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1 The Model

1.1 Households

The economy is assumed to be populated by a large representative family with a continuum

of members. Consumption and hours worked are identical across family members. The

household’s preferences are defined over per capita consumption, ct, and per capita labor

effort, ht, and are described by the utility function

E0

∞∑

t=0

βtU(ct − bct−1, ht), (1)

where Et denotes the mathematical expectations operator conditional on information avail-

able at time t, β ∈ (0, 1) represents a subjective discount factor, and U is a period utility

index assumed to be strictly increasing in its first argument, strictly decreasing in its second

argument, and strictly concave. Preferences display internal habit formation, measured by

the parameter b ∈ [0, 1). The consumption good is assumed to be a composite made of a

continuum of differentiated goods cit indexed by i ∈ [0, 1] via the aggregator

ct =

[∫ 1

0

cit
1−1/ηdi

]1/(1−1/η)

, (2)

where the parameter η > 1 denotes the intratemporal elasticity of substitution across differ-

ent varieties of consumption goods.

For any given level of consumption of the composite good, purchases of each individual

variety of goods i ∈ [0, 1] in period t must solve the dual problem of minimizing total

expenditure,
∫ 1

0
Pitcitdi, subject to the aggregation constraint (2), where Pit denotes the

nominal price of a good of variety i at time t. The demand for goods of variety i is then

given by

cit =

(
Pit
Pt

)−η

ct, (3)

where Pt is a nominal price index defined as

Pt ≡
[∫ 1

0

P 1−η
it di

] 1
1−η

. (4)

This price index has the property that the minimum cost of a bundle of intermediate goods

yielding ct units of the composite good is given by Ptct.

Labor decisions are made by a central authority within the household, a union, which
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supplies labor monopolistically to a continuum of labor markets of measure 1 indexed by

j ∈ [0, 1]. In each labor market j, the union faces a demand for labor given by
(
W j
t /Wt

)−η̃
hdt .

Here W j
t denotes the nominal wage charged by the union in labor market j at time t, Wt is

an index of nominal wages prevailing in the economy, and hdt is a measure of aggregate labor

demand by firms. We postpone a formal derivation of this labor demand function until we

consider the firm’s problem. In each particular labor market, the union takes Wt and hdt as

exogenous.1 Given the wage it charges in each labor market j ∈ [0, 1], the union is assumed

to supply enough labor, hjt , to satisfy demand. That is,

hjt =

(
wjt
wt

)−η̃

hdt , (5)

where wjt ≡ W j
t /Pt and wt ≡ Wt/Pt. In addition, the total number of hours allocated to

the different labor markets must satisfy the resource constraint ht =
∫ 1

0
hjtdj. Combining this

restriction with equation (5), we obtain

ht = hdt

∫ 1

0

(
wjt
wt

)−η̃

dj. (6)

Our setup of imperfectly competitive labor markets departs from most existing exposi-

tions of models with nominal wage inertia (e.g., Erceg, et al., 2000). For in these models, it is

assumed that each household supplies a differentiated type of labor input. This assumption

introduces equilibrium heterogeneity across households in the number of hours worked. To

avoid this heterogeneity from spilling over into consumption heterogeneity, it is typically as-

sumed that preferences are separable in consumption and hours and that financial markets

exist that allow agents to fully insure against employment risk. Our formulation has the

advantage that it avoids the need to assume both separability of preferences in leisure and

consumption and the existence of such insurance markets. As we will explain later in more

detail, our specification gives rise to a wage-inflation Phillips curve with a larger coefficient

on the wage-markup gap than the model with employment heterogeneity across households.

The household is assumed to own physical capital, kt, which accumulates according to

the following law of motion

kt+1 = (1 − δ)kt + it

[
1 − S

(
it
it−1

)]
, (7)

1The case in which the union takes aggregate labor variables as endogenous can be interpreted as an
environment with highly centralized labor unions. Higher-level labor organizations play an important role
in some European and Latin American countries, but are less prominent in the United States.
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where it denotes gross investment and δ is a parameter denoting the rate of depreciation of

physical capital. The function S introduces investment adjustment costs. It is assumed that

in the steady state, the function S satisfies S = S ′ = 0 and S ′′ > 0. These assumptions

imply the absence of adjustment costs up to first-order in the vicinity of the deterministic

steady state.

As in Fisher (2005) and Altig et al. (2004), it is assumed that investment is subject

to permanent investment-specific technology shocks. Fisher argues that this type of shock

is needed to explain the observed secular decline in the relative price of investment goods

in terms of consumption goods. More importantly, Fisher argues that investment-specific

technology shocks account for about 50 percent of aggregate fluctuations at business-cycle

frequencies in the postwar U.S. economy. (As we will discuss below, Altig et al., 2005, find

significantly smaller numbers in the context of the model studied in our paper.)

We assume that investment goods are produced from consumption goods by means of a

linear technology whereby Υt units of consumption goods yield one unit of investment goods,

where Υt denotes an exogenous, permanent technology shock in period t. The growth rate

of Υt is assumed to follow an AR(1) process of the form:

µ̂Υ,t = ρµΥ
µ̂Υ,t−1 + εµΥ,t,

where µ̂Υ,t ≡ ln(µΥ,t/µΥ) denotes the percentage deviation of the gross growth rate of in-

vestment specific technological change and µΥ denotes the steady-state growth rate of Υt.

Owners of physical capital can control the intensity at which this factor is utilized. For-

mally, we let ut measure capacity utilization in period t. We assume that using the stock of

capital with intensity ut entails a cost of Υ−1
t a(ut)kt units of the composite final good. The

function a is assumed to satisfy a(1) = 0, and a′(1), a′′(1) > 0. Both the specification of cap-

ital adjustment costs and capacity utilization costs are somewhat peculiar. More standard

formulations assume that adjustment costs depend on the level of investment rather than

on its growth rate, as is assumed here. Also, costs of capacity utilization typically take the

form of a higher rate of depreciation of physical capital. The modeling choice here is guided

by the need to fit the response of investment and capacity utilization to a monetary shock

in the U.S. economy. For further discussion of this issue, see Christiano, Eichenbaum, and

Evans (2005) and Altig et al. (2004).

Households rent the capital stock to firms at the real rental rate rkt per unit of capital.

Total income stemming from the rental of capital is given by rkt utkt. The investment good is

assumed to be a composite good made with the aggregator function shown in equation (2).

Thus, the demand for each intermediate good i ∈ [0, 1] for investment purposes, iit, is given
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by iit = Υ−1
t it (Pit/Pt)

−η .

As in our earlier related work (Schmitt-Grohé and Uribe, 2004), we motivate a demand

for money by households by assuming that purchases of consumption goods are subject

to a proportional transaction cost that is increasing in consumption-based money velocity.

Formally, the purchase of each unit of consumption entails a cost given by `(vt). Here,

vt ≡
ct
mh
t

(8)

is the ratio of consumption to real money balances held by the household, which we denote

by mh
t . The transaction cost function ` satisfies the following assumptions: (a) `(v) is

nonnegative and twice continuously differentiable; (b) There exists a level of velocity v > 0, to

which we refer as the satiation level of money, such that `(v) = `′(v) = 0; (c) (v−v)`′(v) > 0

for v 6= v; and (d) 2`′(v) + v`′′(v) > 0 for all v ≥ v. Assumption (a) implies that the

transaction process does not generate resources. Assumption (b) ensures that the Friedman

rule, i.e., a zero nominal interest rate, need not be associated with an infinite demand for

money. It also implies that both the transaction cost and the associated distortions in

the intra and intertemporal allocation of consumption and leisure vanish when the nominal

interest rate is zero. Assumption (c) guarantees that in equilibrium money velocity is always

greater than or equal to the satiation level v. As will become clear shortly, assumption (d)

ensures that the demand for money is decreasing in the nominal interest rate. Assumption (d)

is weaker than the more common assumption of strict convexity of the transaction cost

function.

Households are assumed to have access to a complete set of nominal state-contingent

assets. Specifically, each period t ≥ 0, consumers can purchase any desired state-contingent

nominal payment Xh
t+1 in period t + 1 at the dollar cost Etrt,t+1X

h
t+1. The variable rt,t+1

denotes a stochastic nominal discount factor between periods t and t + 1. Households pay

real lump-sum taxess in the amount τt per period. The household’s period-by-period budget

constraint is given by:

Etrt,t+1x
h
t+1 + ct[1 + `(vt)] + Υ−1

t [it + a(ut)kt] +mh
t + τt =

xht +mh
t−1

πt
+ rkt utkt (9)

+

∫ 1

0

wjt

(
wjt
wt

)−η̃

hdtdj + φt.

The variable xht /πt ≡ Xh
t /Pt denotes the real payoff in period t of nominal state-contingent

assets purchased in period t − 1. The variable φt denotes dividends received from the own-

ership of firms and πt ≡ Pt/Pt−1 denotes the gross rate of consumer-price inflation.
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We introduce wage stickiness in the model by assuming that each period the household

(or unions) cannot set the nominal wage optimally in a fraction α̃ ∈ [0, 1) of randomly chosen

labor markets. In these markets, the wage rate is indexed to average real wage growth and to

the previous period’s consumer-price inflation according to the rule W j
t = W j

t−1(µz∗πt−1)
χ̃,

where χ̃ ∈ [0, 1] is a parameter measuring the degree of wage indexation. When χ̃ equals 0,

there is no wage indexation. When χ̃ equals 1, there is full wage indexation to long-run real

wage growth and to past consumer price inflation.

The household chooses processes for ct, ht, x
h
t+1, w

j
t , kt+1, it, ut, and mh

t so as to maximize

the utility function (1) subject to (6)-(9), the wage stickiness friction, and a no-Ponzi-game

constraint, taking as given the processes wt, r
k
t , h

d
t , rt,t+1, πt, φt, and τt and the initial

conditions xh0 , k0, and mh
−1. The household’s optimal plan must satisfy constraints (6)-(9).

In addition, letting βtλtwtµ̃t, β
tλtqt, and βtλt denote Lagrange multipliers associated with

constraints (6), (7), and (9), respectively, the Lagrangian associated with the household’s

optimization problem is

L = E0

∞∑

t=0

βt {U(ct − bct−1, ht)

+λt

[
hdt

∫ 1

0

wit

(
wit
wt

)−η̃

di+ rkt utkt + φt − τt

−ct
[
1 + `

(
ct
mh
t

)]
− Υ−1

t [it + a(ut)kt] − rt,t+1x
h
t+1 −mh

t +
mh
t−1 + xht
πt

]

+
λtwt
µ̃t

[
ht − hdt

∫ 1

0

(
wit
wt

)−η̃

di

]

+λtqt

[
(1 − δ)kt + it

[
1 − S

(
it
it−1

)]
− kt+1

]}
.

The first-order conditions with respect to ct, x
h
t+1, ht, kt+1, it, m

h
t , ut, and wit, in that order,

are given by

Uc(ct − bct−1, ht) − bβEtUc(ct+1 − bct, ht+1) = λt[1 + `(vt) + vt`
′(vt)], (10)

λtrt,t+1 = βλt+1
Pt
Pt+1

(11)

−Uh(ct − bct−1, ht) =
λtwt
µ̃t

, (12)

λtqt = βEtλt+1

[
rkt+1ut+1 − Υ−1

t+1a(ut+1) + qt+1(1 − δ)
]
, (13)
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Υ−1
t λt = λtqt

[
1 − S

(
it
it−1

)
−
(

it
it−1

)
S ′
(

it
it−1

)]
+ βEtλt+1qt+1

(
it+1

it

)2

S ′
(
it+1

it

)
(14)

v2
t `

′(vt) = 1 − βEt
λt+1

λtπt+1

. (15)

rkt = Υ−1
t a′(ut) (16)

wit =

{
w̃t if wit is set optimally in t

wit−1(µz∗πt−1)
χ̃/πt otherwise

,

where w̃t denotes the real wage prevailing in the 1 − α̃ labor markets in which the union

can set wages optimally in period t. Let h̃t denote the level of labor effort supplied to those

markets. Because the labor demand curve faced by the union is identical across all labor

markets, and because the cost of supplying labor is the same for all markets, one can assume

that wage rates, w̃t, and employment, h̃t, are identical across all labor markets updating

wages in a given period. By equation (5), we have that w̃η̃t h̃t = wη̃hdt . It is of use to track the

evolution of real wages in a particular labor market. In any labor market j where the wage

is set optimally in period t, the real wage in that period is w̃t. If in period t+1 wages are not

reoptimized in that market, the real wage is w̃t(µz∗πt)
χ̃/πt+1. This is because the nominal

wage is indexed by χ̃ percent of the sum of past price inflation and long-run real wage growth.

In general, s periods after the last reoptimization, the real wage is w̃t
∏s

k=1

(
(µz∗πt+k−1)

χ̃

πt+k

)
. To

derive the household’s first-order condition with respect to the wage rate in those markets

where the wage rate is set optimally in the current period, it is convenient to reproduce the

parts of the Lagrangian given above that are relevant for this purpose,

Lw = Et

∞∑

s=0

(α̃β)sλt+sh
d
t+sw

η̃
t+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃ [
w̃1−η̃
t

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)−1

− wt+s
µ̃t+s

w̃−η̃
t

]
.

The first-order condition with respect to w̃t is

0 = Et

∞∑

s=0

(βα̃)sλt+sw
η̃
t+sh

d
t+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃

 η̃ − 1

η̃

w̃t
∏s

k=1

(
πt+k

(µz∗πt+k−1)χ̃

) − wt+s
µ̃t+s


 .

Using equation (12) to eliminate µ̃t+s, we obtain that the real wage w̃t must satisfy

0 = Et

∞∑

s=0

(βα̃)sλt+s

(
w̃t
wt+s

)−η̃

hdt+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃

 η̃ − 1

η̃

w̃t
∏s

k=1

(
πt+k

(µz∗πt+k−1)χ̃

) − −Uht+s
λt+s


 .

This expression states that in labor markets in which the wage rate is reoptimized in period
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t, the real wage is set so as to equate the union’s future expected average marginal revenue

to the average marginal cost of supplying labor. The union’s marginal revenue s periods

after its last wage reoptimization is given by η̃−1
η̃
w̃t
∏s

k=1

(
(µz∗πt+k−1)

χ̃

πt+k

)
. Here, η̃/(η̃ − 1)

represents the markup of wages over marginal cost of labor that would prevail in the absence

of wage stickiness. The factor
∏s

k=1

(
(µz∗πt+k−1)

χ̃

πt+k

)
in the expression for marginal revenue

reflects the fact that as time goes by without a chance to reoptimize, the real wage declines

as the price level increases when wages are imperfectly indexed. In turn, the marginal cost

of supplying labor is given by the marginal rate of substitution between consumption and

leisure, or
−Uht+s

λt+s
= wt+s

µ̃t+s
. The variable µ̃t is a wedge between the disutility of labor and

the average real wage prevailing in the economy. Thus, µ̃t can be interpreted as the average

markup that unions impose on the labor market. The weights used to compute the average

difference between marginal revenue and marginal cost are decreasing in time and increasing

in the amount of labor supplied to the market.

We wish to write the wage-setting equation in recursive form. To this end, define

f 1
t =

(
η̃ − 1

η̃

)
w̃tEt

∞∑

s=0

(βα̃)sλt+s

(
wt+s
w̃t

)η̃
hdt+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃−1

and

f 2
t = −w̃−η̃

t Et

∞∑

s=0

(βα̃)swη̃t+sh
d
t+sUht+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃
.

One can express f 1
t and f 2

t recursively as

f 1
t =

(
η̃ − 1

η̃

)
w̃tλt

(
wt
w̃t

)η̃
hdt + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃−1(
w̃t+1

w̃t

)η̃−1

f 1
t+1, (17)

f 2
t = −Uht

(
wt
w̃t

)η̃
hdt + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃ (
w̃t+1

w̃t

)η̃
f 2
t+1. (18)

With these definitions at hand, the wage-setting equation becomes

f 1
t = f 2

t . (19)

The household’s optimality conditions imply a liquidity preference function featuring a

negative relation between real balances and the short-term nominal interest rate. To see this,

we first note that the absence of arbitrage opportunities in financial markets requires that

the gross risk-free nominal interest rate, which we denote by Rt, be equal to the reciprocal

of the price in period t of a nominal security that pays one unit of currency in every state

of period t + 1. Formally, Rt = 1/Etrt,t+1. This relation together with the household’s
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optimality condition (11) implies that

λt = βRtEt
λt+1

πt+1
, (20)

which is a standard Euler equation for pricing nominally risk-free assets. Combining this

expression with equations (10) and (15), we obtain

v2
t `

′(vt) = 1 − 1

Rt

.

The right-hand side of this expression represents the opportunity cost of holding money,

which is an increasing function of the nominal interest rate. Given the assumptions regarding

the form of the transactons cost function `, the left-hand side is increasing in money velocity.

Thus, this expression defines a liquidity preference function that is decreasing in the nominal

interest rate and unit elastic in consumption.

1.2 Firms

Each variety of final goods is produced by a single firm in a monopolistically competitive

environment. Each firm i ∈ [0, 1] produces output using as factor inputs capital services, kit,

and labor services, hit. The production technology is given by

F (kit, zthit) − ψz∗t ,

where the function F is assumed to be homogenous of degree one, concave, and strictly in-

creasing in both arguments. The variable zt denotes an aggregate, exogenous, and stochastic

neutral productivity shock. The parameter ψ > 0 introduces fixed costs of operating a firm

in each period. In turn, the presence of fixed costs implies that the production function ex-

hibits increasing returns to scale. We model fixed costs to ensure a realistic profit-to-output

ratio in steady state. Finally, we follow Altig et al. (2005) and assume that fixed costs are

subject to permanent shocks, z∗t , with

z∗t
zt

= Υ
θ

1−θ

t .

This formulation of fixed costs ensures that along the balanced-growth path fixed costs do

not vanish. Let µz,t ≡ zt/zt−1 denote the gross growth rate of the neutral technology shock.

By assumption, in the non-stochastic steady state µz,t is constant and equal to µz. Also, let

µ̂z,t = ln(µz,t/µz) denote the precentage deviation of the growth rate of neutral technology
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shocks. Then, the evolution of µz,t is assumed to be given by:

µ̂z,t = ρµz µ̂z,t−1 + εµz ,t,

with εµz ,t ∼ (0, σ2
µz

).

Aggregate demand for good i, which we denote by yit, is given by

yit = (Pit/Pt)
−ηyt,

where

yt ≡ ct[1 + `(vt)] + gt + Υ−1
t [it + a(ut)kt], (21)

denotes aggregate absorption. The variable gt denotes government consumption of the com-

posite good in period t.

We rationalize a demand for money by firms by imposing that wage payments be sub-

ject to a working-capital requirement that takes the form of a cash-in-advance constraint.

Formally, we impose

mf
it = νwthit, (22)

where mf
it denotes the demand for real money balances by firm i in period t and ν ≥ 0 is a

parameter indicating the fraction of the wage bill that must be backed with monetary assets.

Firms incur financial costs in the amount (1 − R−1
t )mf

it stemming from the need to

hold money to satisfy the working-capital constraint. Letting the variable φit denote real

distributed profits, the period-by-period budget constraint of firm i can then be written as

Etrt,t+1x
f
it+1 +mf

it −
xfit +mf

it−1

πt
=

(
Pit
Pt

)1−η

yt − rkt kit − wthit − φit,

where Etrt,t+1x
f
it+1 denotes the total real cost of one-period state-contingent assets that the

firm purchases in period t in terms of the composite good.2 We assume that the firm must

satisfy demand at the posted price. Formally, we impose

F (kit, zthit) − ψz∗t ≥
(
Pit
Pt

)−η

yt. (23)

2Implicit in this specification of the firm’s budget constraint is the assumption that firms rent capital
services from a centralized market. This is a common assumption in the related literature (e.g., Christiano
et al., 2003; Kollmann, 2003; Carlstrom and Fuerst, 2003; and Rotemberg and Woodford, 1992). A polar
assumption is that capital is firm specific, as in Woodford (2003, chapter 5.3) and Sveen and Weinke (2003).
Both assumptions are clearly extreme. A more realistic treatment of investment dynamics would incorporate
a mix of firm-specific and homogeneous capital.
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The objective of the firm is to choose contingent plans for Pit, hit, kit, x
f
it+1, and mf

it so as

to maximize the present discounted value of dividend payments, given by

Et

∞∑

s=0

rt,t+sPt+sφit+s,

where rt,t+s ≡
∏s

k=1 rt+k−1,t+k, for s ≥ 1, denotes the stochastic nominal discount factor

between t and t+ s, and rt,t ≡ 1. Firms are assumed to be subject to a borrowing constraint

that prevents them from engaging in Ponzi games.

Clearly, because rt,t+s represents both the firm’s stochastic discount factor and the market

pricing kernel for financial assets, and because the firm’s objective function is linear in asset

holdings, it follows that any asset accumulation plan of the firm satisfying the no-Ponzi

constraint is optimal. Suppose, without loss of generality, that the firm manages its portfolio

so that its financial position at the beginning of each period is nil. Formally, assume that

xfit+1 + mf
it = 0 at all dates and states. Note that this financial strategy makes xfit+1 state

noncontingent. In this case, distributed dividends take the form

φit =

(
Pit
Pt

)1−η

yt − rkt kit − wthit − (1 −R−1
t )mf

it. (24)

For this expression to hold in period zero, we impose the initial condition xfi0 + mf
i−1 = 0.

The last term on the right-hand side of the above expression for dividends represents the

firm’s financial costs associated with the cash-in-advance constraint on wages. This financial

cost is increasing in the opportunity cost of holding money, 1 − R−1
t , which in turn is an

increasing function of the short-term nominal interest rate Rt.

Letting rt,t+sPt+smcit+s denote the Lagrange multiplier associated with constraint (23),

the first-order conditions of the firm’s maximization problem with respect to capital and

labor services are, respectively,

mcitztF2(kit, zthit) = wt

[
1 + ν

Rt − 1

Rt

]
(25)

and

mcitF1(kit, zthit) = rkt . (26)

It is clear from these optimality conditions that the presence of a working-capital requirement

introduces a financial cost of labor that is increasing in the nominal interest rate. We note

also that because all firms face the same factor prices and because they all have access to

the same production technology with the function F being linearly homogeneous, marginal
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costs, mcit, are identical across firms. Indeed, because the above first-order conditions hold

for all firms independently of whether they are allowed to reset prices optimally, marginal

costs are identical across all firms in the economy.

Prices are assumed to be sticky à la Calvo (1983) and Yun (1996). Specifically, each

period t ≥ 0 a fraction α ∈ [0, 1) of randomly picked firms is not allowed to optimally set

the nominal price of the good they produce. Instead, these firms index their prices to past

inflation according to the rule Pit = Pit−1π
χ
t−1. The interpretation of the parameter χ is the

similar to that of its wage counterpart χ̃. The remaining 1−α firms choose prices optimally.

Consider the price-setting problem faced by a firm that has the opportunity to reoptimize

the price in period t. This price, which we denote by P̃t, is set so as to maximize the expected

present discounted value of profits. That is, P̃t maximizes the following Lagrangian:

L = Et

∞∑

s=0

rt,t+sPt+sα
s





(
P̃t
Pt

)1−η s∏

k=1

(
πχt+k−1

πt+k

)1−η

yt+s − rkt+skit+s − wt+shit+s[1 + ν(1 − R−1
t+s)]

+mcit+s

[
F (kit+s, zt+shit+s) − ψz∗t+s −

(
P̃t
Pt

)−η s∏

k=1

(
πχt+k−1

πt+k

)−η

yt+s

]}
.

The first-order condition with respect to P̃t is

Et

∞∑

s=0

rt,t+sPt+sα
s

(
P̃t
Pt

)−η s∏

k=1

(
πχt+k−1

πt+k

)−η

yt+s

[
η − 1

η

(
P̃t
Pt

)
s∏

k=1

(
πχt+k−1

πt+k

)
−mcit+s

]
= 0.

(27)

According to this expression, optimizing firms set nominal prices so as to equate average

future expected marginal revenues to average future expected marginal costs. The weights

used in calculating these averages are decreasing with time and increasing in the size of

the demand for the good produced by the firm. Under flexible prices (α = 0), the above

optimality condition reduces to a static relation equating marginal costs to marginal revenues

period by period.

It will prove useful to express this first-order condition recursively. To that end, let

x1
t ≡ Et

∞∑

s=0

rt,t+sα
syt+smcit+s

(
P̃t
Pt

)−η−1 s∏

k=1

(
πχt+k−1

π
(1+η)/η
t+k

)−η

and

x2
t ≡ Et

∞∑

s=0

rt,t+sα
syt+s

(
P̃t
Pt

)−η s∏

k=1

(
πχt+k−1

π
η/(η−1)
t+k

)1−η

.

12



Express x1
t and x2

t recursively as

x1
t = ytmctp̃

−η−1
t + αβEt

λt+1

λt
(p̃t/p̃t+1)

−η−1

(
πχt
πt+1

)−η

x1
t+1, (28)

x2
t = ytp̃

−η
t + αβEt

λt+1

λt

(
πχt
πt+1

)1−η (
p̃t
p̃t+1

)−η

x2
t+1. (29)

Then we can write the first-order condition with respect to P̃t as

ηx1
t = (η − 1)x2

t . (30)

The labor input used by firm i ∈ [0, 1], denoted hit, is assumed to be a composite made

of a continuum of differentiated labor services, hjit indexed by j ∈ [0, 1]. Formally,

hit =

[∫ 1

0

hjit
1−1/η̃

dj

]1/(1−1/η̃)

, (31)

where the parameter η̃ > 1 denotes the intratemporal elasticity of substitution across dif-

ferent types of activities. For any given level of hit, the demand for each variety of labor

j ∈ [0, 1] in period t must solve the dual problem of minimizing total labor cost,
∫ 1

0
W j
t h

j
itdj,

subject to the aggregation constraint (31), where W j
t denotes the nominal wage rate paid to

labor of variety j at time t. The optimal demand for labor of type j is then given by

hjit =

(
W j
t

Wt

)−η̃

hit, (32)

where Wt is a nominal wage index given by

Wt ≡
[∫ 1

0

W j
t

1−η̃
dj

] 1
1−η̃

. (33)

This wage index has the property that the minimum cost of a bundle of intermediate labor

inputs yielding hit units of the composite labor is given by Wthit.

1.3 The Government

Each period, the government consumes gt units of the composite good. We assume that the

government minimizes the cost of producing gt. As a result, public demand for each variety

i ∈ [0, 1] of differentiated goods git is given by git = (Pit/Pt)
−ηgt.
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We assume that along the balanced-growth path the share of government spending in

value added is constant, that is, we impose limj→∞Etgt+j/yt+j = sg, where sg is a constant

indicating the share of government consumption in value added. To this end we impose:

gt = z∗t ḡt,

where ḡt is an exogenous stationary stochastic process. This assumption ensures that gov-

ernment purchases and output are cointegrated. We impose the following law of motion for

ḡt:

ln

(
ḡt
ḡ

)
= ρḡ ln

(
ḡt−1

ḡ

)
+ εḡ,t.

The government issues money given in real terms by mt ≡ mh
t +
∫ 1

0
mf
itdi. For simplicity, we

assume that government debt is zero at time zero and that the fiscal authority levies lump-

sum taxes, τt to bridge any gap between seignorage income and government expenditures,

that is, τt = gt − (mt −mt−1/πt). As a consequence, goverment debt is nil at all times.

We postpone the presentation of the monetary policy regime until after we characterize

a competitive equilibrium.

1.4 Aggregation

We limit attention to a symmetric equilibrium in which all firms that have the opportunigy to

change their price optimally at a given time choose the same price. It then follows from (4)

that the aggregate price index can be written as P 1−η
t = α(Pt−1π

χ
t−1)

1−η + (1 − α)P̃ 1−η
t .

Dividing this expression through by P 1−η
t one obtains

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t . (34)

1.4.1 Market Clearing in the Final Goods Market

Naturally, the set of equilibrium conditions includes a resource constraint. Such a restriction

is typically of the type F (kt, ztht)−ψz∗t = ct[1+ `(vt)]+gt+Υ−1
t [it+a(ut)kt]. In the present

model, however, this restriction is not valid. This is because the model implies relative price

dispersion across varieties. This price dispersion, which is induced by the assumed nature

of price stickiness, is inefficient and entails output loss. To see this, consider the following

expression stating that supply must equal demand at the firm level:

F (kit, zthit) − ψz∗t =
{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
}(Pit

Pt

)−η

.
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Integrating over all firms and taking into account that (a) the capital-labor ratio is common

across firms, (b) that the aggregate demand for the composite labor input, hdt , satisfies

hdt =

∫ 1

0

hitdi,

and that (c) the aggregate effective level of capital, utkt satisfies

utkt =

∫ 1

0

kitdi,

we obtain

zth
d
tF

(
utkt
zthdt

, 1

)
− ψz∗t =

{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
} ∫ 1

0

(
Pit
Pt

)−η

di.

Let st ≡
∫ 1

0

(
Pit

Pt

)−η
di. Then we have

st =

∫ 1

0

(
Pit
Pt

)−η

di

= (1 − α)

(
P̃t
Pt

)−η

+ (1 − α)α

(
P̃t−1π

χ
t−1

Pt

)−η

+ (1 − α)α2

(
P̃t−2π

χ
t−1π

χ
t−2

Pt

)−η

+ . . .

= (1 − α)

∞∑

j=0

αj

(
P̃t−j

∏j
s=1 π

χ
t−j−1+s

Pt

)−η

= (1 − α)p̃−ηt + α

(
πt
πχt−1

)η
st−1.

Summarizing, the resource constraint in the present model is given by the following two

expressions

F (utkt, zth
d
t ) − ψz∗t =

{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
}
st (35)

and

st = (1 − α)p̃−ηt + α

(
πt
πχt−1

)η
st−1, (36)

with s−1 given. The state variable st summarizes the resource costs induced by the inefficient

price dispersion featured in the Calvo model in equilibrium. Three observations are in order

about the price dispersion measure st. First, st is bounded below by 1. That is, price

dispersion is always a costly distortion in this model. To see that st is bounded below by 1,
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let vit ≡ (Pit/Pt)
1−η. It follows from the definition of the price index given in equation (4) that[∫ 1

0
vit

]η/(η−1)

= 1. Also, by definition we have st =
∫ 1

0
v
η/(η−1)
it . Then, taking into account

that η/(η − 1) > 1, Jensen’s inequality implies that 1 =
[∫ 1

0
vit

]η/(η−1)

≤
∫ 1

0
v
η/(η−1)
it = st.

Second, in an economy where the non-stochastic level of inflation is nil (i.e., when π = 1)

or where prices are fully indexed to any variable ωt with the property that its deterministic

steady-state level equals the deterministic steady-state value of inflation (i.e., ω = π), then

the variable st follows, up to first order, the univariate autoregressive process ŝt = αŝt−1.

In these cases, the price dispersion measure st has no first-order real consequences for the

stationary distribution of any endogenous variable of the model. This means that studies that

restrict attention to linear approximations to the equilibrium conditions are justified to ignore

the variable st if the model features no price dispersion in the deterministic steady state.

But st matters up to first order when the deterministic steady state features movements in

relative prices across goods varieties. More importantly, the price dispersion variable st must

be taken into account if one is interested in higher-order approximations to the equilibrium

conditions even if relative prices are stable in the deterministic steady state. Omitting st

in higher-order expansions would amount to leaving out certain higher-order terms while

including others. Finally, when prices are fully flexible, α = 0, we have that p̃t = 1 and

thus st = 1. (Obviously, in a flexible-price equilibrium there is no price dispersion across

varieties.)

As discussed above, equilibrium marginal costs and capital-labor ratios are identical

across firms. Therefore, one can aggregate the firm’s optimality conditions with respect to

labor and capital, equations (25) and (26), as

mctztF2(utkt, zth
d
t ) = wt

[
1 + ν

Rt − 1

Rt

]
(37)

and

mctF1(utkt, zth
d
t ) = rkt . (38)

1.4.2 Market Clearing in the Labor Market

It follows from equation (32) that the aggregate demand for labor of type j ∈ [0, 1], which

we denote by hjt ≡
∫ 1

0
hjitdi, is given by

hjt =

(
W j
t

Wt

)−η̃

hdt , (39)
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where hdt ≡
∫ 1

0
hitdi denotes the aggregate demand for the composite labor input. Taking

into account that at any point in time the nominal wage rate is identical across all labor

markets at which wages are allowed to change optimally, we have that labor demand in each

of those markets is

h̃t =

(
w̃t
wt

)−η̃

hdt .

Combining this expression with equation (39), describing the demand for labor of type

j ∈ [0, 1], and with the time constraint (6), which must hold with equality, we can write

ht = (1 − α̃)hdt

∞∑

s=0

α̃s

(
W̃t−s

∏s
k=1(µz∗πt+k−s−1)

χ̃

Wt

)−η̃

.

Let s̃t ≡ (1 − α̃)
∑∞

s=0 α̃
s
(
W̃t−s

∏s
k=1(µz∗πt+k−s−1)

χ̃

Wt

)−η̃
. The variable s̃t measures the degree of

wage dispersion across different types of labor. The above expression can be written as

ht = s̃th
d
t . (40)

The state variable s̃t evolves over time according to

s̃t = (1 − α̃)

(
w̃t
wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃ (
πt

(µz∗πt−1)χ̃

)η̃
s̃t−1. (41)

We note that because all job varieties are ex-ante identical, any wage dispersion is inefficient.

This is reflected in the fact that s̃t is bounded below by 1. The proof of this statement is

identical to that offered earlier for the fact that st is bounded below by unity. To see this, note

that s̃t can be written as s̃t =
∫ 1

0

(
Wit

Wt

)−η̃
di. This inefficiency introduces a wedge that makes

the number of hours supplied to the market, ht, larger than the number of productive units

of labor input, hdt . In an environment without long-run wage dispersion, the dead-weight

loss created by wage dispersion is nil up to first order. Formally, a first-order approximation

of the law of motion of s̃t yields a univariate autoregressive process of the form ˆ̃st = α̃ˆ̃st−1,

as long as there is no wage dispersion in the deterministic steady state. When wages are

fully flexible, α̃ = 0, wage dispersion disappears, and thus s̃t equals 1.

It follows from our definition of the wage index given in equation (33) that in equilibrium

the real wage rate must satisfy

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
(µz∗πt−1)

χ̃

πt

)1−η̃

. (42)
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Aggregating the expression for firm’s profits given in equation (24) yields

φt = yt − rkt utkt − wth
d
t − ν(1 −R−1

t )wth
d
t . (43)

In equilibrium, real money holdings can be expressed as

mt = mh
t + νwth

d
t , (44)

and the goverment budget constraint is given by

τt = gt − (mt −mt−1/πt). (45)

1.5 Competitive Equilibrium

A stationary competitive equilibrium is a set of stationary processes ut, ct, ht, it, kt+1, vt,

mh
t , mt, λt, πt, wt, µ̃t, qt, r

k
t , φt, f

1
t , f

2
t , w̃t, h

d
t , yt, mct, x

1
t , x

2
t , p̃t, st, s̃t, and τt satisfying (7),

(8), (10), (12)-(21), (28)-(30), (34)-(38), and (40)-(45), given exogenous stochastic processes

{gt, zt,Υt}∞t=0, the policy process, Rt, and initial conditions c−1, w−1, s−1, s̃−1, π−1, i−1, and

k0.

2 Complete Set of Equilibrium Conditions

kt+1 = (1 − δ)kt + it

[
1 − S

(
it
it−1

)]

vt ≡
ct
mh
t

Uc(ct − bct−1, ht) − bβEtUc(ct+1 − bct, ht+1) = λt[1 + `(vt) + vt`
′(vt)]

−Uh(ct − bct−1, ht) =
λtwt
µ̃t

,

λtqt = βEtλt+1

[
rkt+1ut+1 − Υ−1

t+1a(ut+1) + qt+1(1 − δ)
]
,

Υ−1
t λt = λtqt

[
1 − S

(
it
it−1

)
−
(

it
it−1

)
S ′
(

it
it−1

)]
+ βEtλt+1qt+1

(
it+1

it

)2

S ′
(
it+1

it

)

v2
t `

′(vt) = 1 − βEt
λt+1

λtπt+1
.

rkt = Υ−1
t a′(ut)

f 1
t =

(
η̃ − 1

η̃

)
w̃tλt

(
wt
w̃t

)η̃
hdt + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃−1(
w̃t+1

w̃t

)η̃−1

f 1
t+1,
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f 2
t = −Uht

(
wt
w̃t

)η̃
hdt + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃ (
w̃t+1

w̃t

)η̃
f 2
t+1

f 1
t = f 2

t .

λt = βRtEt
λt+1

πt+1

yt = ct[1 + `(vt)] + gt + Υ−1
t [it + a(ut)kt]

x1
t = ytmctp̃

−η−1
t + αβEt

λt+1

λt
(p̃t/p̃t+1)

−η−1

(
πχt
πt+1

)−η

x1
t+1

x2
t = ytp̃

−η
t + αβEt

λt+1

λt

(
πχt
πt+1

)1−η (
p̃t
p̃t+1

)−η

x2
t+1

ηx1
t = (η − 1)x2

t

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t .

F (utkt, zth
d
t ) − ψz∗t =

{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
}
st

st = (1 − α)p̃−ηt + α

(
πt
πχt−1

)η
st−1

mctztF2(utkt, zth
d
t ) = wt

[
1 + ν

Rt − 1

Rt

]

mctF1(utkt, zth
d
t ) = rkt

ht = s̃th
d
t

s̃t = (1 − α̃)

(
w̃t
wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃ (
πt

(µz∗πt−1)χ̃

)η̃
s̃t−1

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
(µz∗πt−1)

χ̃

πt

)1−η̃

φt = yt − rkt utkt − wth
d
t − ν(1 − R−1

t )wth
d
t

mt = mh
t + νwth

d
t

mt(1 −R−1
t ) + τt = gt

hier
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2.1 Functional Forms

We use the following standard functional forms for utility and technology:

U =

[
(ct − bct−1)

1−φ4 (1 − ht)
φ4

]1−φ3

− 1

1 − φ3

F (k, h) = kθh1−θ,

The functional form for the investment adjustment cost function is taken from Christiano,

Eichenbaum, and Evans (2005).

S
(

it
it−1

)
=
κ

2

(
it
it−1

− µI

)2

,

where µI is the steady-state growth rate of investment. Following Schmitt-Grohé and Uribe

(2004) we assume that the transaction cost technology takes the form

`(v) = φ1v + φ2/v − 2
√
φ1φ2. (46)

The money demand function implied by the above transaction technology is of the form

v2
t =

φ2

φ1

+
1

φ1

Rt − 1

Rt

,

Note the existence of a satiation point for consumption-based money velocity, v, equal to√
φ2/φ1. Also, the money demand has a unit elasticity with respect to consumption expen-

ditures. This feature is a consequence of the assumption that transaction costs, c`(c/m), are

homogenous of degree one in consumption and real balances and is independent of the par-

ticular functional form assumed for `(·). Further, as the parameter φ2 approaches zero, the

transaction cost function `(·) becomes linear in velocity and the demand for money adopts

the Baumol-Tobin square root form with respect to the opportunity cost of holding money,

(R− 1)/R. That is, the log-log elasticity of money demand with respect to the opportunity

cost of holding money converges to 1/2, as φ2 vanishes.

The costs of higher capacity utilization are parameterized as follows:

a(u) = γ1(u− 1) +
γ2

2
(u− 1)2.

CCE estimate the ratio of γ2/γ1.
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2.2 Equilibrium Conditions for written with the specific func-

tional forms

kt+1 = (1 − δ)kt + it

[
1 − κ

2

(
it
it−1

− µI

)2
]

vt =
ct
mh
t

(1 − φ4)(ct − bct−1)
(1−φ3)(1−φ4)−1(1 − ht)

φ4(1−φ3)

−bβEt(1 − φ4)(ct+1 − bct)
(1−φ3)(1−φ4)−1(1 − ht+1)

φ4(1−φ3) = λt[1 + `(vt) + vt`
′(vt)]

φ4(ct − bct−1)
(1−φ3)(1−φ4)(1 − ht)

φ4(1−φ3)−1 =
λtwt
µ̃t

λtqt = βEtλt+1

[
rkt+1ut+1 − Υ−1

t+1a(ut+1) + qt+1(1 − δ)
]
,

Υ−1
t λt = λtqt

[
1 − κ

2

(
it
it−1

− µI

)2

−
(

it
it−1

)
κ

(
it
it−1

− µI

)]

+βEtλt+1qt+1

(
it+1

it

)2

κ

(
it+1

it
− µI

)

v2
t `

′(vt) = 1 − βEt
λt+1

λtπt+1
.

rkt = Υ−1
t a′(ut)

f 1
t =

(
η̃ − 1

η̃

)
w̃tλt

(
wt
w̃t

)η̃
hdt + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃−1(
w̃t+1

w̃t

)η̃−1

f 1
t+1,

f 2
t =

[
φ4(ct − bct−1)

(1−φ3)(1−φ4)(1 − ht)
φ4(1−φ3)−1

](wt
w̃t

)η̃
hdt+α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃ (
w̃t+1

w̃t

)η̃
f 2
t+1

f 1
t = f 2

t .

λt = βRtEt
λt+1

πt+1

yt = ct[1 + `(vt)] + gt + Υ−1
t [it + a(ut)kt]

x1
t = ytmctp̃

−η−1
t + αβEt

λt+1

λt
(p̃t/p̃t+1)

−η−1

(
πχt
πt+1

)−η

x1
t+1

x2
t = ytp̃

−η
t + αβEt

λt+1

λt

(
πχt
πt+1

)1−η (
p̃t
p̃t+1

)−η

x2
t+1
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ηx1
t = (η − 1)x2

t

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t .

(utkt)
θ(zth

d
t )

1−θ − ψz∗t =
{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
}
st

st = (1 − α)p̃−ηt + α

(
πt
πχt−1

)η
st−1

mctzt(1 − θ)(utkt)
θ(zth

d
t )

−θ = wt

[
1 + ν

Rt − 1

Rt

]

mctθ(utkt)
θ−1(zth

d
t )

1−θ = rkt

ht = s̃th
d
t

s̃t = (1 − α̃)

(
w̃t
wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃ (
πt

(µz∗πt−1)χ̃

)η̃
s̃t−1

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
(µz∗πt−1)

χ̃

πt

)1−η̃

φt = yt − rkt utkt − wth
d
t − ν(1 − R−1

t )wth
d
t

mt = mh
t + νwth

d
t

mt(1 −R−1
t ) + τt = gt

2.3 Stationary Variables

This economy features two types of permanent shocks. Therefore, several variables such as

output and the real wage will not be stationary along the balanced growth path. We next

perform a change of variables so as to obtain a set of equilibrium conditions that involve
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only stationary variables. To this end let

Ct =
ct
z∗t

It =
it

Υtz
∗
t

=
it

Υ
1

1−θ

t zt

µI,t = µ
1

(1−θ)

Υ,t µz,t

Kt+1 =
kt+1

ztΥ
1

1−θ

Mh
t =

mh
t

z∗t

Mt =
mt

z∗t

Λt =
λt

z∗t
(1−φ3)(1−φ4)−1

µλ,t ≡
z∗t

(1−φ3)(1−φ4)−1

z∗t−1
(1−φ3)(1−φ4)−1

= µ
(1−φ3)(1−φ4)−1
z∗,t

Wt =
wt
z∗t

Qt = Υtqt

Rk
t = Υtr

k
t

W̃t =
w̃t
z∗t

F 1
t =

f 1
t

z∗t
(1−φ4)(1−φ3)

F 2
t =

f 2
t

z∗t
(1−φ4)(1−φ3)

Yt =
yt
z∗t

Gt =
gt
z∗t

Φt =
φt
z∗t

X1
t =

x1
t

z∗t

X2
t =

x1
t

z∗t

τ̃t =
τt
z∗t

Variables that need not be transformed are: p̃t, ut, mct, ht, h
d
t , st, s̃t, πt
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2.4 Equilibrium Conditions in Stationary Variables

Kt+1 = (1 − δ)
Kt

µI,t
+ It

[
1 − κ

2

(
It
It−1

µI,t − µI

)2
]

vt =
Ct
Mh

t

(1 − φ4)(Ct − µ−1
z∗,tbCt−1)

(1−φ3)(1−φ4)−1(1 − ht)
φ4(1−φ3)

−bβEt(1 − φ4)(µz∗,t+1Ct+1 − bCt)
(1−φ3)(1−φ4)−1(1 − ht+1)

φ4(1−φ3) = Λt[1 + `(vt) + vt`
′(vt)]

φ4(Ct − bµ−1
z∗,tCt−1)

(1−φ3)(1−φ4)(1 − ht)
φ4(1−φ3)−1 =

ΛtWt

µ̃t

ΛtQt = Et
βµΛ,t+1

µΥ,t+1
Λt+1

[
Rk
t+1ut+1 − a(ut+1) +Qt+1(1 − δ)

]
,

Λt = ΛtQt

[
1 − κ

2

(
µI,tIt
It−1

− µI

)2

−
(
µI,tIt
It−1

)
κ

(
µI,tIt
It−1

− µI

)]

+βEt
µΛ,t+1

µΥ,t+1

Λt+1Qt+1

(
µI,t+1

It+1

It

)2

κ

(
µI,t+1

It+1

It
− µI

)

v2
t `

′(vt) = 1 − βEtµΛ,t+1
Λt+1

Λt

1

πt+1
.

Rk
t = a′(ut)

F 1
t =

(
η̃ − 1

η̃

)
W̃tΛt

(
Wt

W̃t

)η̃
hdt + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃−1
(
µz∗,t+1W̃t+1

W̃t

)η̃−1

µΛ,t+1µz∗,t+1F
1
t+1,

F 2
t =

[
φ4(Ct − bµ−1

z∗,tCt−1)
(1−φ3)(1−φ4)(1 − ht)

φ4(1−φ3)−1
](Wt

W̃t

)η̃
hdt +

α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃(
µz∗,t+1W̃t+1

W̃t

)η̃

µΛ,t+1µz∗,t+1F
2
t+1

F 1
t = F 2

t .

Λt = βRtEtµΛ,t+1
Λt+1

πt+1

Yt = Ct[1 + `(vt)] +Gt + [It + a(ut)µ
−1
I,tKt]
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X1
t = Ytmctp̃

−η−1
t + αβEt

µΛ,t+1Λt+1

Λt

(p̃t/p̃t+1)
−η−1

(
πχt
πt+1

)−η

µz∗,t+1X
1
t+1

X2
t = Ytp̃

−η
t + αβEt

µΛ,t+1Λt+1

Λt

(
πχt
πt+1

)1−η (
p̃t
p̃t+1

)−η

µz∗,t+1X
2
t+1

ηX1
t = (η − 1)X2

t

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t .

(utµ
−1
I,tKt)

θ
hdt

1−θ − ψ = {[1 + `(vt)]Ct +Gt + [It + a(ut)Kt/µI,t]} st

st = (1 − α)p̃−ηt + α

(
πt
πχt−1

)η
st−1

mct(1 − θ)(utKt/µI,t)
θhdt

−θ
= Wt

[
1 + ν

Rt − 1

Rt

]

mctθ(utKt/µI,t)
θ−1hdt

1−θ
= Rk

t

ht = s̃th
d
t

s̃t = (1 − α̃)

(
W̃t

Wt

)−η̃

+ α̃

(
Wt−1

µz∗,tWt

)−η̃ (
πt

(µz∗πt−1)χ̃

)η̃
s̃t−1

W 1−η̃
t = (1 − α̃)W̃ 1−η̃

t + α̃(Wt−1/µz∗,t)
1−η̃
(

(µz∗πt−1)
χ̃

πt

)1−η̃

Φt = Yt − Rk
t utKt/µI,t −Wth

d
t (1 + ν(1 − R−1

t )

Mt = Mh
t + νWth

d
t

Mt(1 − R−1
t ) + τt/z

∗
t = Gt

µI,t = µΥ,tµz∗,t

µΛ,t = µ
(1−φ3)(1−φ4)−1
z∗,t

µz∗,t = µ
θ

1−θ

Υ,t µz,t

µz,t ≡
zt
zt−1

and µ̂z,t ≡ ln(µz,t/µz))

µ̂z,t = ρµz µ̂z,t−1 + εµz ,t with εµz ,t ∼ (0, σ2
µz

)

µΥ,t ≡ Υt/Υt−1 and µ̂Υ,t ≡ ln(µΥ,t/µΥ)

µ̂Υ,t = ρµΥ
µ̂Υ,t−1 + εµΥ,t with εµΥ,t ∼ (0, σ2

µΥ
)
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ln

(
Gt

G

)
= ρg ln

(
Gt−1

G

)
+ εg,t

Calibration

The equilibrium conditions in terms of stationary variables listed above contain 30 equations

(not counting the law of motion of the exogenous variables) and 30 variables (again not

counting the exogenous variables or the policy variable Rt): (ut, Kt+1,Ct, It, s̃t, ht, h
d
t , vt,

Mh
t , Λt, Wt, µ̃t, Qt, R

k
t , F

1
t , F 2

t , πt, W̃t, Yt, X
1
t , X

2
t , mct, p̃t, st, Φt, Mt, τ̃t, µI,t, µΛ,t, µz∗,t.

In addition, the equilibrium conditions feature 20 parameters (φ1, φ2, φ3, φ4, γ1, γ2, θ, κ, b,

β, δ, η̃, α̃, η, α, χ, χ̃, ψ, ν, µI).

Finally, the three exogenous processes involve 9 further parameters: µz, µΥ, G, σµz , σµΥ
,

σg, ρµz , ρµΥ
, ρg .

This means that in order to obtain values for the steady-state levels of all variables and

for the deep structural parameters, we need to impose 30 restrictions.

We take most parameters from ACEL. But not the baseline case, rather the one in which

they impose that the product markup is 20 percent.

The exogenous stochastic process is calibrated in ACEL as

µΥ = 1.0042

µz = 1.00213

Note what they in fact calibrate is: µY ≡ yt/yt−1 = 1.0045 and then they use µy = µ
θ/(1−θ)
Υ µz.

I believe that the paper has a typo, it says µz = 1.00013. The standard deviations and serial

correlations are estimated.

σµz = 0.0007

σµΥ
= 0.0031

ρµz = 0.89

ρµΥ
= 0.20

The process for government purchases is taken from Christiano and Eichenbaum (AER,

1992)

ρg = 0.96

σg = 0.020

G/Y = 0.17 own estimates
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Following CEE and ACEL we assume that in the competitive equilibrium steady state:

U = 1

Discount factor (ACEL calibrate 1.03−1/4)

BETTA = 1.03(−1/4)

Capital share (ACEL calibrate this)

THETA = 0.36

Reciprocal of intertemporal elasticity of substitution (ACEL assume from the start logarithm

utility in consumption)

PHI3 = 1

Labor elasticity of subst (CEE and ACEL calibrate this)

ETATIL = 21

Goods elasticity of substitution (CEE, value estimated; note in ACEL they estimate a

much smaller value, because of firm specific stuff, but we stick to a 20 percent markup, so

we do their high markup λf = 1.2 case)

ETA = 6

Degree of price stickiness (as estimated in CEE) (Note that ACEL impose full indexation,

in the case of high markup and homo capital their estimates imply an α of 0.8, which I judge

to be too high, so I go with the old CEE estimate)

ALFA = 0.6

Degree of wage stickiness (as estimated in ACEL)

ALFATIL = 0.69

Degree of habit formation (as estimated in ACEL)

B = 0.69;
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Capital adjustment cost (as estimated in ACEL, in CEE they find 2.48)

KAPA = 2.79;

Following CEE and ACEL we set the fixed cost parameter so that in the steady state of

the competitive economy profits are zero.

Profits = 0 = Y − RkuK/µI −Whd − ν(1 − R−1)Whd

Quarterly depreciation rate: CEE (and ACEL) set

δ = 0.025

We draw from the estimates reported in ACEL to assign values to the following capacity

utilization parameters:
γ2

γ1
= 1.46

Degree of wage indexation (assumed in CEE and ACEL)

CHITIL = 1

We use

π = 1.042−1/4

but ACEL and CEE calibrate the money growth rate.

Degree of price indexation (taken from Cogley and Sbordone and LOWW)

CHI = 0

Share of household money in total money (own estimate).

SMH = 0.44

M1/GDP. Sample: 1959:1-2004:3. Source: GDP NIPA and M1 FRB. Produced with

m1gdp.m

SM = 0.1695 ∗ 4;
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Annualized inerest rate semielasticity of money demand (ACEL)

εmh,R ≡ 1

4

∂ ln(mh)

∂R
= −0.81

We assume that µI that appears in the investment adjustment cost function is the steady

state value, so that in steady state adjustment costs are nil.

µI = µΥµz∗

Finally, the Frisch elasticity of labor supply in ACEL is 1. To have this in our model we

need to set

H = 0.5
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2.5 Nonstochastic Steady State

We used 4 equilibrium conditions to eliminate µ̃t, φt, m
h
t , and τt.

I = K
(
1 − (1−δ)

µI

)

v = C
Mh

(1 − φ4)[C(1 − b/µz∗)]
(1−φ3)(1−φ4)−1(1 − h)φ4(1−φ3) (1 − bβµΛ) = Λ[1 + `(v) + v`′(v)]

Q = βµΛ

µΥ

[
Rku− a(u) +Q(1 − δ)

]

Q = 1

v2`′(v) = 1 − βµΛ
1
π

Rk = a′(u)

F 1
[
1 − α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗

]
=
(
η̃−1
η̃

)
W̃Λ

(
W
W̃

)η̃
hd

F 2
[
1 − α̃β(µz∗π)(1−χ̃)η̃µΛµz∗

]
=
[
φ4(C − bµ−1

z∗ C)(1−φ3)(1−φ4)(1 − h)φ4(1−φ3)−1
] (

W
W̃

)η̃
hd

F 1 = F 2

R−1 = βµΛ
1
π

Y = C[1 + `(v)] +G+ [I + a(u)µ−1
I K]

X1
(
1 − αβµΛπ

−(χ−1)ηµz∗
)

= Ymcp̃−η−1

X2
(
1 − αβµΛπ

(χ−1)(1−η)µz∗
)

= Y p̃−η

ηX1 = (η − 1)X2

1 = απ(η−1)(1−χ) + (1 − α)p̃1−η
t .

(uµ−1
I K)

θ
hd

1−θ − ψ = {[1 + `(v)]C +G+ [I + a(u)K/µI]} s

s = (1 − α)p̃−η + απ
(1−χ)η
t s

mc(1 − θ)(utKt/µI,t)
θhdt

−θ
= Wt

[
1 + ν Rt−1

Rt

]

mcθ(uK/µI)
θ−1hd

1−θ
= Rk

h = s̃hd

s̃
[
1 − α̃(µz∗π)(1−χ̃)η̃

]
= (1 − α̃)

(
W̃
W

)−η̃

1 = (1 − α̃)
(
W̃
W

)1−η̃
+ α̃ (µz∗π)(χ̃−1)(1−η̃)
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3 Finding the steady state from the calibration restric-

tions when φ3 = 1:

3.1 Steady State 1:

At this point we know: u, h, φ3, γ2/γ1, θ, κ, b, β, δ, η̃, α̃, η, α, χ, χ̃, µz, µΥ, σµz , σµΥ
, σg,

ρµz , ρµΥ
, ρg.

We need to find φ1, φ2, φ4, γ1, γ2, ψ, ν, µI, G, and the remaining endogenous variables

h = 0.5

u = 1

sK = RkuK
µIY

(∗)
G
Y

= 0.17 = sg

γ2 = γ2
γ1

× γ1

Y = RkuK/µI +Whd(1 + ν(1 −R−1)) (∗∗)
Mh

Mh+νWhd = SMH (∗ ∗ ∗)
Mh+νWhd

Y
= SM (∗ ∗ ∗∗)

εmh,R = −1
8

1
R(φ2 R+R−1)

µI = µΥµz∗

µΛ = 1
µz∗

I = K
(
1 − (1−δ)

µI

)

v = C
Mh
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(1 − φ4)[C(1 − µ−1
z∗ b)]

(1−φ3)(1−φ4)−1(1 − h)φ4(1−φ3) (1 − bβµΛ) = Λ[1 + `(v) + v`′(v)]

Q = βµΛ

µΥ

[
Rku− a(u) +Q(1 − δ)

]

Q = 1

v =
√

φ2

φ1
+ 1

φ1
(1 −R−1)

Rk = a′(u) = γ1 + γ2(u− 1)

F 1
[
1 − α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗

]
=
(
η̃−1
η̃

)
W̃Λ

(
W
W̃

)η̃
hd

F 2
[
1 − α̃β(µz∗π)(1−χ̃)η̃µΛµz∗

]
=
[
φ4(C − bµ−1

z∗ C)(1−φ3)(1−φ4)(1 − h)φ4(1−φ3)−1
] (

W
W̃

)η̃
hd

F 1 = F 2

R = π
βµΛ

Y = C[1 + `(v)] +G+ [I + a(u)µ−1
I K]

X1
(
1 − αβµΛπ

−(χ−1)ηµz∗
)

= Ymcp̃−η−1

X2
(
1 − αβµΛπ

(χ−1)(1−η)µz∗
)

= Y p̃−η

ηX1 = (η − 1)X2

p̃ =
(

1−απ(η−1)(1−χ)

(1−α)

)1/(1−η)

(uµ−1
I K)

θ
hd

1−θ − ψ = {[1 + `(v)]C +G+ [I + a(u)K/µI]} s

s = (1 − α)p̃−η + απ
(1−χ)η
t s

mc(1 − θ)(utKt/µI,t)
θhdt

−θ
= Wt

[
1 + ν Rt−1

Rt

]

mcθ(uK/µI)
θ−1hd

1−θ
= Rk

h = s̃hd

s̃
[
1 − α̃(µz∗π)(1−χ̃)η̃

]
= (1 − α̃)

(
W̃
W

)−η̃

(
W̃
W

)
=
(

1−α̃(µz∗π)(χ̃−1)(1−η̃)

(1−α̃)

)1/(1−η̃)

Using equations (*), (**), (***), and (****), and it follows that

ν = sm(1−smh)
1−θ−sm(1−smh)(1−1/R)

3.2 Steady State 2 :

At this point we know: u, h, φ3, γ2/γ1, θ, κ, b, β, δ, η̃, α̃, η, α, χ, χ̃, µz, µΥ, σµz , σµΥ
, σg,

ρµz , ρµΥ
, ρg, ν, µI. µΛ, Q, p̃, R.

I still need: φ1, φ2, φ4, γ1, γ2, ψ, , G,
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sK = θ = RkuK
µIY

(∗)

γ2 = γ2
γ1

× γ1

Y = RkuK/µI +Whd(1 + ν(1 −R−1)) (∗∗)
Mh

Mh+νWhd = SMH (∗ ∗ ∗)
Mh+νWhd

Y
= SM (∗ ∗ ∗∗)

φ2 =
(−8Rε

mh,R
)−1+1−R

R

I = K
(
1 − (1−δ)

µI

)

v = C
Mh

(1 − φ4)[C(1 − µ−1
z∗ b)]

−1 (1 − bβµΛ) = Λ[1 + `(v) + v`′(v)]

Rk = µΥ

βµΛ
− (1 − δ)

v = 1√
φ1
ṽ; ṽ ≡

√
φ2 + (1 − R−1)

Rk = γ1 + γ2(u− 1)

F 1
[
1 − α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗

]
=
(
η̃−1
η̃

)
W̃Λ

(
W
W̃

)η̃
hd

F 2
[
1 − α̃β(µz∗π)(1−χ̃)η̃µΛµz∗

]
= [φ4(1 − h)−1]

(
W
W̃

)η̃
hd

F 1 = F 2

Y = C[1 + `(v)] +G+ [I + a(u)µ−1
I K]

mc = p̃(η−1)[1−αβµΛµz∗π
η(1−χ)]

η[1−αβµΛµz∗π
(χ−1)(1−η)]

(uµ−1
I K)

θ
hd

1−θ − ψ = Y s

s = (1−α)p̃−η

1−απ(1−χ)η

mc(1 − θ)(utKt/µI,t)
θhdt

−θ
= Wt

[
1 + ν Rt−1

Rt

]

mcθ(uK/µI)
θ−1hd

1−θ
= Rk

h = s̃hd

s̃ =
(1−α̃)

(
W̃
W

)−η̃

[1−α̃(µz∗π)(1−χ̃)η̃]
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3.3 Steady State 3 :

γ2 = γ2
γ1

× γ1

Y = RkuK/µI +Whd(1 + ν(1 −R−1)) (∗∗)

I = K
(
1 − (1−δ)

µI

)

v = C
Mh

(1 − φ4)[C(1 − µ−1
z∗ b)]

−1 (1 − bβµΛ) = Λ[1 + `(v) + v`′(v)]

v = 1√
φ1
ṽ

γ1 = Rk − γ2(u− 1)

F 1
[
1 − α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗

]
=
(
η̃−1
η̃

)
W̃Λ

(
W
W̃

)η̃
hd

F 2
[
1 − α̃β(µz∗π)(1−χ̃)η̃µΛµz∗

]
= [φ4(1 − h)−1]

(
W
W̃

)η̃
hd

F 1 = F 2

Y = C[1 + `(v)] +G+ [I + a(u)µ−1
I K]

(uµ−1
I K)

θ
hd

1−θ − ψ = Y s

mc(1 − θ)(utKt/µI,t)
θhdt

−θ
= Wt

[
1 + ν Rt−1

Rt

]

K = µI/u
(

Rk

mcθ

)1/(θ−1)

hd

hd = h
s̃
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3.4 Steady State 4:

γ2 = γ2
γ1

× γ1

Y = RkuK/µI +Whd(1 + ν(1 − R−1))

I = K
(
1 − (1−δ)

µI

)

φ1 =

[
ṽ

−ṽ2−φ2+2ṽ
√
φ2+

1−G/Y −I/Y
smhsm

]2

(1 − φ4)[C(1 − µ−1
z∗ b)]

−1 (1 − bβµΛ) = Λ[1 + `(v) + v`′(v)]

v = 1√
φ1
ṽ

F 1
[
1 − α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗

]
=
(
η̃−1
η̃

)
W̃Λ

(
W
W̃

)η̃
hd

F 2
[
1 − α̃β(µz∗π)(1−χ̃)η̃µΛµz∗

]
= [φ4(1 − h)−1]

(
W
W̃

)η̃
hd

F 1 = F 2

C =
G+[I+a(u)µ−1

I K]−Y
[1+`(v)]

ψ = (uµ−1
I K)

θ
hd

1−θ − Y s

W = mc(1 − θ)(utKt/µI,t)
θhdt

−θ
[
1 + ν Rt−1

Rt

]

3.5 Steady State 5:

Λ
(1−φ4)

=
[C(1−µ−1

z∗ b)]
−1(1−bβµΛ)

[1+`(v)+v`′(v)]

φ4 = A
1+A

; where A =
[1−α̃β(µz∗π)(1−χ̃)η̃µΛµz∗]

[1−α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗]

(
η̃−1

η̃[(1−h)−1]

)
W̃ Λ

1−φ4

3.6 Knowing all structural parameters:

Suppose we know the steady state value of the policy instrument, that is, Rt, and also all

structural parameters, that is, we have numerical values for: δ, µI , φ3, φ4, µz∗, b, β, µΛ, µΥ

. Then for a given value of R we can find the steady state as follows: Note that in steady

state u = 1 regardless of the value taken by the nominal interest rate. This is because γ1

was chosen such 1 = βµΛ/µΥ[γ1 + 1 − δ]
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3.7 Steady State 1 for φ3 = 1

Q = 1

I = K
(
1 − (1−δ)

µI

)

π = RβµΛ

v = C
Mh

(1 − φ4)[C(1 − µ−1
z∗ b)]

−1 (1 − bβµz∗µΛ) = Λ[1 + `(v) + v`′(v)]

u = 1

v =
√

φ2

φ1
+ 1

φ1

R−1
R

Rk = γ1

F 1
[
1 − α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗

]
=
(
η̃−1
η̃

)
W̃Λ

(
W
W̃

)η̃
hd

F 2
[
1 − α̃β(µz∗π)(1−χ̃)η̃µΛµz∗

]
= [φ4(1 − h)−1]

(
W
W̃

)η̃
hd

F 1 = F 2

Y = C[1 + `(v)] +G+ I

mc = p̃η−1
η

(1−αβµΛπ
−(χ−1)ηµz∗)

(1−αβµΛπ(χ−1)(1−η)µz∗)

p̃ =
(

1−απ(η−1)(1−χ)

(1−α)

)1/(1−η)

(uµ−1
I K)

θ
hd

1−θ − ψ = {[1 + `(v)]C +G+ [I + a(u)K/µI]} s

s = (1−α)p̃−η

1−απ(1−χ)η

W =
mc(1−θ)(utKt/hd/µI,t)

θ[
1+ν

Rt−1
Rt

]
(

uK
µIhd

)
=
(

Rk

θmc

)1/(θ−1)

h = s̃hd

s̃ =
(1−α̃)

(
W̃
W

)−η̃

[1−α̃(µz∗π)(1−χ̃)η̃]

(
W̃
W

)
=
(

1−α̃(µz∗π)(χ̃−1)(1−η̃)

(1−α̃)

)1/(1−η̃)
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3.8 Steady State 2

I = K
(
1 − (1−δ)

µI

)

v = C
Mh

C = (1 − h)
(

1−φ4

φ4

)(
η̃−1
η̃

)(
(1−bβµΛ)

(1−µ−1
z∗ b)[1+`(v)+v`

′(v)]

)(
[1−α̃β(µz∗π)(1−χ̃)η̃µΛµz∗ ]W̃
[1−α̃β(µz∗π)(1−χ̃)(η̃−1)µΛµz∗]

)
= A(1 − h)

mc = p̃η−1
η

(1−αβµΛπ
−(χ−1)ηµz∗)

(1−αβµΛπ(χ−1)(1−η)µz∗)
(

K
µIhd

)θ
hd − ψ = {[1 + `(v)]C +G + I} s

W =
mc(1−θ)(utKt/hd/µI,t)

θ[
1+ν

Rt−1
Rt

]
h = s̃hd

W̃ = W W̃
W

3.9 Steady State 3

v = C
Mh(

K
µIhd

)θ
hd − ψ =

{
[1 + `(v)]A(1 − s̃hd) +G+ hd

(
K
µIhd

)
(µI − 1 + δ)

}
s

Write the last equation as:

B1h
d − ψ = B2(1 − s̃hd) + sG+B3h

d

where

B1 =

(
K

µIhd

)θ

B2 = s[1 + `(v)]A

B3 = s

(
K

µIhd

)
(µI − 1 + δ)

Solve for hd

hd = B2+sG+ψ
[B1+B2 s̃−B3]
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