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In much of the recent literature on monetary
economics it is assumed that monetary policy
takes the form of an interest-rate feedback rule
whereby the central bank sets the nominal in-
terest rate as a function of some measure of
inflation and the level of aggregate activity. One
justification for this modeling strategy is empir-
ical. Several authors, beginning with John B.
Taylor (1993) have documented that the central
banks of major industrialized countries imple-
ment monetary policy through interest-rate
feedback rules of this type. These empirical
studies have further shown that since the early
1980’s interest-rate feedback rules in developed
countries have been active in the sense that the
nominal interest rate responds more than one for
one to changes in the inflation measure.

In his seminal paper, Taylor (1993) also ar-
gues on theoretical grounds that active interest-
rate feedback rules (which have become known
as Taylor rules) are desirable for aggregate sta-
bility. The essence of his argument is that, if in
response to an increase in inflation the central
bank raises nominal interest rates by more
than the increase in inflation, the resulting
increase in real interest rates will tend to slow
down aggregate demand, thereby curbing in-
flationary pressures. Following Taylor’s in-
fluential work, a large body of theoretical
research has argued in favor of active interest-
rate rules. One argument is that Taylor-type
rules guarantee local uniqueness of the rational-
expectations equilibrium.

The validity of the view that Taylor rules in-
duce determinacy of the rational-expectations
equilibrium has been challenged in two ways.
First, it has been shown that local determinacy
of equilibrium under active interest-rate rules
depends crucially on the assumed preference
and technology specification (Bill Dupor, 1999;
Charles Carlstrom and Timothy Fuerst, 2000,
2001; Benhabib et al., 2001b), as well as on the
nature of the accompanying fiscal regime (Eric
Leeper, 1991). Second, even in cases in which
active interest-rate rules guarantee uniqueness of
the rational-expectations equilibrium locally, they
may give rise to liquidity traps (Benhabib et al.,
2001a, c; Schmitt-Grohe´ and Uribe, 2000a, b).

In this paper, we identify a third form of
instability that may arise under Taylor-type
policy rules. Specifically, we show that active
interest-rate rules may open the door to equi-
librium cycles of any periodicity and even
chaos. These equilibria feature trajectories
that converge neither to the intended steady
state nor to an unintended liquidity trap.
Rather the economy cycles forever around
the intended steady state in a periodic or
aperiodic fashion. Interestingly, such equilib-
rium dynamics exist precisely when the target
equilibrium is unique from a local point of
view, that is, when the inflation target is the
only equilibrium level of inflation within a
sufficiently small neighborhood around the
target itself.

I. The Economic Environment

A. Households

Consider an economy populated by a large
number of infinitely-lived agents with preferences
described by the following utility function:

(1) �
t � 0

�

� t
ct

1 � �

1 � �
� � 0 � � �0, 1�
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where ct denotes consumption in period t. Agents
have access to two types of financial asset: fiat
money (Mt) and government bonds (Bt). Govern-
ment bonds held between periods t and t � 1 pay
the gross nominal interest rate Rt. In addition,
agents receive a stream of real income yt and pay
real lump-sum taxes �t. Letting Pt denote the price
level in period t, at � (Mt � Bt)/Pt denote real
financial wealth in period t, mt � Mt /Pt denote
real money balances, and �t � Pt /Pt�1 the gross
rate of inflation, the budget constraint of the rep-
resentative household can be written as

(2) at � ct � � t �
1 � Rt � 1

� t
mt � 1

�
Rt � 1

�t
at � 1 � yt .

Households are subject to a no-Ponzi-game
constraint of the form

(3) lim
t3�

at

�
j � 0

t � 1

�Rj /�j � 1 �
	 0.

We motivate a demand for money by assuming
that real balances facilitate firms’ transactions
as in Stanley Fischer (1974), Taylor (1977), and
Guillermo A. Calvo (1979). Specifically, we
assume that output is an increasing and concave
function of real balances. Formally,

(4) yt � f�mt �.

We choose this model because in industrialized
economies about two-thirds of M1 is held by firms
(where M1 denotes the money supply in terms of
currency plus checking accounts).

Households choose sequences {ct, mt, yt,
at}t � 0

� so as to maximize the utility function (1)
subject to (2)–(4), given a�1. The first-order
optimality conditions are constraints (2)–(4)
holding with equality and

(5) ct
�� � �ct � 1

��
Rt

� t � 1

(6) f	�mt � �
Rt � 1

Rt
.

The first optimality condition is a standard Euler
equation requiring that in the margin a dollar spent
on consumption today provides as much utility as
that dollar saved and spent tomorrow. The second
condition says that the marginal productivity of
money at the optimum is equal to the opportu-
nity cost of holding money, (Rt � 1)/Rt.

B. The Monetary and Fiscal Policy Regime

We postulate that the government conducts
monetary policy in terms of an interest-rate
feedback rule of the form

(7) Rt � 
�� t � 1 �.

Under the feedback rule the central bank sets the
current nominal interest rate as a function of the
inflation rate between periods t and t � 1. We
adopt this specification because a number of au-
thors have argued that in the post-Volker era, U.S.
monetary policy is better described as incorporat-
ing a forward-looking component (see Athanasios
Orphanides, 1997; Richard Clarida et al., 1998).1

We impose four conditions on the functional
form of the interest-rate feedback rule. First, in
the spirit of Taylor (1993) we assume that mon-
etary policy is active around a target rate of
inflation �* 
 �; that is, the interest elasticity
of the feedback rule at �* is greater than unity,
or 
	(�*)�*/
(�*) 
 1. Second, we impose
the restriction 
(�*) � �*/�, which ensures the
existence of a steady-state consistent with the
target rate of inflation. Third, we assume that
the feedback rule satisfies the zero bound on
nominal interest rates, 
(�) 
 1 for all �. Fi-
nally, we assume that the feedback rule is non-
decreasing, 
	(�) 	 0 for all �.

Government consumption is assumed to be
zero. Each period, the government faces the
following budget constraint:

(8) at �
Rt � 1

� t
at � 1

� �Rt � 1 � 1

�t
mt � 1 � �t� .

1 In the working-paper version of this paper (Benhabib et
al., 2001d), we also consider the case of contemporaneous
rules, Rt � 
(�t).
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We assume that the fiscal regime consists of
setting consolidated government revenues equal
to a constant fraction of total government lia-
bilities each period. Formally,

� t �
Rt � 1 � 1

� t
mt � 1 � �at � 1 � � 0.

The above two expressions imply that

lim
t3�

at

�
j � 0

t � 1

�Rj /�j � 1 �
� 0.

Therefore, the assumed fiscal policy ensures
that the household’s borrowing limit holds with
equality under all circumstances.

C. Equilibrium

Combining equations (2) and (8) implies that
the goods market clears at all times:

(9) yt � ct .

An equilibrium real allocation is a set of se-
quences {mt, Rt, ct, �t, yt}t � 0

� satisfying Rt 

1, equations (4)–(7), and equation (9).

We focus on the following specific param-
eterizations of the policy rule and the produc-
tion function:

(10) 
�� t � 1 � � 1 � �R* � 1��� t � 1

�* � A/R* � 1

R* � �*/�

and

(11) f�mt � � �amt
� � �1 � a�y� ��1/�

�  1 a � �0, 1�.

We assume that A/R* 
 1, so that at the target
rate of inflation the feedback rule satisfies the
Taylor criterion, 
	(�*)�*/
(�*) 
 1. In other
words, at the target rate of inflation, the interest-
rate feedback rule is active. The parameter y� 
 0
is meant to reflect the presence of a fixed factor of
production. Under this production technology, one
may view real balances either as directly produc-
tive or as decreasing the transaction costs of ex-

change.2 With these particular functional forms,
an equilibrium real allocation is defined as a set of
sequences {mt, Rt, ct, �t, yt}t�0

� satisfying Rt 
 1
and equations (5), (6), and (9)–(11).

Combining equations (6) and (11) yields the
following negative relation between output and
the nominal interest rate:

(12) Rt � R�yt � R	  0.

This expression together with equations (5), (9),
and (10), implies a first-order, nonlinear differ-
ence equation in output of the form:

(13) yt � 1 � F�yt � � �1/�yt� R�yt �


�1�R�yt ��
� 1/�

where 
�1� denotes the inverse of the function

�. Finding an equilibrium real allocation then
reduces to finding a real positive sequence
{ yt}t � 0

� satisfying equation (13).3

II. Local Equilibria

Equation (13) has two steady states, which
we denote by y* and yp. Let y* denote the
steady state associated with Rt � R*. Note
that at y* monetary policy is active. Simple
algebra shows that at yp monetary policy is
passive. We refer to y* as the intended steady
state.

Consider perfect-foresight equilibrium real
allocations in which output remains forever in
an arbitrarily small neighborhood around a
steady state and converges to it. To this end, we

2 It is also possible to replace the fixed factor y� with a
function increasing in labor and to add leisure to the utility
function. The current formulation then would correspond to
the case of an inelastic labor supply.

3 An additional restriction that solutions to equation (13)
must satisfy in order to be able to be supported as equilib-
rium real allocation is that

� 1 � a1/�1 � ��

1 � a � �1/�

y� � yt � �1 � a�1/�y�

when � 
 0 and

� 1 � a1/�1 � ��

1 � a � �1/�

y�  yt  �1 � a�1/�y�

when �  0. These constraints ensure that Rt 	 1 and
that mt is a positive real number.
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log-linearize (13) around a steady state. This
yields

(14) ŷ t � 1 � �1 �
�R

� �1 �
1

�

�� ŷ t

where ŷt denotes the log-deviation of yt from its
steady-state value. The parameter �R  0 de-
notes the elasticity of the function R�, defined
by equation (12), with respect to yt evaluated at
the steady-state value of output. The parameter
�
 
 0 denotes the elasticity of the interest-rate
feedback rule with respect to inflation at the
steady state.

Consider first the dynamics around the steady
state yp. As discussed above, in this case the
feedback-rule is passive, that is, �
  1. It
follows that the coefficient of the linear differ-
ence equation (14) is greater than 1. With yt
being a non-predetermined variable, this im-
plies that the passive steady state is locally the
unique perfect-foresight equilibrium. Consider
next the dynamics around y*. At the intended
steady state �
 is greater than 1. This implies
that the coefficient of the difference equation
(14), at least for mildly active policy rules (i.e.,
�
 greater than but close to 1, lies between 1 and
�1). Therefore, for mildly active rules, the co-
efficient is less than 1 in absolute value, and
the rational-expectations equilibrium is inde-
terminate. It follows from our analysis that
the parameter value �
 � 1 is a bifurcation
point of the dynamical system (14), because
at this value the local stability properties of
the system change from determinate to
indeterminate.

For sufficiently active policy rules, a sec-
ond bifurcation point might emerge. In par-
ticular, if �R/�  �2, then there exists an
�
 
 1 at which the coefficient of the linear
difference equation (14) equals �1. Above
this value of �
 the coefficient of the differ-
ence equation is greater than 1 in absolute
value, and the equilibrium is again locally
unique.

One might conclude from the above charac-
terization of local equilibria that, as long as the
policymaker pursues a sufficiently active mon-
etary policy, he can guarantee a unique equilib-
rium around the inflation target �*. In this
sense, active monetary policy might be viewed
as stabilizing. However, this view can be mis-

leading, for the global picture can look very
different.

III. Chaos

Consider the case of a sufficiently active
monetary policy stance that ensures that the
inflation target of the central bank, �*, is
locally the unique equilibrium. Formally, as-
sume that at the active steady state �
 

1/(1 � 2�/�R).4 In what follows, we show
that, for such a monetary policy, there may
exist equilibria other than the active steady
state, with the property that the real allocation
fluctuates forever in a bounded region around
the target allocation. These equilibria include
cycles of any periodicity and even chaos (i.e.,
nonperiodic deterministic cycles). We first es-
tablish theoretically the conditions under
which periodic and chaotic dynamics exist.
We then demonstrate that these conditions are
satisfied under plausible parameterizations of
our simple model economy.

A. Existence

We apply a theorem due to Masaya Yamaguti
and Hiroshi Matano (1979) on chaotic dynam-
ics in scalar systems. To this end, we introduce
the following change of variable: qt � � ln( yt/
yp). Equation (13) can then be written as

(15) qt � 1 � H�qt ; �� � qt � �h�qt �

where the parameter � and the function h� are
defined as � � (1/�) and

h�qt � � �����ln�
�1�R�ypeqt /����

�ln � � ln R�ypeqt /��}.

We restrict attention to negative values of �. As
we discuss below, this is the case of greatest
empirical interest. The function h is continuous
and has two zeros, one at q � 0 and the other
at q* � � ln( y*/yp) 
 0. Further h is positive
for qt � (0, q*) and negative for qt � [0, q*].

4 We are implicitly assuming that the second bifurcation
point exists, that is, that the condition �R/�  �2 is
satisfied.
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We are now ready to state the Yamaguti and
Matano (1979) theorem.

THEOREM 1 (Yamaguti and Matano,
1979): Consider the difference equation

(16) qt � 1 � H�qt ; �� � qt � �h�qt �.

Suppose that (a) h(0) � h(q*) � 0 for some
q* 
 0; (b) h(q) 
 0 for 0  q  q*; and (c)
h(q)  0 for q*  q  �, where the constant
� is possibly ��. Then there exists a positive
constant c1 such that for any � 
 c1 the
difference equation (16) is chaotic in the sense
of Tien-Yien Li and James A. Yorke (1975).
Suppose in addition that � � ��. Then there
exists another constant c2, 0  c1  c2, such
that for any 0 � � � c2, the map H has an
invariant finite interval [0, �(�)] (i.e., H maps
[0, �(�)] into itself ) with �(�) 
 q*. More-
over, when c1  � � c2, the above-mentioned
chaotic phenomenon occurs in this invariant
interval.

The application of this theorem to our model
economy is immediate. It follows that there
exists some parameterization of the model for
which the real allocation cycles perpetually in a
chaotic fashion, that is, deterministically and
aperiodically. According to the theorem, cha-
otic dynamics are more likely, the larger is the
intertemporal elasticity of substitution, 1/�. We
next study the empirical plausibility of the pa-
rameterizations consistent with chaos.

B. Empirical Plausibility

Consider the following calibration of the
model economy. The time unit is a quarter.
Let the intended nominal interest rate be 6
percent per year (R* � 1.061/4), which cor-
responds to the average yield on three-month
U.S. Treasury bills over the period 1960:1 to
1998:3. We set the target rate of inflation at
4.2 percent per year (�* � 1.0421/4). This
number matches the average growth rate of
the U.S. GDP deflator during the period 1960:
1–1998:3. The assumed values for R* and
�* imply a subjective discount rate of 1.8
percent per year. Following Taylor (1993),
we set the elasticity of the interest-rate feed-
back rule evaluated at �* equal to 1.5 (i.e.,
A/R* � 1.5).

There is a great deal of uncertainty about the
value of the intertemporal elasticity of substitu-
tion 1/�. In the real-business-cycle literature,
authors have used values as low as 1⁄3 (e.g., Julio
J. Rotemberg and Michael D. Woodford, 1992)
and as high as 1 (e.g., Robert G. King et al.,
1988). In the baseline calibration, we assign a
value of 1.75 to �. We will also report the
sensitivity of the results to variations in the
value assumed for this parameter.

Equations (6) and (11) imply a money de-
mand function of the form

(17) mt � yt�Rt � 1

aRt
� 1/���1�

.

Using U.S. quarterly data from 1960:1 to
1999:3, we estimate the parameters of this
money demand function, namely, � and a. We
obtain � � �9 and a � 0.000352. For details,
see Benhabib et al. (2001d). Finally, we set the
fixed factor y� at 1.

In Figure 1, we show the first three iterates of
the difference equation (13), which describes
the equilibrium dynamics of output for the base-
line calibration. In all three panels, the broken
line represents the 45° degree line. The range of
values plotted for output starts at a point y
located below the active steady state, y*, (i.e.,
y  y*) and ends at the passive steady state, yp.
On the interval [ y, yp] the mapping F� is
invariant in the sense that for any y � [ y, yp] it
is the case that F( y) � [ y, yp]. The figure
shows that the second and third iterates of F have
fixed points other than the steady-state values y*
and yp. This means that there exist two- and three-
period cycles. The presence of three-period cycles
is of particular importance, for, by A. N. Sar-
kovskii’s (1964) theorem, the existence of three-
period cycles implies that the map F has cycles of
any periodicity. Moreover, as a consequence of
the result of Li and Yorke (1975), the existence
of three-period cycles implies chaos. That is, for
the baseline calibration there exist perfect-
foresight equilibria in which the real allocation
fluctuates perpetually in an aperiodic fashion.

Indeed, three-period cycles emerge for any
value of � below 1.75. This finding is in line
with Theorem 1, which states that there exists
a value for � below which chaotic dynamics
necessarily occur. For values of � greater
than 1.75, three-period cycles disappear. This
does not mean, however, that for such values
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of � the equilibrium dynamics cannot be quite
complex. For example, for � between 1.75
and 1.88, we could detect six-period cycles.
Sarkovskii’ s theorem guarantees that, if six-
period cycles exist, then cycles of periodici-
ties 2n � 3 for all n 	 1 also exist. For �
between 1.88 and 2, four-period and two-
period cycles exist.

For � 
 1.71, all aforementioned cycles
occur in a feasible invariant interval, that is,
in a feasible interval A such that F( A) � A.
The interval A contains both steady states.
The upper end of the interval coincides with
yp, and the lower end is below y*.5 Finally,
we find that for values of � less than �9, the
economy has three-period cycles when all
other parameters take their baseline values.
For values of � greater than �9, three-period
cycles cease to exist. Therefore, the more

inelastic is the money demand function,
the more likely it is that chaotic dynamics
emerge.

C. Contemporaneous Interest-Rate Rules

Complex dynamics may also arise under con-
temporaneous interest-rate feedback rules, that is,
when Rt � 
(�t). In Benhabib et al. (2001d) we
show that, in the model under study, contempora-
neous rules can give rise to instantaneous indeter-
minacy, in the sense that for a given equilibrium
real allocation in period t there exist two distinct
equilibrium real allocations in period t � 1. Fur-
thermore, even if one limits attention to instan-
taneously determinate equilibria, the real
allocation is always indeterminate: either it is
locally indeterminate, or it is locally determi-
nate but cycles of various periods and even
chaos exist.
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