Optimal Bank Reserve Remuneration and Capital Control Policy

Chun-Che Chi Stephanie Schmitt-Grohé Martín Uribe

March 17, 2022
Starting Point

A large literature argues that financial frictions in the form of collateral constraints cause emerging economies to overborrow.

Observations

• Existing models of overborrowing assume that domestic agents borrow directly from foreign lenders.

• In reality, private agents seldom borrow directly from foreign lenders. Instead, capital inflows are intermediated by banks operating in domestic markets.

Question: Does abstracting from bank intermediation have consequences for the main predictions of this class of models?
How Collateral Constraints Work

- collateral constraints create a pecuniary externality, because the price of objects pledged as collateral is not internalized by individual agents.

- as a result, the economy borrows too much during booms and deleverages too much during recessions.

- the optimal macroprudential policy is a capital control tax that discourages borrowing, especially when the economy is close to a binding collateral constraint.
This Paper

studies an open economy with:

(1) **a collateral constraint:** household debt is limited by a fraction of income (Mendoza, 2002; Uribe, 2006; Bianchi, 2011; Korinek, 2011; Benigno et al., 2013; Schmitt-Grohé and Uribe, 2021).

(2) **bank intermediation:** banks receive deposits from foreign investors and lend them to domestic households.
— bank intermediation is costly.
— banks can mitigate the cost of originating loans by holding reserves at the central bank.
(Cúrdia and Woodford, 2011; Eggertsson et al., 2019).
Main Result

• Under plausible calibrations, the economy underborrows: The economy without government intervention has too little external debt relative to the economy in which the government sets optimally the interest rate on bank reserves and capital controls.

• Under the optimal policy regime, bank-reserve policy is countercyclical: interest on reserves increases during contractions and falls during booms.
Intuition for the Underborrowing Result

- look at the balance sheet of the bank:

 \[
 \text{bank reserves} + \text{domestic loans} = \text{foreign deposits}
 \]

- bank reserves act as a buffer between household debt and the country’s external debt (=foreign deposits).

- By raising interest on reserves in bad times, the government uncouples episodes of household deleveraging (fall in loans) from episodes of economy-wide deleveraging (fall in foreign deposits).

- When the economy suffers a negative shock that causes the household’s collateral constraint to bind (household deleveraging), the government pumps bank reserves and avoids a collapse in external borrowing.

- The government’s increased holdings of bank reserves, make into the household’s budget constraint via a more relaxed fiscal policy.

- This mechanism is absent in models in which households borrow directly from foreign lenders.
The model

- Banks
- Households
- Foreign lenders
- The government
Banks
The bank’s sequential budget constraint
\[l_t + r_t + (1 + i^d_{t-1}) d_{t-1} + \pi_t + \Gamma(l_t, r_t) = (1 + i^l_{t-1}) l_{t-1} + (1 + i^r_{t-1}) r_{t-1} + d_t, \]
where
\[d_t, l_t, r_t = \text{deposits, loans, and bank reserves, respectively.} \]
\[i^d_t, i^l_t, i^r_t = \text{interest rates on deposits, loans, and reserves, respectively.} \]
\[\pi_t = \text{bank dividends.} \]
\[\Gamma(l_t, r_t) = \text{convex bank operating costs.} \]

Dividend Policy
\[\pi_t = (1 + i^l_{t-1}) l_{t-1} + (1 + i^r_{t-1}) r_{t-1} - (1 + i^d_{t-1}) d_{t-1}. \]
Bank’s Problem

Pick $d_t \geq 0$, $l_t \geq 0$, and $r_t \geq 0$ to maximize

$$
\pi_{t+1} = (i^l_t - i^d_t)l_t + (i^r_t - i^d_t)r_t - (1 + i^d_t)\Gamma(l_t, r_t),
$$

taking as given i^d_t, i^r_t, i^l_t.
Bank’s Optimality Conditions

\[
\frac{i_l - i_d}{1 + i_l} = \Gamma_l(l_t, r_t)
\]

\[
\frac{i_R - i_d}{1 + i_d} = \Gamma_r(l_t, r_t)
\]

\[
l_t + r_t + \Gamma(l_t, r_t) = d_t
\]

The first two conditions equate the bank’s marginal revenue of extending loans and holding reserves to their respective marginal costs. These conditions hold with inequality \((\leq)\) when \(l_t = 0\) or \(r_t = 0\), respectively.

The third condition is the bank’s balance sheet.
Households

\[\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t), \]

subject to the aggregation technology

\[c_t = A(c^T_t, c^N_t), \]

to the sequential budget constraint,

\[c^T_t + p_t c^N_t + (1 + i^l_{t-1})l_{t-1} = (1 - \tau_t)[y^T_t + p_t y^N_t + \pi_t] + l_t, \]

and to the collateral constraint

\[l_t \leq \kappa(y^T_t + p_t y^N_t). \]

Pecuniary Externality: \(p_t \) on the RHS of the collateral constraint is taken as given by households, but is endogenously determined in equilibrium.

Notation:
\(c_t, c^T_t, c^N_t = \) consumption, consumption of tradables/nontradables;
\(p_t = \) relative price of nontradables in terms of tradables;
\(y^T_t, y^N_t = \) exogenous endowments of tradables/nontradables;
\(\tau_t = \) income tax (subsidy) rate.
Foreign Lenders

Banks take deposits from foreign lenders at the world interest rate i^* and pay capital control taxes at the rate τ^c_t.

Thus, the effective rate banks pay on deposits is

$$1 + i^d_t = (1 + \tau^c_t)(1 + i^*)$$
The Government

— levies income taxes at the rate τ_t
— levies capital control taxes at the rate τ^c_t
— remunerates bank reserves at the interest rate i^r_t
— incurs a cost $\Gamma^r(r_t)$ of running the bank reserve facility

Its budget constraint is

$$\tau_t(y^T_t + p_t y^N_t + \pi_t) + \tau^c_{t-1}(1 + i^*_{t-1})d_{t-1} + r_t = (1 + i^r_{t-1})r_{t-1} + \Gamma^r(r_t),$$

with $\Gamma^r(\cdot)$ increasing and convex.
Quantitative Analysis
Functional Forms and Calibration

CRRA period utility function

\[u(c_t) = \frac{c_t^{1-\sigma} - 1}{1 - \sigma}, \]

CES aggregator function

\[c_t = \left[ac_t^{1-1/\xi} + (1 - a)c_t^{N1-1/\xi}\right]^{1/(1-1/\xi)}, \]

Calibration: use standard values in the related literature:

\[\sigma = 2 \]
\[\xi = 0.83 \]
\[a = 0.31 \]
Functional Forms and Calibration (cont.)

- The world interest rate:

$$i^* = 0.04$$

This is a standard value in business-cycle analysis.

- The subjective discount factor, β, is set to match the average relative impatience factor, $\beta(1 + i^l)$, to
 (a) be consistent with that in Bianchi (2011), $\beta^B(1 + i^*)$, where $\beta^B = 0.91$ is the subjective discount factor used by Bianchi; and
 (b) be consistent with an observed lending spread $(1 + i^l)/(1 + r^*) - 1$ of 0.0499.

This yields

$$\beta = 0.8667$$
Functional Forms and Calibration (cont.)

Collateral constraint: \(l_t \leq \kappa(y_t^T + p_t y_t^N) \)

Bank cost function: \(\Gamma(l_t, r_t) = A l_t^{1+\alpha}[1 + \phi(r_t - \bar{r})^2 I(r_t < \bar{r})] \)

Central bank cost function: \(\Gamma^r(r_t) = B r_t^{1+\alpha} \)

The 6 parameters defining these financial frictions are set by SMM to \(\kappa = 0.3205, A = 0.0089, \alpha = 1.8104, \phi = 6.7983, \bar{r} = 0.5848, B = 2.6852 \), to match 6 empirical first moments in emerging countries:

1. The lending spread, \((i_l - i^d)/(1 + i^d) = 0.0499 \)
2. The reserve-to-deposit ratio, \(r/d = 0.0644 \)
3. Debt to GDP ratio, \(d/(y_t^T + p y_t^N) = 0.29 \)
4. The bank operating cost as a fraction of the volume of deposits, \(\Gamma(l, r)/d = 0.0175 \)
5. The central bank’s operating cost as a fraction of reserves, \(\Gamma^r(r)/r = 0.0205 \).
6. The frequency of a binding collateral constraint, 0.05.
Calibration of Financial Parameters: Fit of SMM Conditions

<table>
<thead>
<tr>
<th>Moment</th>
<th>Formula</th>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Lending spread</td>
<td>$\frac{i^d - i^d}{1 + i^d}$</td>
<td>0.0499</td>
<td>0.0509</td>
</tr>
<tr>
<td>(2) Reserve-to-deposit ratio</td>
<td>$r \frac{d}{d}$</td>
<td>0.0644</td>
<td>0.0712</td>
</tr>
<tr>
<td>(3) Debt-to-output ratio</td>
<td>$\frac{y^d + py^N}{\Gamma(l,r)}$</td>
<td>0.2900</td>
<td>0.2992</td>
</tr>
<tr>
<td>(4) Intermediation-cost-to-deposit ratio</td>
<td>$\Gamma(l,r)$</td>
<td>0.0175</td>
<td>0.0165</td>
</tr>
<tr>
<td>(5) Central-bank-operating-cost-to-reserve ratio</td>
<td>$r \frac{d}{(r)\Gamma}$</td>
<td>0.0205</td>
<td>0.0228</td>
</tr>
<tr>
<td>(6) Frequency of binding collateral constraint</td>
<td></td>
<td>0.0500</td>
<td>0.0530</td>
</tr>
</tbody>
</table>
Sources of Uncertainty

• The driving forces are the exogenous endowments, y_t^T and y_t^N, which are assumed to follow a bivariate AR(1) process.

• The stochastic process for (y_t^T, y_t^N) is taken from Bianchi (2011).
Optimal Policy versus Laissez Faire

We will compare two equilibria:

– the \textit{constrained optimal allocation}, i.e., the best competitive equilibrium attainable with interest on reserve and capital control policy \((i^r_t, \tau^c_t)\)

– the \textbf{unregulated economy}, i.e., the competitive equilibrium with \(i^r_t = 0\) and \(\tau^c_t = 0\)
Underborrowing
Unconditional Distributions of Debt With and Without a Bank Intermediation Channel

Solid lines: constrained optimal allocation
Broken lines: unregulated economy
The figure shows that in the absence of a banking channel there is overborrowing, whereas in the presence of the bank intermediation friction there is underborrowing.
Unconditional Distributions of Loans and Reserves

Solid lines: constrained optimal allocation (i.e., with i_t^r and τ_c^t set optimally).
Broken lines: unregulated economy (i.e., with $i_t^r = \tau_c^t = 0$).
The Typical Sudden Stop
The Typical Sudden Stop Episode

- Traded Output
- Nontraded Output
- Consumption of Tradable
- Trade Balance
- Relative Price of Nontradables
- Collateral and Loans

Solid lines: constrained optimal allocation.
Broken lines: unregulated economy.
The Typical Sudden Stop Episode (ctd.)

Loans

Reserves

External Debt (=Deposits)

Lending Spread

Reserve Spread

Probability of Crisis

Solid lines: constrained optimal allocation.
Broken lines: unregulated economy.
Graphical Interpretation
The Loan and Reserve Markets During a Sudden Stop in the Unregulated Economy

\[
\frac{i_l - i_d}{1+i_d} \quad \frac{i_l^0 - i_d}{1+i_d} \\
\frac{i^* - i_d}{1+i_d}
\]

\[
\Gamma_l(l, r_1) \quad \Gamma_l(l, r_0) \\
\Gamma_r(l_1, r) \quad \Gamma_r(l_0, r)
\]
The Loan and Reserve Markets During a Sudden Stop in the Regulated Economy

\[
\frac{i^l - i^d}{1+i^d} = \frac{i^l_0 - i^d_0}{1+i^d_0} = \frac{i^l_1 - i^d_1}{1+i^d_1}
\]

\[
\Gamma_l(l, r_0) = \Gamma_l(l, r_1)
\]

\[
\frac{i^r - i^d}{1+i^d} = \frac{i^r_0 - i^d_0}{1+i^d_0} = \frac{i^r_1 - i^d_1}{1+i^d_1}
\]

\[
\Gamma_r(l_1, r) = \Gamma_r(l_0, r)
\]
Behavior of i_t^L around sudden stops in the unregulated economy for alternative specification of the model

![Graph showing behavior of interest rate around sudden stops]

Note. The horizontal axis measures time. The collateral constraint binds in period 0.

- When the collateral constraint is placed at the level of the bank, the model predicts that in the period of a binding collateral constraint the loan rate spikes at over 70 percent. By contrast, when the collateral constraint is placed at the level of the household, then the loan rate does not spike; in fact, it declines by 45 bp.

- Rockoff (2021): Historically, the presumption that a key symptom of a financial crisis is a sharp increase in the lending rate has led to the misdiagnosis of major financial crises. Ex: Oliver M. W. Sprague (the expert on financial crises at the time) failed to recognize the 1929-1932 financial crisis for lack of an increase in lending spreads.
Lending Spreads around the Global Financial Crisis in Emerging and Rich Countries

Notes. The lending spread, \((i_l^t - i_d^t)/(1 + i_l^t)\), is computed as the median of the annual lending spread across a group of emerging and rich countries, respectively. The classification of countries follows Uribe and Schmitt-Grohé (2017). Countries with populations smaller than 1 million or with missing data over the period 2005-2015 were excluded. The 32 emerging countries included are: Albania, Algeria, Argentina, Bahrain, Bolivia, Botswana, Brazil, Bulgaria, Chile, Colombia, Costa Rica, Dominican Republic, Egypt, Greece, Guatemala, Hungary, Iran, Jordan, South Korea, Malaysia, Mexico, Namibia, New Zealand, Panama, Paraguay, Peru, Portugal, Spain, Thailand, Trinidad and Tobago, Uruguay, and Venezuela. The 9 rich countries included are: Australia, Canada, Hong Kong, Ireland, Italy, Japan, Singapore, Switzerland, and United States. The data source is IMF, International Financial Statistics, the measure for the loan rate, \(i_l^t\), is the series FILRPA and the measure for the deposit rate, \(i_d^t\), is the series FIDRPA. Shading indicates the global financial crisis of 2007 to 2009.
Conclusion

• How should central banks conduct bank reserve remuneration policy in open economies?

• This paper addresses this question in the context of a model with a banking channel and a collateral constraint that limits household debt by a fraction of income.

• The central result of the paper is that under the optimal reserve remuneration and capital control policy, the external debt is higher than in the absence of government intervention.

• This result overturns the standard overborrowing result obtained in the absence of a banking channel.

• Under the optimal policy regime, bank reserves are countercyclical. Bank reserves act as a cushion between external debt and household debt.

• By pumping bank reserves during episodes in which the household collateral constraint binds, the government allows the economy to continue to have access to external funding in spite of the fact that households are being forced to deleverage.
EXTRAS
Optimal i^r_t and τ^c_t around sudden stops

Reserve Rate

Capital Control Tax

Note. The dynamics associated with the constrained optimal allocation are shown with a solid blue line and the dynamics associated with the unregulated economy with a broken red line.
Non-Equivalence of Reserve Remuneration and Reserve Requirements

- In many emerging markets central banks do not remunerate reserves but instead impose reserve requirements.

- Model with reserve requirements and capital controls:

 - $i_t^r = 0$

 - $r_t \geq \delta_t d_t$, with $\delta_t \in [0, 1)$

- τ_t^c

- Does reserve remuneration welfare dominate reserve requirements as a macroprudential tool? In the present environment the answer is YES.