Does the Commodity Super Cycle Matter?

Andrés Fernández Stephanie Schmitt-Grohé Martín Uribe

April 20, 2022
Motivation

- World commodity prices display long cycles known as super cycles.

- Much of the existing literature on commodity price super cycles focuses on documenting their frequency, amplitude, and turning points.

- Less work has been devoted to estimating the importance of commodity price super cycles for economic activity.

- This paper investigates empirically the importance of the shock responsible for the commodity price super cycle as a driver of aggregate activity in emerging and developed economies.
Eleven Commodity Prices
Identification of the Commodity Price Super Cycle

- The present paper identifies the commodity super cycle as the common permanent component in all commodity prices.

Two Advantages of the Common-Component Approach:

- The common-component approach delivers one common commodity super cycle, as opposed to one per commodity. This is desirable, because commodity prices move in tandem over the long run.

- It allows for the simultaneous estimation of the contribution of permanent and transitory, world and domestic disturbances to aggregate activity at the country level.
Two Advantages of the Common-Component Identification Approach

• It allows for the simultaneous estimation of the contribution of permanent and transitory, world and domestic disturbances to aggregate activity at the country level.
Related Literature

Elements of the Empirical Model

• Foreign Block: The (unobserved) cyclical components of 11 commodity prices and the world interest rate are assumed to be driven by permanent and transitory world shocks.

• Domestic Block: The (unobserved) cyclical component of output of a set of countries are assumed to be driven by transitory and permanent, domestic and world shocks.

• State-Space Formulation: Shocks and cyclical components are unobserved latent variables.
Data and Estimation

- **Observables.** Estimation exploits the fact that the latent-variable model delivers precise predictions for a set of observable variables: the growth rate of 11 commodity prices, the world interest rate, and the growth rate of output.

- Estimation uses Bayesian techniques.

- Sample: Quarterly and annual from 1960 to 2018. Quarterly sample contains 24 mostly developed countries and annual sample 41 countries, half developed and half emerging. The analysis starts with quarterly data.
The Foreign Block

$\mathbf{p}_t = \text{vector of 11 real commodity prices and the gross world real interest rate in quarter } t \ (\text{all in logs}).$

$X_t^p = \text{permanent component common to all commodity prices (the super cycle)}.$

$\mathbf{z}_t^p = \text{vector of 12 stationary world shocks (regular cycles)}$

Define the stationary variable

$$\hat{\mathbf{p}}_t \equiv \begin{bmatrix} p_t^1 - X_t^p \\ \vdots \\ p_t^{11} - X_t^p \\ r_t \end{bmatrix}.$$

The vector $\hat{\mathbf{p}}_t$ is assumed to evolve according to the law of motion

$$\hat{\mathbf{p}}_t = \sum_{i=1}^{4} B_i \hat{\mathbf{p}}_{t-i} + C_1 \Delta X_t^p + C_2 \mathbf{z}_t^p,$$

Variables $\hat{\mathbf{p}}_t$, ΔX_t^p, and \mathbf{z}_t^p are unobservable.
The Domestic Block

\(y_t^i = \) log of real output in country \(i \).

\(X_t^i = \) domestic permanent component of output in country \(i \).

\(z_t^i = \) domestic stationary component of output in country \(i \).

Define the stationary variable

\[
\hat{y}_t \equiv \begin{bmatrix}
 y^1_t - X^1_t - \alpha^1 X^p_t \\
 \vdots \\
 y^{24}_t - X^{24}_t - \alpha^{24} X^p_t
\end{bmatrix}.
\]

The vector \(\hat{y}_t \) is assumed to evolve according to

\[
\hat{y}_t = \sum_{i=1}^{4} F^i \hat{p}_{t-i} + \sum_{i=1}^{4} G^i \hat{y}_{t-i} + H_1 \Delta X^p_t + H_2 z^p_t + H_3 \Delta X_t + z_t,
\]

Variables \(\hat{y}_t \), \(\Delta X_t \), and \(z_t \) are unobservable.
The Exogenous Driving Forces

\[u_t \equiv \begin{bmatrix} \Delta X^p_t \\ \Delta X_t \\ z^p_t \\ z_t \end{bmatrix}, \]

is assumed to be AR(1)

\[u_t = \rho u_{t-1} + \nu_t, \]
Observables

\(\Delta p^i_t = \text{growth rate of commodity price } i = 1, \ldots, 11. \)
\(\Delta y^i_t = \text{growth rate of output in country } i = 1, \ldots, 24. \)
\(r_t = \text{world interest rate}. \)

The observation equations linking unobservable and observable variables are

\[
\Delta p^i_t = \hat{p}^i_t - \hat{p}^i_{t-1} + \Delta X^p_t; \quad i = 1, \ldots, 11,
\]
\[
\Delta y^i_t = \hat{y}^i_t - \hat{y}^i_{t-1} + \Delta X^i_t + \alpha^i \Delta X^p_t; \quad i = 1, \ldots, 24,
\]

These equations make it possible to calculate the likelihood of the data, which can be used to estimate all parameters of the model.

Estimation Approach: Bayesian, with Minnesota-type priors.
OECD Countries
Quarterly Data

• **Sample period:** 1960.Q1 to 2018.Q4.

• **Country coverage:** 24 small open OECD economies.

• **World Variables:**
 — 11 commodity prices deflated by the US CPI
 — the world real interest rate

• **Country Variables:**
 — Growth rate of real GDP
The Commodity Price Super Cycle

Note. The permanent component of the eleven real commodity prices, X_t^p is computed by Kalman smoothing.
Properties of the Estimated Commodity Price Super Cycle

- X_t^p appears to capture well the low frequency comovement of the individual commodity prices.

- Over the period 1960 to 2018 commodity prices display two distinct super cycles, one peaking in 1980 and the other in 2008, following the oil price boom of the 1970s and the accession of China to the WTO, respectively.

- The prediction of two commodity super cycles post 1960 is in line with the spectral analysis approach (e.g., Erten and Ocampo, 2013)
Does the Commodity Super Cycle Matter? Fernández, Schmitt-Grohé, Uribe

Percent of Variance of the Growth Rate of Real Commodity Prices Explained by \(\Delta X_t^p \)

<table>
<thead>
<tr>
<th>Price of</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Beverages</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Food</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Agr. Raw Materials</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>Metal and Minerals</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Gold</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Silver</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>Platinum</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Mean across prices</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>Real Interest Rate</td>
<td>15</td>
<td>8</td>
</tr>
</tbody>
</table>

Note. The reported figures are based on 100,000 draws from the posterior distribution of the variance decomposition.
Observations on the Table

- The permanent component of commodity prices, X^p_t, plays a significant role in explaining movements in world prices.

- On average across prices, ΔX^p_t explains more than one fourth of the variance of changes in commodity prices.

- The permanent component plays the largest role in explaining movements in crude oil prices (with a variance share of 60 percent).

- The variance shares are estimated with precision, with standard deviations equal to 2 percentage points on average.

- Estimating the price block of the model separately from the output block (not shown) yields similar results, except for the role of X^p_t in explaining movements in the price of crude oil (60 vs. 35%). Thus, even though the system is recursive, a joint estimation is informative.
Impulse Responses of World Prices to a Unit Long-run Increase in X^p_t

- Coal
- Crude Oil
- Natural Gas
- Beverages
- Food
- Agr Raw Mat
- Fertilizers
- Metals and Minerals
- Gold
- Silver
- Platinum
- Interest Rate

- : mean
- __________________: 95% Sims-Zha asymmetric confidence bands
Observations on the Figure

• The form of adjustment varies across commodity prices: One observes gradual adjustment, overshooting, and delayed overshooting.

• For most commodity prices, an increase in X^p_t induces a positive but less than unity impact effect and a gradual convergence to the permanently higher level of 1.

• Exceptions are crude oil, which displays overshooting on impact and convergence from above, and natural gas, fertilizers, gold, and silver, which display delayed overshooting.

• An increase in X^p_t has a negative effect on the world interest rate.
Variance Decomposition of Output Growth

<table>
<thead>
<tr>
<th>Country</th>
<th>ΔX^p_t</th>
<th>z^p_t</th>
<th>ΔX^i_t</th>
<th>z^i_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>8</td>
<td>62</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>
Observations on the Table: How Important is the Commodity Super Cycle for Economic Activity?

• The table on the previous slide shows that on average across countries the permanent component of commodity prices, X_t^p, explains only 8 percent of the overall volatility of output growth.

• By contrast, the transitory components of commodity prices, z_t^p, jointly explain 62 percent of the variance of output growth.

• This result suggests that
 (a) World shocks (i.e., X_t^p and z_t^p) are important in explaining output movements in small open economies (70%).
 (b) However, the vast majority of the observed movements stem from stationary world disturbances (z_t^p), not from permanent disturbances causing the commodity price super cycle (X_t^p).

• The table also speaks to the literature on the role of permanent shocks (X_t^p and X_t^i) versus transitory shocks (z_t^p and z_t^i) in driving business cycles. Transitory shocks are estimated to play a larger role than permanent shocks.
Forecast Error Variance Decomposition of the Level of Output

<table>
<thead>
<tr>
<th>Shock</th>
<th>X^p_t</th>
<th>z^p_t</th>
<th>X^q_t</th>
<th>z_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon</td>
<td>5 10 20 30</td>
<td>5 10 20 30</td>
<td>5 10 20 30</td>
<td>5 10 20 30</td>
</tr>
<tr>
<td>Australia</td>
<td>5 2 2 7</td>
<td>82 89 87 80</td>
<td>5 6 8 11</td>
<td>8 3 2 2</td>
</tr>
<tr>
<td>Austria</td>
<td>19 27 33 36</td>
<td>74 70 65 63</td>
<td>1 1 1 1</td>
<td>6 2 1 1</td>
</tr>
<tr>
<td>Belgium</td>
<td>9 10 13 13</td>
<td>88 87 82 79</td>
<td>3 3 5 8</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Canada</td>
<td>2 12 33 41</td>
<td>92 85 64 56</td>
<td>3 2 3 3</td>
<td>3 1 0 0</td>
</tr>
<tr>
<td>Denmark</td>
<td>6 13 22 24</td>
<td>88 84 76 74</td>
<td>0 0 0 0</td>
<td>6 3 2 2</td>
</tr>
<tr>
<td>Finland</td>
<td>5 8 11 10</td>
<td>60 59 50 42</td>
<td>34 32 39 48</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>France</td>
<td>20 27 36 41</td>
<td>70 69 61 56</td>
<td>2 2 2 2</td>
<td>8 2 1 1</td>
</tr>
<tr>
<td>Greece</td>
<td>1 2 5 5</td>
<td>95 96 92 91</td>
<td>3 2 2 3</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Iceland</td>
<td>0 1 1 1</td>
<td>25 22 16 12</td>
<td>65 70 78 84</td>
<td>9 8 5 4</td>
</tr>
<tr>
<td>Ireland</td>
<td>4 2 1 2</td>
<td>26 18 11 7</td>
<td>69 79 88 91</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>Italy</td>
<td>12 14 15 14</td>
<td>81 83 83 84</td>
<td>0 0 0 1</td>
<td>7 3 1 1</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>1 0 1 2</td>
<td>19 11 6 4</td>
<td>80 88 93 94</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>29 35 36 33</td>
<td>43 36 27 22</td>
<td>25 28 36 44</td>
<td>3 1 1 1</td>
</tr>
<tr>
<td>Mexico</td>
<td>1 1 1 3</td>
<td>85 93 94 93</td>
<td>0 0 1 1</td>
<td>13 5 3 3</td>
</tr>
<tr>
<td>Netherlands</td>
<td>19 27 30 29</td>
<td>75 67 60 55</td>
<td>4 5 10 16</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>N. Zealand</td>
<td>1 1 3 5</td>
<td>21 18 11 8</td>
<td>74 80 85 86</td>
<td>3 2 1 1</td>
</tr>
<tr>
<td>Norway</td>
<td>6 4 5 4</td>
<td>77 77 70 63</td>
<td>14 17 24 32</td>
<td>3 2 1 1</td>
</tr>
<tr>
<td>Portugal</td>
<td>24 23 25 25</td>
<td>69 74 74 73</td>
<td>0 0 0 0</td>
<td>7 3 2 1</td>
</tr>
<tr>
<td>S. Africa</td>
<td>43 42 38 50</td>
<td>49 55 59 47</td>
<td>1 1 1 1</td>
<td>6 3 1 1</td>
</tr>
<tr>
<td>Spain</td>
<td>7 18 30 33</td>
<td>87 80 69 65</td>
<td>0 0 1 1</td>
<td>6 1 1 1</td>
</tr>
<tr>
<td>Sweden</td>
<td>8 36 59 67</td>
<td>74 58 38 30</td>
<td>2 2 1 2</td>
<td>16 5 2 1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>8 15 29 33</td>
<td>75 75 65 61</td>
<td>1 1 2 3</td>
<td>16 9 4 3</td>
</tr>
<tr>
<td>Turkey</td>
<td>1 7 7 9</td>
<td>67 74 77 75</td>
<td>0 0 1 1</td>
<td>31 19 15 15</td>
</tr>
<tr>
<td>U.K.</td>
<td>17 28 39 42</td>
<td>77 67 56 52</td>
<td>2 3 4 5</td>
<td>4 2 1 1</td>
</tr>
<tr>
<td>Mean</td>
<td>10 15 20 22</td>
<td>67 64 58 54</td>
<td>16 18 20 22</td>
<td>7 3 2 2</td>
</tr>
</tbody>
</table>

Note. Horizon is in years. Computed at the posterior mean of the estimated parameters and expressed in percentage points.
Observations on the Table
Importance of the Commodity Price Super Cycle for Business Cycles at Different Time Horizons

- The contribution of X_t^p to explaining output variations is at most 12% at horizons of 10 years or less (business-cycle frequencies).

- At horizons of 20 and 30 years, the range of frequencies of the commodity super cycle itself, the contribution of X_t^p increases to 19%.

- By contrast, the contribution of stationary world shocks, z_t^p, ranges from 75% at 5 years to 58% at 30 years.

- This result indicates that the economic impact of the commodity super cycle on output relative to that of stationary world shocks is small at business cycle frequencies (10 years or less) and moderate at its own frequency (20 to 30 years).
Response of Output to an Increase in X^p_t

- **Australia**
- **Austria**
- **Belgium**
- **Canada**
- **Denmark**
- **Finland**
- **France**
- **Greece**
- **Iceland**
- **Ireland**
- **Italy**
- **Korea, Rep.**
- **Luxembourg**
- **Mexico**
- **Netherlands**
- **New Zealand**
- **Norway**
- **Portugal**
- **South Africa**
- **Spain**
- **Sweden**
- **Switzerland**
- **Turkey**
- **United Kingdom**

: mean : 95% Sims-Zha asymmetric confidence bands
Observations on the Figure
Output Response to a Permanent Increase in Commodity Prices, X^p_t

• In most countries an increase in the permanent world shock, X^p_t, is contractionary.

• One possible explanation is that the sample includes mostly developed open economies that are not primary commodity producers.

• But even for primary commodity producers the output effect of an increase in X^p_t could be ambiguous:
 (a) If some commodities are imported and used as intermediate inputs in domestic production.
 (b) If the increase in the price of the exported commodity generates a large enough wealth effect that contracts labor supply.
Emerging Countries
Annual Data

- Long quarterly time series for output are available mostly for developed countries. To increase the participation of emerging countries, the present analysis is based on annual data.

- Sample: 1960 to 2018, 24 emerging countries, 17 developed countries.

- Same empirical model.

- 1 time lag.

- Three commodity-price indices: energy, non energy, and precious metals, following the World Bank’s Pink Sheet aggregation scheme.
The Commodity Price Super Cycle in Annual Data

Observation: Annual super cycle similar to its quarterly counterpart: A smooth stochastic trend of the underlying prices with peaks in 1980 and 2012.
Does the Commodity Super Cycle Matter?
Fernández, Schmitt-Grohé, Uribe

Percent of Variance of the Growth Rate of Annual World Prices Explained by ΔX_t^p

<table>
<thead>
<tr>
<th>Price of</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Commodities</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td>Non Energy Commodities</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>Precious Metals</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>Mean</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>

Note. Based on 100,000 draws from the posterior distribution of the variance decomposition.
Observations on the Table

- As in the quarterly estimation, the commodity super cycle is an important driver of commodity prices.

- A difference is that now shares are higher. The permanent component, X^p_t, explains more than 90 percent of the variation in the growth rate of the three commodity prices.

- This is to some extent expected because of the aggregation across time (yr. vs. qrt.) and commodities (3 vs. 11).

- The commodity super cycle explains 25 percent of movements in the world interest rate (more than under annual data).
Variance Decomposition of Annual Output Growth

<table>
<thead>
<tr>
<th>Country</th>
<th>ΔX_t^p</th>
<th>z_t^p</th>
<th>ΔX_t^i</th>
<th>z_t^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Emerging</td>
<td>18</td>
<td>32</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>
Observations on the Table

• As under quarterly data of mostly developed economies, world shocks \((X_t^p \text{ and } z_t^p)\) play a major role in explaining the variance of output growth.

• Also, of the contribution of world shocks to output fluctuations the majority is stationary shocks, \(z_t^p\). Thus, the commodity price super cycle does not play a dominant role.

• This pattern applies when one limits attention to emerging countries: world shocks explain more than fifty percent of the variance of output, and of this almost two thirds is stationary world shocks.

• The fact that stationary world shocks, \(z_t^p\), explain a much larger share of the variance of output growth than of the variance of the growth rate of prices, indicates that world shocks may be only partially mediated through commodity prices.

• The table also speaks to the stationary vs. permanent shock literature: The majority of fluctuations in aggregate activity in the emerging countries considered stems from stationary domestic and world disturbances.
Forecast Error Variance Decomposition of the Level of Output: Annual Data

<table>
<thead>
<tr>
<th>Shock</th>
<th>(X_p^t)</th>
<th>(z_p^t)</th>
<th>(X_i^t)</th>
<th>(z_i^t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon</td>
<td>5 10 20 30</td>
<td>5 10 20 30</td>
<td>5 10 20 30</td>
<td>5 10 20 30</td>
</tr>
<tr>
<td>Mean</td>
<td>15 19 23 27</td>
<td>52 52 49 46</td>
<td>11 13 16 18</td>
<td>22 16 11 9</td>
</tr>
<tr>
<td>Mean Emerging</td>
<td>19 24 30 34</td>
<td>40 38 34 31</td>
<td>15 17 20 21</td>
<td>26 21 16 13</td>
</tr>
<tr>
<td>Mean Developed</td>
<td>9 12 14 17</td>
<td>69 72 70 66</td>
<td>5 7 11 13</td>
<td>17 9 5 4</td>
</tr>
<tr>
<td>Argentina</td>
<td>45 33 20 14</td>
<td>10 6 4 3</td>
<td>45 61 76 83</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>Bolivia</td>
<td>1 6 48 65</td>
<td>63 69 41 30</td>
<td>0 1 1 1</td>
<td>36 25 10 5</td>
</tr>
<tr>
<td>Chile</td>
<td>5 5 11 20</td>
<td>15 16 15 14</td>
<td>0 1 3 4</td>
<td>80 78 71 63</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>11 10 38 60</td>
<td>68 61 35 18</td>
<td>17 26 26 21</td>
<td>3 2 1 0</td>
</tr>
<tr>
<td>Ecuador</td>
<td>59 67 66 63</td>
<td>34 26 23 21</td>
<td>7 7 11 16</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>India</td>
<td>9 10 16 17</td>
<td>54 64 64 61</td>
<td>32 24 20 21</td>
<td>5 2 1 1</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>9 7 5 9</td>
<td>77 54 49 45</td>
<td>12 38 45 46</td>
<td>3 1 0 0</td>
</tr>
<tr>
<td>Mexico</td>
<td>19 22 24 24</td>
<td>70 64 57 53</td>
<td>10 14 19 23</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>Panama</td>
<td>13 26 36 36</td>
<td>14 14 13 14</td>
<td>0 1 1 2</td>
<td>73 59 50 47</td>
</tr>
<tr>
<td>Peru</td>
<td>24 38 38 35</td>
<td>13 12 20 27</td>
<td>0 0 1 1</td>
<td>63 50 42 37</td>
</tr>
<tr>
<td>South Africa</td>
<td>45 54 59 60</td>
<td>20 18 17 16</td>
<td>1 1 2 4</td>
<td>35 27 22 20</td>
</tr>
<tr>
<td>Turkey</td>
<td>4 3 4 6</td>
<td>35 22 12 8</td>
<td>61 75 84 86</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>Australia</td>
<td>0 0 0 0</td>
<td>69 62 46 36</td>
<td>24 34 52 62</td>
<td>7 4 2 1</td>
</tr>
<tr>
<td>Belgium</td>
<td>9 7 9 13</td>
<td>86 90 88 83</td>
<td>1 1 2 3</td>
<td>4 2 1 1</td>
</tr>
<tr>
<td>Canada</td>
<td>15 15 15 14</td>
<td>50 59 64 65</td>
<td>1 1 2 3</td>
<td>35 25 19 17</td>
</tr>
<tr>
<td>France</td>
<td>2 1 5 13</td>
<td>94 96 92 84</td>
<td>1 2 2 2</td>
<td>3 2 1 1</td>
</tr>
<tr>
<td>Iceland</td>
<td>8 14 26 35</td>
<td>27 41 46 43</td>
<td>0 0 1 1</td>
<td>65 44 28 21</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>28 37 33 27</td>
<td>47 32 22 18</td>
<td>23 31 45 55</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>Norway</td>
<td>1 6 17 24</td>
<td>48 66 69 65</td>
<td>3 4 4 4</td>
<td>48 23 10 7</td>
</tr>
<tr>
<td>Spain</td>
<td>6 15 21 22</td>
<td>69 72 72 72</td>
<td>0 0 1 1</td>
<td>25 12 7 6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>29 36 37 35</td>
<td>52 39 31 26</td>
<td>17 24 32 39</td>
<td>2 1 0 0</td>
</tr>
</tbody>
</table>
Observations on the Table

- The importance of stationary world shocks in accounting for movements in output continues to obtain at different horizons in the enlarged dataset.

- This pattern is stronger in developed countries.

- The permanent world shock, X^p_t, is a significant driver of aggregate fluctuations in emerging economies, but not the dominant one:
 - At forecasting horizons of 5 and 10 years, the mean share of variance explained by z_t^p is 40 and 38%, respectively, compared to 19 and 24% explained by X_t^p.
 - At horizons of 20 and 30 years, the role of nonstationary world shocks increases, but does not dominate that of stationary world shocks. X_t^p explains 30 and 34% of the FEV of output growth compared to 34 and 31% explained by z_t^p.

35
IRF of Output to an Increase in X^P_t: Emerging Economies

- Argentina
- Bangladesh
- Bolivia
- Brazil
- Chile
- Colombia
- Costa Rica
- Dominican Republic
- Ecuador
- Guatemala
- India
- Indonesia
- Korea, Rep.
- Malaysia
- Mexico
- Pakistan
- Panama
- Paraguay
- Peru
- Philippines
- South Africa
- Thailand
- Turkey
- Uruguay

: mean
---: 95% Sims-Zha asymmetric confidence bands
Observations on the Figure

• We saw earlier that for developed countries an increase in X^p_t is typically contractionary.

• By contrast, for most emerging countries a permanent increase in commodity prices is expansionary.

• A possible explanation for this difference could be that in emerging countries the production of primary commodities represents a larger share of total output than it does in developed countries.
Conclusion

• This paper investigates empirically the importance of the shock responsible for the commodity price super cycle in driving aggregate activity in emerging and developed economies.

• The commodity price super cycle is defined as a common permanent component in real commodity prices.

• Estimates indicate that world shocks are an important source of aggregate fluctuations at the country level explaining more than half of the variance of output growth on average across countries.

• However, more than two thirds of this contribution stems from stationary world shocks, not from the super commodity cycle.

• This result suggests that the commodity price super cycle plays a significant but not dominant role in driving fluctuations in aggregate activity.