Incomplete Cost Pass-Through Under Deep Habits

M. Ravn S. Schmitt-Grohé M. Uribe

September 2007

Stylized Facts We Wish To Address

- Innovations in marginal costs are associated with less than proportional increases in prices (incomplete cost pass-through).
- Prices are less volatile than marginal costs.
- Markup adjustments explain a significant fraction of incomplete cost pass-through.

Some Key References: Giovannini (*JIE*, 1988), Kadiyali (*JIE* 1997), Hellerstein (2006), Goldberg and Campa (2006), Nakamura (2006), Goldberg and Hellerstein (2007).

• **Observation:** Most existing structural estimations of cost pass-through using highly disaggregate data are based on static models.

Limitations of Static Models:

- Cannot distinguish between effects of permanent versus transitory cost shocks.
- Cannot distinguish between effects of anticipated versus unanticipated cost shocks.
- This Paper: Dynamics take center stage.

Habit Formation

Period Utility Function: $U(x_t)$

Superficial Habit Formation: Habits are formed at the level of a composite good

$$x_t = \frac{c_t}{c_{t-1}^{\theta}} \quad \text{with} \quad c_t = \left[\int_0^1 c_{it}^{1 - \frac{1}{\eta}} di \right]^{\frac{1}{1 - \frac{1}{\eta}}}$$

Deep Habit Formation: Habits are formed at the level of individual goods

$$x_t = \left[\int_0^1 \left(\frac{c_{it}}{c_{it-1}^{\theta}} \right)^{1-\frac{1}{\eta}} di \right]^{\frac{1}{1-\frac{1}{\eta}}}$$

A Model of Incomplete Pass-Through

Household j minimizes

$$\int_0^1 P_{it} c_{it}^j di,$$

subject to

$$\left[\int_0^1 \left(\frac{c_{it}^j}{c_{it-1}^\theta} \right)^{1-1/\eta} di \right]^{1/(1-1/\eta)} \ge x_t^j$$

 $\theta =$ deep-habit parameter

 $c_{it-1} = \text{External habit stock}$, taken as given by households.

Demand for good i by household j

$$c_{it}^j = \left(\frac{P_{it}}{P_t}\right)^{-\eta} c_{it-1}^{\theta(1-\eta)} x_t^j,$$

• Short-Run Price Elasticty = η

• Long-Run Price Elasticty = $\frac{\eta}{1-\theta(1-\eta)} > \eta$

• Habit elasticity $\theta(1-\eta)$

The Firm

Maximize present value of expected profits

$$\sum_{t=0}^{\infty} \beta^t E_0(P_{it} - MC_{it}) c_{it},$$

subject to

$$c_{it} = A_t P_{it}^{-\eta} c_{it-1}^{\theta(1-\eta)}$$

- pricing problem of the firm becomes dynamic
- First-order condition:

$$P_{it}\left(1 - \frac{1}{\eta}\right) + \beta\theta \frac{1 - \eta}{\eta} E_t P_{it+1} \frac{c_{it+1}}{c_{it}} = MC_{it}$$

The Markup

• Define the markup as

$$\mu_{it} \equiv \frac{P_{it}}{MC_{it}}$$

Then, the firm's FOC implies

$$\mu_{it} = \frac{1}{\left(1 - \frac{1}{\eta}\right) \left[1 - \beta \theta E_t \frac{P_{it+1}c_{it+1}}{P_{it}c_{it}}\right]}$$

- The markup is time varying.
- The markup is decreasing in the expected growth of sales.

• Steady state markup

$$\mu = \left(\frac{\eta}{\eta - 1}\right) \left(\frac{1}{1 - \beta \theta}\right) < \frac{\eta}{(\eta - 1)}.$$

A Law of Motion for Marginal Costs

$$\widehat{MC}_{it+1} = \lambda \widehat{MC}_{it} + \epsilon_{t+1}$$

Calibration of the Model

Parameter	Value	
β	0.99	
η	6	
λ	0	
θ	-0.1	

Impulse Response to a One-Percent Increase in Marginal Cost

period	price	marg.costs	markup
0	0.81	1	-0.19
1	-0.11	0	-0.11
2	-0.04	0	-0.04
3	-0.01	0	-0.01
4	-0.01	0	-0.01

Units: percent deviations from the steady state.

⇒ Incomplete Cost Pass-Through

Price-Cost Volatility Ratio

$$\frac{var(P_{it})}{var(MC_{it})} = 0.66$$

⇒ Prices are less volatile than marginal cost

Persistence of Cost Shocks and Incomplete Pass-Through

⇒ Pass-through increases with the persistence of marginal cost shocks.

Persistence of Cost Shocks and the Volatility of the Price-Cost Ratio

⇒ Prices remain less volatile than costs even for highly persistent cost shocks.

Anticipated Marginal-Cost Shocks

period	price	marg.costs	markup
0	0.29	0	0.29
1	0.77	1	-0.23
2	-0.12	0	-0.12
3	-0.05	0	-0.05
4	-0.02	0	-0.02

Units: percent deviations from the steady state.

 \Rightarrow About 1/3 of the future expected increase in costs is passed onto prices upon arrival of information. Consequently, a smaller fraction of the cost shock is passed onto prices upon realization of the shock \Rightarrow Measured pass-through is more incomplete.

Conclusions

- Deep habit formation gives rise to a theory of time-varying markups.
- The markup is a decreasing function of expected revenue growth.
- Deep habit formation induces incomplete pass-through of marginal cost shocks.
- Incomplete pass-through is more severe the more transitory the cost shocks are.
- Anticipation of cost shocks exacerbates the incompleteness of cost passthrough.