The Small-Open-Economy Real Business Cycle Model

## Some Empirical Regularities

| Variable       | Canadian Data  |                      |                    |  |  |
|----------------|----------------|----------------------|--------------------|--|--|
|                | $\sigma_{x_t}$ | $\rho_{x_t,x_{t-1}}$ | $\rho_{x_t,GDP_t}$ |  |  |
| y              | 2.8            | 0.61                 | 1                  |  |  |
| c              | 2.5            | 0.7                  | 0.59               |  |  |
| i              | 9.8            | 0.31                 | 0.64               |  |  |
| h              | 2              | 0.54                 | 0.8                |  |  |
| $\frac{tb}{y}$ | 1.9            | 0.66                 | -0.13              |  |  |

Source: Mendoza (AER, 1991)

#### **Comments**

- Volatility ranking:  $\sigma_{tb/y} < \sigma_c < \sigma_y < \sigma_i$ .
- Consumption, investment, and hours are procyclical.
- The trade-balance-to-output ratios is countercyclical.
- All variables considered are positively serially correlated.
- Similar stylized facts emerge from other small developed countries (see, e.g., Aguiar and Gopinath, JPE, 2006).

#### An RBC Model with Uzawa Preferences

$$E_0 \sum_{t=0}^{\infty} \theta_t U(c_t, h_t),$$

$$\theta_0 = 1$$
,

$$\theta_{t+1} = \beta(c_t, h_t)\theta_t \qquad t \ge 0,$$

## The Sequential Budget Constraint

$$d_t = (1 + r_{t-1})d_{t-1} - y_t + c_t + i_t + \Phi(k_{t+1} - k_t),$$
  
with  $\Phi(0) = \Phi'(0) = 0.$ 

## **Technology**

$$y_t = A_t F(k_t, h_t),$$

## **Evolution of the Capital Stock**

$$k_{t+1} = i_t + (1 - \delta)k_t,$$

#### No-Ponzi-Game Constraint

$$\lim_{j\to\infty} E_t \frac{d_{t+j}}{\prod_{s=1}^j (1+r_s)} \le 0.$$

## **Optimality Conditions**

Define 
$$\tilde{U}(c_t, h_t, \eta_t) = U(c_t, h_t) - \eta_t \beta(c_t, h_t).$$

$$\tilde{U}_c(c_t, h_t, \eta_t) = \lambda_t$$

$$-\tilde{U}_h(c_t, h_t, \eta_t) = \lambda_t A_t F_h(k_t, h_t)$$

$$\lambda_t = \beta(c_t, h_t) (1 + r_t) E_t \lambda_{t+1}$$

$$\lambda_t [1 + \Phi'_t] = \beta(c_t, h_t) E_t \lambda_{t+1} [A_{t+1} F_k(k_{t+1}, h_{t+1}) + 1 - \delta + \Phi'_{t+1}]$$

$$\eta_t = -E_t U(c_{t+1}, h_{t+1}) + E_t \eta_{t+1} \beta(c_{t+1}, h_{t+1})$$

## Interpreting the multiplier $\eta_t$

$$\eta_t = -E_t \sum_{j=1}^{\infty} \left( \frac{\theta_{t+j}}{\theta_{t+1}} \right) U(c_{t+j}, h_{t+j})$$

 $\Rightarrow \eta_t$  is next period's lifetime utility.

## **Evolution of Total Factor Productivity**

$$\ln A_{t+1} = \rho \ln A_t + \epsilon_{t+1};$$

$$\epsilon_{t+1} \sim NIID(0, \sigma_{\epsilon}^2); \quad t \ge 0.$$

## Free Capital Mobility

$$r_t = r$$

where r is the world interest rate, assumed to be constant.

#### **Functional Forms**

## **Period Utility Function**

$$U(c,h) = \frac{\left[c - \omega^{-1}h^{\omega}\right]^{1-\gamma} - 1}{1-\gamma}$$

## **Subjective Discount Factor**

$$\beta(c,h) = \left[1 + c - \omega^{-1}h^{\omega}\right]^{-\psi_1}$$

#### **Production Function**

$$F(k,h) = k^{\alpha} h^{1-\alpha}$$

## **Adjustment Cost Function**

$$\Phi(x) = \frac{\phi}{2}x^2; \quad \phi > 0.$$

#### Calibration

| $\gamma$ | $\omega$ | $\psi_1$ | $\alpha$ | $\phi$ | r    | δ   | $\rho$ | $\sigma_\epsilon$ |
|----------|----------|----------|----------|--------|------|-----|--------|-------------------|
| 2        | 1.455    | .11      | .32      | 0.028  | 0.04 | 0.1 | 0.42   | 0.0129            |

## **Calibration Strategy**

 $\psi_1$ : Match Canadian trade balance-to-output ratio

 $\phi$ : Match Canadian investment volatility

 $\rho$ : Match Canadian Output serial correlation

 $\sigma_{\epsilon}$ : Match Canadian output volatility

## **Empirical and Theoretical Second Moments**

| Variable                 | Canadian Data                              |      |                   |                | Mode                 | el                 |
|--------------------------|--------------------------------------------|------|-------------------|----------------|----------------------|--------------------|
|                          | $\sigma_{x_t} \mid  ho_{x_t,x_{t-1}} \mid$ |      | $ ho_{x_t,GDP_t}$ | $\sigma_{x_t}$ | $\rho_{x_t,x_{t-1}}$ | $\rho_{x_t,GDP_t}$ |
| y                        | 2.8                                        | 0.61 | 1                 | 3.1            | 0.61                 | 1                  |
| c                        | 2.5                                        | 0.7  | 0.59              | 2.3            | 0.7                  | 0.94               |
| i                        | 9.8                                        | 0.31 | 0.64              | 9.1            | 0.07                 | 0.66               |
| h                        | 2                                          | 0.54 | 0.8               | 2.1            | 0.61                 | 1                  |
| $\frac{tb}{u}$           | 1.9                                        | 0.66 | -0.13             | 1.5            | 0.33                 | -0.012             |
| $\frac{\frac{y}{ca}}{y}$ |                                            |      |                   | 1.5            | 0.3                  | 0.026              |

#### **Comments**

- Parameters  $\phi$ ,  $\sigma_{\epsilon}$ , and  $\rho$  picked to match  $\sigma_i$ ,  $\sigma_y$ , and  $\rho_{yy}$ . So no real test here.
- The model matches the volatility ranking  $\sigma_c < \sigma_y < \sigma_i$ .
- Empirical and theoretical trade-balance-tooutput ratios are countercyclical.
- The model overestimates the correlations of hours and consumption with output.

## Response to a Positive Technology Shock



Source: Schmitt-Grohé and Uribe (JIE, 2003)

#### **Comments:**

- Output, consumption, investment, and hours expand.
- The trade balance deteriorates.

# Adjustment Costs, Persistence of Shocks, and the Trade Balance-To-Output Ratio



#### Comment

- The more persistent the shock, the more countercyclical the response of the trade balance.
- The weaker the cost of adjusting capital, the more countercyclical the response of the trade-balance-to-output ratio.

## Endogenous Discount Factor Without Internalization

$$\theta_{t+1} = \beta(\tilde{c}_t, \tilde{h}_t)\theta_t \qquad t \ge 0,$$
  $\theta_0 = 1,$ 

where  $\tilde{c}_t$  and  $\tilde{h}_t$  denote per capita consumption and hours worked.

$$\lambda_t = \beta(\tilde{c}_t, \tilde{h}_t)(1 + r_t)E_t\lambda_{t+1}$$

$$\lambda_t = U_c(c_t, h_t)$$

$$-U_h(c_t, h_t) = \lambda_t A_t F_h(k_t, h_t)$$

$$\lambda_t [1 + \Phi'_t] = \beta(\tilde{c}_t, \tilde{h}_t)E_t\lambda_{t+1}[A_{t+1}F_k(k_{t+1}, h_{t+1}) + 1 - \delta + \Phi'_{t+1}]$$

### In Equilibrium

$$c_t = \tilde{c}_t$$
 and  $h_t = \tilde{h}_t$ 

## **Debt-Elastic Interest Rate (external)**

$$r_t = r + p(\tilde{d}_t),$$

$$\theta_t = \beta^t,$$

$$\lambda_t = \beta(1 + r_t)E_t\lambda_{t+1}$$

$$U_c(c_t, h_t) = \lambda_t,$$

$$-U_h(c_t, h_t) = \lambda_t A_t F_h(k_t, h_t).$$

$$\lambda_t[1 + \Phi'_t] = \beta E_t \lambda_{t+1}[A_{t+1} F_k(k_{t+1}, h_{t+1}) + 1 - \delta + \Phi'_{t+1}]$$

$$\tilde{d}_t = d_t.$$

## **Functional Form for Country Spread**

$$p(d) = \psi_2 \left( e^{d - \overline{d}} - 1 \right),$$

#### **Calibration**

| $\beta$ | $ar{d}$ | $\psi_2$ | r                        |  |
|---------|---------|----------|--------------------------|--|
| 0.96    | 0.7442  | 0.000742 | $\mid eta^{-1} - 1 \mid$ |  |

#### Internal Debt-Elastic Interest Rate

$$r_t = r + p(d_t),$$

The Euler equation becomes

$$\lambda_t = \beta[1 + r + p(d_t) + p'(d_t)d_t]E_t\lambda_{t+1}$$

$$p(d) = \psi_2 \left( e^{d - \overline{d}} - 1 \right),$$

**Calibration:** Same as in the external case. Note that the steady-state value of debt is no longer equal to  $\bar{d}$ . Instead, d solves

$$(1+d)e^{d-\bar{d}} = 1 \Rightarrow d = 0.4045212.$$

## Portfolio Adjustment Costs

$$d_t = (1+r_{t-1})d_{t-1} - y_t + c_t + i_t + \Phi(k_{t+1} - k_t) + \frac{\psi_3}{2}(d_t - \bar{d})^2$$

$$\lambda_t[1 - \psi_3(d_t - \bar{d})] = \beta(1 + r_t)E_t\lambda_{t+1}$$

## **Calibration**

| $\beta$ | $ar{d}$ | $\psi_{3}$ | r            |
|---------|---------|------------|--------------|
| 0.96    | 0.7442  | 0.00074    | $eta^{-1}-1$ |

## **Complete Asset Markets**

$$E_{t}r_{t+1}b_{t+1} = b_{t} + y_{t} - c_{t} - i_{t} - \Phi(k_{t+1} - k_{t}),$$

$$\lim_{j \to \infty} E_{t}q_{t+j}b_{t+j} \ge 0,$$

$$q_{t} = r_{1}r_{2} \dots r_{t},$$

$$\lambda_{t}r_{t+1} = \beta\lambda_{t+1}.$$

$$\lambda_{t}^{*}r_{t+1} = \beta\lambda_{t+1}^{*}.$$

$$\frac{\lambda_{t+1}}{\lambda_{t}} = \frac{\lambda_{t+1}^{*}}{\lambda_{t}^{*}}.$$

$$\lambda_{t} = \xi\lambda_{t}^{*},$$

$$\lambda_{t} = \psi_{A}.$$

**Calibration:** Set  $\psi_4$  so that steady-state consumption equals steady-state consumption in the model with Uzawa preferences.

#### **Calibrations**

# Debt-Elastic Interest Rate (internal and external)

| $\beta$ | $ar{d}$ | $\psi_2$ | r                        |  |
|---------|---------|----------|--------------------------|--|
| 0.96    | 0.7442  | 0.000742 | $\mid eta^{-1} - 1 \mid$ |  |

## **Portfolio Adjustment Costs**

| $\beta$ | $ar{d}$ | $\psi_{3}$ | r              |  |
|---------|---------|------------|----------------|--|
| 0.96    | 0.7442  | 0.00074    | $\beta^{-1}-1$ |  |

### **Complete Asset Markets**

Set  $\psi_4$  so that steady-state consumption equals steady-state consumption in the model with Uzawa preferences.

# Impulse Response to a Unit Technology Shock in Models 1 Through 5



Source: Schmitt-Grohé and Uribe (JIE, 2003)

Note. Solid line, endogenous discount factor. Squares, endogenous discount factor without internalization. Dashed line, Debt-elastic interest rate. Dashdotted line, Portfolio adjustment cost. Dotted line, complete asset markets. Circles, No stationarity inducing elements.

#### **Observed and Implied Second Moments**

|                       | Data      | Model 1        | Model 1a | Model 2 | Model 3 | Model 4 |
|-----------------------|-----------|----------------|----------|---------|---------|---------|
| Stand                 | lard Dev  | <u>iations</u> |          |         |         |         |
| y                     | 2.8       | 3.1            | 3.1      | 3.1     | 3.1     | 3.1     |
| $\stackrel{\circ}{c}$ | 2.5       | 2.3            | 2.3      | 2.7     | 2.7     | 1.9     |
| i                     | 9.8       | 9.1            | 9.1      | 9       | 9       | 9.1     |
| h                     | 2         | 2.1            | 2.1      | 2.1     | 2.1     | 2.1     |
| tb/y                  | 1.9       | 1.5            | 1.5      | 1.8     | 1.8     | 1.6     |
| ca/y                  |           | 1.5            | 1.5      | 1.5     | 1.5     |         |
|                       | Correla   | tions          |          |         |         |         |
| $\overline{y}$        | 0.61      | 0.61           | 0.61     | 0.62    | 0.62    | 0.61    |
| c                     | 0.7       | 0.7            | 0.7      | 0.78    | 0.78    | 0.61    |
| i                     | 0.31      | 0.07           | 0.07     | 0.069   | 0.069   | 0.07    |
| h                     | 0.54      | 0.61           | 0.61     | 0.62    | 0.62    | 0.61    |
| tb/y                  | 0.66      | 0.33           | 0.32     | 0.51    | 0.5     | 0.39    |
| ca/y                  |           | 0.3            | 0.3      | 0.32    | 0.32    |         |
|                       | lations v | vith Output    | t        |         |         |         |
| $\overline{c}$        | 0.59      | 0.94           | 0.94     | 0.84    | 0.85    | 1       |
| i                     | 0.64      | 0.66           | 0.66     | 0.67    | 0.67    | 0.66    |
| h                     | 0.8       | 1              | 1        | 1       | 1       | 1       |
| tb/y                  | -0.13     | -0.012         | -0.013   | -0.044  | -0.043  | 0.13    |
| ca/y                  |           | 0.026          | 0.025    | 0.05    | 0.051   |         |

Source: Schmitt-Grohé and Uribe (JIE, 2003)

Note. Standard deviations are measured in percent per year.