et

∞
∑

t=0

βtU(cA
t (1− λ))

Suppose the utility function is of the form:

U(c) =
c1−γ

1 − γ

with 0 < γ < 1
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So that

U(c(1− λ)) = (1− λ)1−γ

(

c1−γ

1− γ

)

In this case we have:

V B
t = (1− λ)1−γV A

t

ln(1− λ) =
1

1− γ

(

ln V B
t − ln V A

t

)

We also know the second-order approximation to say,

ln V A
t = ln V̄ + gV A

x (xt − x̄) +
1

2

(

(xt − x̄)′gV A

xx (xt − x̄) + gV A

σσ σ2
)

and similarly:

ln V B
t = ln V̄ + gV B

x (xt − x̄) +
1

2

(

(xt − x̄)′gV B

xx (xt − x̄) + gV B

σσ σ2
)

So that the approximate welfare cost is

λ ≈
1

1 − γ

(

lnV A
t − lnV B

t

)

The welfare cost λ×100 indicates the percentage of the consumption stream
associated with policy A that households are willing to give up to be as well

off as under policy B. If λ > 0, it measures the welfare cost of policy B
vis-à-vis policy A. If λ < 0, then in fact λ indicates the percentage increase

in the consumption stream required to make households as well off under
policy A as under policy B.

3.4 Exercises

1. Consider the simple RBC model with inelastic labor supply studied
earlier. Compute the second order accurate unconditional level of

consumption, E(Ct) under the assumption that technology is iid. Then
change the information structure. Assume that you learn the time

t + 1 technology shock already in period t, that is, the technology
shock is one period anticipated. Now compute again the unconditional

expectation of consumption, E(Ct). [I think consumption should be
higher when the shock is one period anticipated.] How big do you
need to make the variance of the technology shock so that the welfare

difference is three percent of consumption. How big is the overall
volatility of output in that case. [added June 3, 2011]
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2. Compute the welfare cost of business cycles for the simple neoclassical
growth model given in chapter 1. Set β = 0.95, γ = 2, and α = 0.3.

Assume that the depreciation rate is 10 perent per year. Use as a basis
for the approximation the logarithm of the state vector and assume
that lnAt+1 = ρA lnAt + σηεt+1. Assume that ρA = 0.95. Set σ = 1

and set η such that the standard deviaton of output is 1.72 percent.
Find the welfare cost of business cycles for three different initial states

of the economy, namely, the technology shock being 1 percent above,
1 percent below, and exactly equal to its non-stochastic steady state

value. Assume that in all three states capital takes its steady state
value. Compare conditional and unconditional welfare measures.

3. Using linear approximation techniques, Tesar (1995)2 studies the wel-
fare gains from international risk sharing. In some cases the welfare

gain of moving from financial autarky to a situation of international
risk sharing is reported to be negative. Recompute the welfare gains

from risk-sharing using a second-order perturbation method.

4. Consider any DSGE model that displays equilibrium indeterminacy.
For example, pick one of the 4 models discussed in Schmitt-Grohé

(1997)3 or a new-Keynesian model with a monetary policy specification
that renders the equilibrium indeterminate, say a passive interest rate
feedback rule. Use second-order methods to compute welfare. Explore

for which parameterizations of the model chosen by you sunspots with
a positive variance increase/decrease welfare.

5. Redo Boldrin, Christiano, and Fisher4 to see if second-order approxi-

mations result in about the same risk premia as the numerical method
used in that paper.

2Tesar, L. Evaluating the Gains from International Risksharing, Carnegie-Rochester

Conference Series on Public Policy, 42, 1995, 95-143.
3Schmitt-Grohe, S., Comparing Four Models of Aggregate Fluctuations Due to Self-

Fulfilling Expectations, Journal of Economic Theory, 72, January 1997, 96-147.
4Boldrin, M., L. Christiano, and J. Fisher, Habit Persistence, Asset Returns, and the

Business Cycle, American Economic Review, 91, March 2001, 149-166.
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Chapter 4

N-th Perturbation Methods

It is straightforward to apply the method described thus far to finding higher
than second-order approximations to the policy function. For example, given

the first- and second-order terms of the Taylor expansions of h and g, the
third-order terms can be identified by solving a linear system of equations.

More generally, one can construct sequentially the nth-order approximation
of the policy function by solving a linear system of equations whose (known)

coefficients are the lower-order terms and the derivatives up to order n of f
evaluated at (y′, y, x′, x) = (ȳ, ȳ, x̄, x̄).

To be completed.

31
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