Explaining the Effects of Government Spending Shocks on Consumption and the Real Exchange Rate

M. Ravn S. Schmitt-Grohé M. Uribe

November 12, 2007
Effects of Government Spending Shocks:
SVAR Evidence

A rise in government spending leads to

- **An increase in private consumption.**
 (Fatás and Mihov, 2001; Blanchard and Perotti, 2002; Galí et al., 2007; Perotti, 2007.)

- **A real exchange rate depreciation.**
 (Monacelli and Perotti, 2006.)

- An increase in output and wages
 (Rotemberg and Woodford, 1992; Blanchard and Perotti, 2002; Perotti, 2007.)

- **A trade balance deterioration.**
 (Corsetti and Müller, 2006; Monacelli and Perotti, 2006.)
This Paper

- produces SVAR evidence using a panel approach.
 - To gain efficiency
 - To obtain a single benchmark against which to evaluate theoretical explanations.

- presents a *theoretical explanation* of the observed effects of government spending shocks on consumption, the real exchange rate, output, and the trade balance based on the *deep-habit mechanism*.
Effects of Government Spending Shocks: Evidence from the Narrative Approach

- In response to a rise in government spending
 - Output increases.
 - Consumption fails to increase.
 - Wages fail to rise.

(Ramey and Shapiro, 1998; Burnside, Eichenbaum, and Fisher, 2004; Ramey, 2006)
Estimation of Impulse Responses to a Government Spending Shock

- **The Structural VAR Model**

\[AX_t = B(L)X_{t-1} + \epsilon_t \]

where \(X_t = \begin{bmatrix} \log g_t \\ \log y_t \\ \log c_t \\ \frac{nxt}{yt} \\ \log e_t \end{bmatrix}'

- **Identification**: Government spending is not affected contemporaneously by structural innovations to any variable other than government spending itself.

- **Panel of Countries**: Australia, Canada, U.K., and U.S.

- **Sample**: Quarterly data from 1975Q1 to 2005Q4.

- **4 lags.**
Estimated Impulse Response Functions To A Unit Innovation in Domestic Government Purchases
Habit Formation

Period Utility Function: $U(x_t, h_t)$

Superficial Habit Formation:

$$x_t = c_t - \theta \tilde{c}_{t-1} \quad \text{with} \quad c_t = \left[\int_0^1 c_{it}^{1-\frac{1}{\eta}} \frac{1}{1-\frac{1}{\eta}} \right]$$

Implied Demand Functions:

$$c_{it} = \left(\frac{P_{it}}{P_t} \right)^{-\eta} x_t$$

Deep Habit Formation:

$$x_t = \left[\int_0^1 (c_{it} - \theta \tilde{c}_{it-1})^{1-\frac{1}{\eta}} \frac{1}{1-\frac{1}{\eta}} \right]$$

Implied Demand Functions:

$$c_{it} = \left(\frac{P_{it}}{P_t} \right)^{-\eta} x_t + \theta \tilde{c}_{it-1}$$
A Two-Country Model of Pricing to Habits

- Production economy without capital.

- Preferences
 \[
 E_0 \sum_{t=0}^{\infty} \beta^t [\phi \ln(x_t) + (1 - \phi) \ln(1 - h_t)]
 \]

- Two goods: \(a\) and \(b\)
 \[
 x_t = \left[\omega x_{a,t}^{c \frac{1-\frac{1}{\xi}}{1-\frac{1}{\xi}}} + (1 - \omega) x_{b,t}^{c \frac{1-\frac{1}{\xi}}{1-\frac{1}{\xi}}} \right]^{\frac{1}{1-\frac{1}{\xi}}}
 \]
Habit-adjusted consumption of good a

\[
x^c_{a,t} = \left[\int_0^1 (c_{i,a,t} - \theta^c s^c_{i,a,t-1})^{1-\frac{1}{\eta}} di \right]^{\frac{1}{1-\frac{1}{\eta}}}
\]

\[
s^c_{i,a,t} = \rho s^c_{i,a,t-1} + (1 - \rho) \tilde{c}_{i,a,t}
\]

Habit-adjusted consumption of good b

\[
x^c_{b,t} = \left[\int_0^1 (c_{i,b,t} - \theta^c s^c_{i,b,t-1})^{1-\frac{1}{\eta}} di \right]^{\frac{1}{1-\frac{1}{\eta}}}
\]

\[
s^c_{i,b,t} = \rho s^c_{i,b,t-1} + (1 - \rho) \tilde{c}_{i,b,t}
\]
The Public sector

$$\max \chi(x^g_{a,t}, x^g_{b,t})$$

$$x^g_{a,t} = \left[\int_0^1 (g_{i,a,t} - \theta g^g_{s_{i,a,t-1}})^{1-\frac{1}{\eta}} di \right]^{\frac{1}{1-\frac{1}{\eta}}}$$

$$s^g_{i,a,t} = \rho s^g_{i,a,t-1} + (1 - \rho)g_{i,a,t}$$

$$x^g_{b,t} = \left[\int_0^1 (g_{i,b,t} - \theta g^g_{s_{i,b,t-1}})^{1-\frac{1}{\eta}} di \right]^{\frac{1}{1-\frac{1}{\eta}}}$$

$$s^g_{i,b,t} = \rho s^g_{i,b,t-1} + (1 - \rho)g_{i,b,t}$$

$$\int_0^1 (P_{i,a,t}g_{i,a,t} + P_{i,b,t}g_{i,b,t}) di = P^y_t g_t$$
- **Domestic Demand for good a**

\[
d_{i,a,t} = \left(\frac{P_{i,a,t}}{P_{a,t}} \right)^{-\eta} x_{a,t} + \theta s_{i,a,t-1}
\]

Price elasticity \(= -\eta \left(1 - \theta \frac{s_{i,a,t-1}}{d_{i,a,t}} \right)\)

- **Foreign Demand for good a**

\[
d_{i,a,t}^* = \left(\frac{P_{i,a,t}^*}{P_{a,t}^*} \right)^{-\eta} x_{a,t}^* + \theta s_{i,a,t-1}^*
\]

Price elasticity \(= -\eta \left(1 - \theta \frac{s_{i,a,t-1}}{d_{i,a,t}^*} \right)\)
Firms

- Firms can price discriminate internationally.

- Production Function: $y_{i,a,t} = h_{i,a,t}$

- Optimal pricing

\[
P_{a,t} = \left[1 - \frac{1}{\eta \left(1 - \theta \frac{d_{a,t} - 1}{d_{a,t}} \right)} + \theta \Omega_{a,t} \right]^{-1} MC_t
\]

\[
P_{a,t}^* = \left[1 - \frac{1}{\eta \left(1 - \theta \frac{d_{a,t}^* - 1}{d_{a,t}^*} \right)} + \theta \Omega_{a,t}^* \right]^{-1} MC_t
\]
The Real Exchange Rate

Domestic price index: \(P_t = \gamma P_{a,t} + (1 - \gamma) P_{b,t} \)

Foreign price index: \(P_t^* = (1 - \gamma) P_{a,t}^* + \gamma P_{b,t}^* \)

Real exchange rate, \(e_t = \frac{P_t^*}{P_t} = f \left(\frac{P_{a,t}^*}{P_{a,t}}, \frac{P_{b,t}^*}{P_{b,t}}, \frac{P_{b,t}}{P_{a,t}} \right) + \pm \)
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.99</td>
<td>Subjective discount factor (quarterly)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.15</td>
<td>Preference parameter</td>
</tr>
<tr>
<td>ω</td>
<td>0.5</td>
<td>Preference parameter</td>
</tr>
<tr>
<td>ξ</td>
<td>1.5</td>
<td>Elasticity of substitution composite</td>
</tr>
<tr>
<td>η</td>
<td>5</td>
<td>Elasticity of substitution varieties</td>
</tr>
<tr>
<td>s_g, s_g^*</td>
<td>0.2</td>
<td>Government shares</td>
</tr>
</tbody>
</table>

The Driving Force

$$\hat{g}_t = B^1(L) \begin{bmatrix} \hat{g}_{t-1} \\ \hat{y}_{t-1} \\ \hat{c}_{t-1} \\ nxy_{t-1} \\ \hat{e}_{t-1} \end{bmatrix} + \epsilon^1_t$$
Estimation

• Goal: Estimate deep-habit parameters:

\[\Theta \equiv [\theta^c \quad \theta^g \quad \rho] \]

• Strategy: Pick \(\Theta \) to minimize the distance between empirical and theoretical impulse responses of five variables.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Point Estimate</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta^c)</td>
<td>0.52</td>
<td>0.08</td>
</tr>
<tr>
<td>(\theta^g)</td>
<td>0.57</td>
<td>0.15</td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.9876</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Predicted and Estimated Impulse Responses

\(g_t \)

\(y_t \)

\(c_t \)

\(nxy_t \)

\(rer_t \)

--- Data

- - - Data ± 2std

\(\times \) Deep Habits
Response of the Domestic and Foreign Markups to a One-Percent Government Spending Shock

Diagram showing the percent deviation from trend of domestic and foreign markups over quarters after a shock.
Response of the Real Wage to a Government Spending Shock

![Graph showing the response of domestic and foreign wages to a government spending shock. The graph plots the percent deviation from trend against quarters after the shock. The domestic wage shows a sharp decline initially, followed by a gradual decrease. The foreign wage shows a slight increase over time.]
Response of the Real Exchange Rate to a Government Spending Shock

![Graph showing the response of the real exchange rate to a government spending shock over 8 quarters, with data points and lines representing different scenarios: Data, Data +2 std, Data -2 std, Deep, and Superficial. The x-axis represents quarters after the shock, and the y-axis represents percent deviation from trend. The graph illustrates how the exchange rate deviates from its trend in response to the shock.]
Response of Private Consumption to a Government Spending Shock

Percent deviation from trend vs. Quarters after the shock.
Anticipated Government Spending Shocks

\[\ln\left(\frac{g_t}{\bar{g}}\right) = \rho^g \ln\left(\frac{g_{t-1}}{\bar{g}}\right) + \epsilon_t^0 + \epsilon_{t-2}^2 \]

\[\rho^g = 0.87 \]
Impulse Responses To a Two-Period Anticipated Innovation in Government Spending

Unanticipated Shock

Anticipated Shock
Sensitivity Analysis: Home Bias and Less Persistent Habit Stock

- x-x-x-: Baseline - o-o-o: Home bias, $\omega = 0.7$ - ◊ ◊ ◊: Less persistence, $\rho = 0.87$
Observed and Predicted Impulse Responses: HP Filtered Data
Conclusions

• Pricing to Habits can account quantitatively for the empirical regularity that in response to an *unanticipated* demand shock

 — private consumption rises

 — the real exchange rate depreciates

 — the trade balance deteriorates

• At the same time, Pricing to Habits can account for the empirical regularity that in response to an *anticipated* demand shock

 — private consumption fails to rise on impact

 — real product wages fails to rise on impact
Extras
Country-by-Country Regressions
United Kingdom

g_t

y_t

c_t

nxy_t

rer_t
United States

g_t

y_t

c_t

nxy_t

$rert$

nxy_t
Monte Carlo Experiment

- g_t
- c_t
- r_{et}
- y_t
- nxy_t

--- Point estimate
-- Median Monte Carlo
- - - Point estimate ± 2std