The Neo-Fisher Effect in the United States and Japan

Martín Uribe†
Columbia University and NBER
First draft: September 2017
This draft: May 14, 2018

Abstract

What is the short-run effect on inflation and output of a permanent increase in the nominal interest rate? I address this question by postulating a structural autoregressive model that allows for transitory and permanent nominal and real shocks. I estimate the model on postwar U.S. and Japanese data. I find that nominal interest-rate increases that are expected to be temporary, lead, in accordance with conventional wisdom, to a temporary increase in real rates that is contractionary and deflationary. By contrast, nominal interest-rate increases that are perceived to be permanent cause a temporary decline in real rates with inflation rising quickly to a higher permanent level. Estimated impulse responses show that inflation reaches its higher long-run level within a year. Importantly, because real rates are low during the transition, the economy does not suffer an output loss. This result is relevant for the design of monetary policy in economies plagued by chronic below-target inflation, for it is consistent with the prediction that a credible announcement of a gradual return of nominal rates to normal levels can bring about a swift convergence of inflation to its target level without negative consequences for aggregate activity. An important byproduct of the proposed empirical model is that distinguishing permanent and temporary nominal shocks eliminates the so-called price puzzle.

JEL Classification: E52,E58.
Keywords: Monetary Policy, Neo-Fisher Effect, Inflation, Deflation, Reflation, SVAR Models.

*I am indebted to Stephanie Schmitt-Grohé for comments and suggestions. I also thank for comments seminar participants at the Bank of England and Queen Mary University. Yoon-Joo Jo and Seungki Hong provided excellent research assistance.
†E-mail: martin.uribe@columbia.edu.
1 Introduction

What is the effect of an increase in the nominal interest rate? One can argue on theoretical grounds that the answer to this question depends on (a) whether the increase in the interest rate is expected to be permanent or transitory; and (b) whether the horizon of interest is the short run or the long run. Table 1 summarizes the answer that would obtain from standard models in the new-Keynesian tradition with a central bank that observes the Taylor principle.

Table 1: Effect of an Increase in the Nominal Interest Rate on Inflation

<table>
<thead>
<tr>
<th></th>
<th>Long Run</th>
<th>Short Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitory shock</td>
<td>0</td>
<td>↓</td>
</tr>
<tr>
<td>Permanent shock</td>
<td>↑</td>
<td>↑?</td>
</tr>
</tbody>
</table>

According to this class of models, a transitory positive disturbance in the nominal interest rate causes a transitory increase in the real interest rate, which in turn depresses aggregate demand and current inflation. By contrast, if the increase in the nominal interest rate is perceived to be permanent, sooner or later, inflation will have to increase by roughly the same magnitude, since the real interest rate, given by the difference between the nominal rate and expected inflation, is not determined by nominal factors in the long run. This one-to-one long-run relationship between nominal rates and inflation is known as the Fisher effect. The Fisher effect, however, does not provide a prediction of when inflation should be expected to catch up with a permanent increase in the nominal interest rate. It only states that it must eventually do so. A natural question, therefore, is how quickly does inflation adjust to a permanent increase in the nominal interest rate? Recent theoretical work argues that in the context of a standard new-Keynesian model a credible permanent increase in the nominal interest rate causes an immediate increase in inflationary expectations. This result has come to be known as the neo-Fisher effect. In this paper, I investigate whether
the neo-Fisher effect is detectable in the data.

To this end, I postulate a structural vector autoregressive (SVAR) model in three endogenous variables, output, inflation, and the nominal interest rate. The model is driven by four disturbances: a permanent monetary shock, a transitory monetary shock, a permanent nonmonetary shock, and a transitory nonmonetary shock. To identify these four driving forces, I impose a number of restrictions on the structure of the model: First, I assume that both inflation and the nominal interest rate are cointegrated with the permanent monetary shock and share a common cointegrating vector. This assumption implies that the Fisher effect holds in the long run. Section 2 provides some evidence in support of this assumption. Second, I assume that output is cointegrated with the permanent nonmonetary shock. Finally, I assume that temporary increases in the nominal interest rate have a nonpositive impact effect on output and inflation. I estimate the SVAR model on postwar quarterly data from the United States and Japan using Bayesian techniques.

The estimated SVAR model predicts that a transitory increase in the nominal interest rate produces dynamics that are in line with the conventional wisdom: the real interest rate increases on impact and converges from above to its steady-state, with depressed levels of aggregate activity and inflation. By contrast, the estimated SVAR model predicts that in response to a permanent increase in the nominal interest rate, inflation increases swiftly, reaching a higher long-run level within a year. Furthermore, inflation rises faster than the nominal interest rate. As a result, the real interest rate falls on impact and converges from below to its steady state. In line with this effect on real rates, the SVAR model predicts that the adjustment to a permanent increase in the nominal interest rate does not generate a loss of aggregate output.

This paper is related to a number of theoretical and empirical contributions on the effects of interest-rate policy on inflation and aggregate activity. On the theoretical front, Schmitt-Grohé and Uribe (2014 and 2017) show that the neo-Fisher effect obtains in the context of standard dynamic optimizing models with flexible or rigid prices, respectively.
Specifically, they show that a credible permanent increase in the nominal interest rate gives rise to an immediate increase in inflationary expectations. Cochrane (2017) shows that, in general, a policy that pegs the nominal interest rate at a higher level causes an increase in the short-run rate of inflation unless nonstandard assumptions are made about the fiscal regime. Erceg and Levin (2003) study a calibrated dynamic general equilibrium model with nominal rigidity in which private agents have imperfect information about the permanent and transitory components of monetary-policy shocks. They show that imperfect information of this type can provide an adequate explanation of the observed inflation persistence during disinflation episodes. To my knowledge, there are no econometric studies of the neo-Fisher effect. However, there is a related empirical literature devoted to estimating long-run movements in the parameters describing monetary policy, including the inflation target, and their economic effects, to which I now refer in a non-exhaustive manner. Sims and Zha (2006) estimate a regime-switching model for U.S. monetary policy and find that during the postwar period there were three policy regime switches, but that they were too small to explain the observed increase in inflation of the 1970s or the later disinflation that started with the Volker chairmanship. The SVAR model estimated in the present model attributes much of the high inflation of 1970s to the permanent nominal shock. Ireland (2007) estimates a new-Keynesian model with a time-varying inflation target and shows that, possibly as a consequence of the Fed’s attempt to accommodate supply-side shocks, the target increased significantly during the 1960s and 1970s and fell sharply in the early 2000s. Using a similar framework, Milani (2009) shows that movements in the inflation target become less pronounced if one assumes that agents must learn about the level of the inflation target. De Michelis and Iacoviello (2016) estimate an SVAR model with permanent inflation-target shocks to evaluate the Japanese experience with Abenomics. Finally, Fève, Matheron, and Sahuc (2010) study a dynamic optimizing model with persistent inflation-target shocks and show, by means of counterfactual experiments, that had the European monetary authority been less gradual in lowering its inflation target during the late 2000s, the eurozone would
have suffered a milder slowdown in economic growth.

The remainder of the paper is presented in 6 sections. Section 2 presents evidence consistent with the long-run validity of the Fisher effect. Section 3 presents the SVAR model. Section 4 discusses the observables used in the estimation, the assumed prior distributions of the estimated parameters, and the estimation procedure. The main results of the paper are contained in sections 5 and 6, which present the estimated effects of permanent and temporary interest-rate shocks in the United States and Japan, respectively. Section 7 closes the paper with a discussion of actual monetary policy in the ongoing low-inflation era from the perspective of the estimated model.

2 The Fisher Effect

My analysis of the neo-Fisher effect assumes the empirical validity of the Fisher effect, interpreted as a description of the long-run relationship between the nominal interest rate and inflation. In this section, I present some empirical evidence consistent with this relationship. The Fisher equation takes the form

\[i_t = R_t + E_t \pi_{t+1} \]

where \(i_t \) denotes the nominal interest rate, \(R_t \) denotes the real interest rate, \(\pi_t \) denotes the inflation rate, and \(E_t \) denotes expectations conditional on information available in period \(t \). This expression says that the nominal interest rate incorporates two types of compensation to lenders. One compensation is a compensation for the loss of purchasing power of money due to expected inflation during the investment period, and the other is a real retribution for postponing consumption. Assuming that in the long run expected inflation equals actual inflation, we have that

\[i = R + \pi, \]
Figure 1: Average Inflation and Nominal Interest Rates: Cross-Country Evidence

Figures 1 (left panel) and 2 (right panel) present scatter plots of inflation and nominal interest rates across different countries. The scatter plots show a trend consistent with the Fisher effect, indicating a one-to-one relationship between the nominal interest rate and the rate of inflation. This observation is supported by the data from 99 countries and 26 OECD countries.

Notes. Each dot represents one country. For each country, averages are taken over the longest available noninterrupted sample. The average sample covers the period 1989 to 2012. The solid line is the 45-degree line. Source: World Development Indicators (data.worldbank.org/indicator).

Inflation is the CPI inflation rate (code FP.CPI.TOTL.ZG). The nominal interest rate is the t-bill rate, computed as the difference between the lending interest rate (code FR.INR.LEND) and the risk premium on lending (lending rate minus treasury bill rate, code FR.INR.RISK). Countries for which one or more of these series were missing as well as outliers, defined as countries with average inflation or interest rate above 50 percent, were dropped from the sample.

where variables without a subscript refer to long-run values. Further assuming that in the long run the real interest rate is determined solely by non-monetary factors (such as technology, demographics, distortionary taxes, or economic openness), the above expression delivers a one-to-one long-run relationship between the nominal interest rate and the rate of inflation.

Figure 1 displays average rates of inflation and nominal interest rates across 99 countries (left panel). The average sample covers the period 1989 to 2012. The scatter plots look consistent with the Fisher effect, in the sense that on average increases in the interest rate are roughly associated with one-for-one increases in the rate of inflation. This is also the case for the subsample of OECD countries (right panel), which are on average half as inflationary as the group of no-member countries. Figure 2 presents empirical evidence consistent with the Fisher effect from the time perspective. It plots inflation and the nominal
Figure 2: Inflation and the Nominal Interest Rate in the United States and Japan

Notes. Quarterly frequency. Source: See section 5 for the United States and section 6 for Japan.
interest rate in the United States and Japan over the period 1955 to 2016. In spite of the fact that the data have a quarterly frequency, it is possible to discern a positive long-run association between inflation and the nominal rate. In both countries, the high-inflations of the 1970s and 1980s coincided with high levels of the interest rate. Symmetrically, the disinflations that took place in both countries since the 1990s were accompanied by low nominal rates.

Having provided some evidence consistent with the assumption that the Fisher effect holds in the long run, I now turn to the central focus of my investigation, the identification of permanent and temporary nominal-interest-rate shocks and their dynamic effects on inflation, output, and the real interest rate.

3 The SVAR Model

The empirical model aims to capture the dynamics of three macroeconomic indicators, namely, the logarithm of real output per capita, denoted y_t, the inflation rate, denoted π_t and expressed in percent per year, and the nominal interest rate, denoted i_t and also expressed in percent per year. Let Y_t be a vector collecting these three variables,

$$Y_t \equiv \begin{bmatrix} y_t \\ \pi_t \\ i_t \end{bmatrix}.$$

I assume that Y_t is driven by four exogenous shocks: a nonstationary (or permanent) monetary shock, denoted X_t^m, a stationary (or transitory) monetary shock, denoted z_t^m, a nonstationary nonmonetary shock, denoted X_t^n, and a stationary nonmonetary shock, denoted z_t^n. As mentioned earlier, the focus of my analysis is to compare the short-run effects of permanent and transitory interest-rate shocks, embodied in the exogenous variables X_t^m and z_t^m. The shocks X_t^n and z_t^n are meant to capture the nonstationary and stationary
components of combinations of nonmonetary disturbances of different natures, such as technology shocks, preference shocks, or markup shocks, which my analysis is not intended to individually identify.

I assume that output is cointegrated with X^n_t and that inflation and the nominal interest rate are both cointegrated with X^m_t. Because inflation and the nominal interest rate share a common nonstationary component, they are cointegrated. In other words, I am assuming that the Fisher effect holds, in the sense that shocks that cause a permanent change in the nominal interest rate also cause the same permanent change in the inflation rate. But the assumption that π_t and i_t are cointegrated says nothing about the neo-Fisher effect, that is, about the short-run effect on inflation and output of a permanent monetary shock.

Let \tilde{Y}_t be a vector containing detrended output, detrended inflation, and the detrended nominal interest rate. Formally,

$$\tilde{Y}_t \equiv \begin{bmatrix} (y_t - X^n_t) \times 100 \\ \pi_t - X^m_t \\ i_t - X^m_t \end{bmatrix}.$$

The vector \tilde{Y}_t is a stationary random variable, but unobservable, because neither X^m_t nor X^n_t are observed. Let \hat{Y}_t denote the deviation of \tilde{Y}_t from its unconditional mean, that is,

$$\hat{Y}_t \equiv \begin{bmatrix} \hat{y}_t \\ \hat{\pi}_t \\ \hat{i}_t \end{bmatrix} \equiv \tilde{Y}_t - E\tilde{Y}_t,$$

where E denotes the unconditional expectations operator.

I assume that the law of motion of \hat{Y}_t takes the autoregressive form

$$\hat{Y}_t = \sum_{i=1}^{L} B_i \hat{Y}_{t-i} + C u_t \quad (1)$$

8
where

\[u_t \equiv \begin{bmatrix} x_t^m \\ z_t^m \\ x_t^n \\ z_t^n \end{bmatrix}, \]

\[x_t^m \equiv \Delta X_t^m - \Delta X^m \]

and

\[x_t^n \equiv (\Delta X_t^n - \Delta X^n) \times 100. \]

with \(\Delta \) denoting the time-difference operator, \(\Delta X^m \equiv E\Delta X_t^m \) and \(\Delta X^n \equiv E\Delta X_t^n \). The variables \(x_t^m \) and \(x_t^n \) denote demeaned changes in the nonstationary shocks. The objects \(B_i \), for \(i = 1, \ldots, L \), are 3-by-3 matrices of coefficients, \(C \) is a 3-by-4 matrix of coefficients, and \(L \) is a scalar denoting the lag length of the SVAR system.

I assume that \(u_t \) follows an AR(1) law of motion of the form

\[u_{t+1} = \rho u_t + \psi \epsilon_{t+1}, \] (2)

where \(\rho \) and \(\psi \) are 4-by-4 diagonal matrices of coefficients, and \(\epsilon_t \) is a 4-by-1 i.i.d. disturbance distributed \(N(0, I) \).

Thus far, I have introduced three identification assumptions, namely, that output is cointegrated with \(X_t^n \) and that inflation and the interest rate are cointegrated with \(X_t^m \). In addition, I impose the following restrictions

\[C_{12} \leq 0, \quad C_{22} \leq 0, \quad \text{and} \quad C_{31} \geq -1, \]

where \(C_{ij} \) denotes the \((i, j)\) element of \(C \). The first two of these conditions restrict transitory exogenous increases in the interest rate to have nonpositive impact effects on output or inflation. The restriction on \(C_{31} \) implies that a permanent exogenous increase in the nominal
interest rate has a nonnegative impact effect on the nominal interest rate itself. Finally, without loss of generality, I introduce the normalizations $C_{32} = C_{14} = 1$.

4 Observables, Priors, and Estimation Method

To estimate the unobservable system (1)-(2), I use observations of output growth expressed in percent per quarter, the change in the nominal interest rate, and the interest-rate-inflation differential, defined as

$$r_t \equiv i_t - \pi_t.$$

These three variables are stationary by my maintained long-run identification assumptions. The following equations link the observables to variables included in the unobservable system (1)-(2):

$$100 \times \Delta y_t = 100 \times \Delta X^n + \hat{y}_t - \hat{y}_{t-1} + x^n_t$$

$$r_t = r + \hat{i}_t - \hat{\pi}_t$$

$$\Delta i_t = \Delta X^m + \hat{i}_t - \hat{i}_{t-1} + x^m_t$$

where $r \equiv E r_t$ represents the unconditional mean of the interest-rate-inflation differential. I assume that Δy_t, r_t, and Δi_t are observed with measurement error. Formally, letting o_t be the vector of variables observed in quarter t, I assume that

$$o_t = \begin{bmatrix} \Delta y_t \times 100 \\ r_t \\ \Delta i_t \end{bmatrix} + \mu_t$$

where μ_t is a 3-by-1 vector of measurement errors distributed i.i.d. $N(\emptyset, R)$, and R is a diagonal variance-covariance matrix.

I estimate the model on quarterly data using Bayesian techniques. To compute the
likelihood function, it is convenient to use the state-space representation of the model. Let

\[\xi_t \equiv \begin{bmatrix} \hat{Y}_t \\ \hat{Y}_{t-1} \\ \vdots \\ \hat{Y}_{t-L+1} \\ u_t \end{bmatrix}. \]

Then the system composed of equations (1), (2), (3), and (4) can be written as follows:

\[\xi_{t+1} = F\xi_t + P\epsilon_{t+1} \]

\[\omega_t = A\xi_t + H\xi_t + \mu_t, \]

where the matrices \(F, P, A, \) and \(H \) are known functions of \(B_i, i = 1, \ldots, L, \) \(C, \rho, \psi, \Delta X^n, \Delta X^m, \) and \(r \) and are presented in the appendix. This representation allows for the use of the Kalman filter to evaluate the likelihood function (see, for example, Hamilton, 1994, chapter 13).

I consider two lag specifications, 4 and 8 quarters, which are the lag lengths used in the vast majority of the related literature. Prominent examples of each specification are Christiano, Eichenbaum, and Evans (2005) who estimate an SVAR model with stationary monetary and nonmonetary shocks with 4 lags, and Blanchard and Quah (1989), who estimate the effects of stationary and nonstationary shocks in an SVAR model with 8 lags.

Table 2 displays the prior distributions of the estimated coefficients. The prior distributions of all elements of \(B_i, \) for \(i = 1, \ldots, L, \) are assumed to be normal. In the spirit of the Minnesota prior (MP), I assume a prior parameterization in which at the mean of the prior parameter distribution the elements of \(\hat{Y}_t \) follow univariate autoregressive processes. So when evaluated at their prior mean, only the main diagonal of \(B_1 \) takes nonzero values and all other elements of \(B_i \) for \(i = 1, \ldots, L \) are nil. Because the system (1)-(2) is cast in
Table 2: Prior Distributions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main diagonal elements of B_1</td>
<td>Normal</td>
<td>0.95</td>
<td>0.5</td>
</tr>
<tr>
<td>All other elements of $B_i, i = 1, \ldots, L$</td>
<td>Normal</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>C_{21}</td>
<td>Normal</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$-C_{12}, -C_{22}, 1 + C_{31}$</td>
<td>Gamma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>All other estimated elements of C</td>
<td>Normal</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\psi_{ii}, i = 1, 2, 3, 4$</td>
<td>Gamma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\rho_{ii}, i = 1, 2, 3$</td>
<td>Beta</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>ρ_{44}</td>
<td>Beta</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>$100 \times \Delta X^m, r, \Delta X^m$</td>
<td>Normal</td>
<td>$\text{mean}(\omega_t) \sqrt{\frac{\text{var}(\omega_t)}{T}}$</td>
<td></td>
</tr>
<tr>
<td>R_{ii}</td>
<td>Uniform $[0, \frac{\text{var}(\omega_t)}{10 \times 2}]$</td>
<td>$\frac{\text{var}(\omega_t)}{10 \times 2}$</td>
<td>$\frac{\text{var}(\omega_t)}{10 \times 12}$</td>
</tr>
</tbody>
</table>

Note. T denotes the sample length.

terms of stationary variables, I deviate from the random-walk assumption of the MP and instead impose an autoregressive coefficient of 0.95 in all equations, so that all elements along the main diagonal of B_1 take a prior mean of 0.95. I assign a prior standard deviation of 0.5 to the diagonal elements of B_1, which implies a coefficient of variation close to one half (0.5/0.95). As in the MP, I impose lower prior standard deviations on all other elements of the matrices B_i for $i = 1, \ldots, L$, and set them to 0.25.

The coefficient C_{21} takes a normal prior distribution with mean -1 and standard deviation 1. The value assigned to the mean of this distribution implies a prior belief that the impact effect of a permanent interest rate shock on inflation, given by $1 + C_{21}$, can be positive or negative with equal probability. All other unrestricted parameters of the matrix C are assigned a normal prior distribution with mean 0 and standard deviation 1.\footnote{One might wonder whether a rationale like the one I used to set the prior mean of C_{21} could apply to C_{13}, the parameter governing the impact output effect of a nonstationary nonmonetary shock, X_t^m, which is given by $1 + C_{13}$. To see why a prior mean of 0 for C_{13} might be more reasonable, consider the effect of an innovation in the permanent component of TFP, which is perhaps the most common example of a nonstationary nonmonetary shock in business-cycle analysis. Specifically, consider a model with the Cobb-Douglas production function $y_t = X_t^p + z_t^r + \alpha k_t + (1 - \alpha) h_t$ expressed in logarithms. Consider first a situation in which capital and labor, denoted k_t and h_t, do not respond contemporaneously to changes in X_t^p. In this case, the contemporaneous effect of a unit increase in X_t^p on output is unity, which implies that a prior mean of 1 for $1 + C_{13}$, or equivalently a prior mean of 0 for C_{13} is the most appropriate. Now consider the impact effect of changes in X_t^p on k_t and h_t. It is reasonable to assume that the stock of capital, k_t, is fixed in the short run. The response of h_t depends on substitution and wealth effects. The former tends to}
estimated elements of C are, as explained above, subject to inequality restrictions. Specifically, $-C_{12}$, $-C_{22}$, and $1 + C_{31}$ are restricted to be nonnegative. I assume that these objects have Gamma prior distributions with mean and standard deviations equal to one.

The parameters ψ_{ii}, for $i = 1, \ldots, 4$, representing the standard deviations of the four exogenous innovations in the AR(1) process (2) are all assigned Gamma prior distributions with mean and standard deviation equal to one. I impose nonnegative serial correlations on the four exogenous shocks ($\rho_{ii} \in (0, 1)$ for $i = 1, \ldots, 4$), and adopt beta prior distributions for these parameters. I assume relatively small means of 0.3 for the prior serial correlations of the two monetary shocks and the nonmonetary nonstationary shock and a relatively high mean of 0.7 for the stationary nonmonetary shock. The small prior mean serial correlations for the monetary shocks reflect the usual assumption in the related literature of serially uncorrelated monetary shocks. The relatively small prior mean serial correlation for the nonstationary nonmonetary shock reflects the fact that the growth rate of the stochastic trend of output is typically estimated to have a small serial correlation. Similarly, the relatively high prior mean of the serial correlation of the stationary nonmonetary shock reflects the fact that typically these shocks (e.g., the stationary component of TFP) are estimated to be persistent. The prior distributions of all serial correlations are assumed to have a standard deviation of 0.2.

The unconditional means of the three observables are assumed to have normal prior distributions with means equal to their sample means and standard deviations equal to their sample standard deviations divided by the square root of the length of the sample period. Finally, the variances of all measurement errors are assumed to have a uniform prior distribution with lower bound 0 and upper bound of 10 percent of the sample variance of the corresponding observable indicator.

Finally, to draw from the posterior distribution of the estimated parameters, I apply the Metropolis-Hastings sampler to construct an Monte-Carlo Markov chain of one million draws cause an increase in employment, and the latter a reduction. Which effect will prevail is not clear, giving credence to a prior of 0 for C_{13}. One could further think about the role of variable input utilization. An increase in X^n_t is likely to cause an increase in utilization, favoring a prior mean of 0 over one of -1 for C_{13}.
after burning the initial 100 thousand draws. Posterior means and error bands around the impulse responses shown in later sections are constructed from a random subsample of the MCMC chain of length 100 thousand with replacement.

5 The Neo-Fisher Effect in the United States

In this section, I estimate the SVAR model on quarterly U.S. data spanning the period 1954:Q3 to 2016:Q4. The proxy for y_t is the logarithm of real GDP seasonally adjusted in chained dollars of 2009 minus the logarithm of the civilian noninstitutional population 16 years old or older. The proxy for π_t is the growth rate of the implicit GDP deflator expressed in percent per year. In turn, the implicit GDP deflator is constructed as the ratio of GDP in current dollars and real GDP both seasonally adjusted. The proxy for i_t is the monthly Federal Funds Effective rate converted to quarterly frequency by averaging and expressed in percent per year. The source for nominal and real GDP is the Bureau of Economic Analysis (bea.gov), the source for population is the Bureau of Labor Statistics (bls.gov) and the source for the Federal Funds rate is the Board of Governors of the Federal Reserve System (federalreserve.gov).

Before plunging into the predictions of the SVAR model, I briefly report standard unit-root tests based on univariate representations of the data. The augmented Dickey-Fuller (ADF) test, which is a commonly used test of the null hypothesis of a unit root, fails to reject the null hypothesis for y_t, i_t, and π_t, and rejects it for $i_t - \pi_t$ at standard confidence levels of 10 percent or less.\(^2\) These results are in line with the assumption that the interest rate, inflation, and output, all possess unit roots, and that the interest-inflation differential is stationary.

\(^2\)Specifically, for a random variable x_t, the ADF test considers the null hypothesis that $x_t = x_{t-1} + \eta_0 + \sum_{i=1}^{I} \eta_i \Delta x_{t-i} + \epsilon_t$, where ϵ_t is white noise, against the alternative hypothesis that $x_t = \delta x_{t-1} + \gamma t + \eta_0 + \sum_{i=1}^{I} \eta_i \Delta x_{t-i} + \epsilon_t$, with $\delta < 1$. For i_t and π_t, I restrict γ to be zero (no time trend), and for $i_t - \pi_t$, I restrict γ and η_0 to be zero (no time trend or drift). I include 4 lags of Δx_t ($I = 4$). The p values for $x_t = y_t, i_t, \pi_t, i_t - \pi_t$ are, respectively, 0.705, 0.154, 0.142, and 0.0365.
Figure 3: Impulse Responses to Interest-Rate Shocks: United States

<table>
<thead>
<tr>
<th></th>
<th>Interest Rate</th>
<th>Inflation</th>
<th>Inflation 95% band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Interest−Rate Shock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response of the Interest Rate and Inflation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Interest−Rate Shock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response of the Interest Rate and Inflation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. The SVAR model includes 4 lags. Impulse responses are posterior mean estimates. Asymmetric error bands are computed using the Sims-Zha (1999) method.
Figure 3 displays mean posterior estimates of the responses of inflation, output, and the nominal interest rate to permanent and temporary interest-rate shocks, along with asymmetric 95-percent error bands constructed using the method proposed by Sims and Zha (1999). The size of the permanent interest-rate shock is set to ensure that on average it leads to a 1 percent increase in the nominal interest rate in the long run, where the average is taken over the posterior distribution of impulse responses. Because inflation is cointegrated with the nominal interest rate, it also is expected to increase by 1 percent in the long run. The main result conveyed by figure 3 is that the adjustment of inflation to its higher long-run level takes place in the short run. In fact, inflation increases by 1 percent on impact and remains around that level thereafter.

On the real side of the economy, the permanent increase in the nominal interest rate does not cause a contraction in aggregate activity. Indeed, output exhibits a transitory expansion. This effect could be the consequence of low real interest rates resulting from the swift reflation of the economy following the permanent interest-rate shock. The left panel of figure 4 displays with a solid line the response of the real interest rate, defined as $i_t - E_t \pi_{t+1}$, to a permanent interest-rate shock. Because of the faster response of inflation relative to that of the nominal interest rate, the real interest rate falls by 0.8 percent on impact and converges to its steady-state level from below, implying that the entire adjustment to a permanent interest-rate shock takes place in the context of low real interest rates.

By contrast, the responses of nominal and real variables to a transitory interest-rate shock, shown in the two right-side panels of figure 3 are quite conventional. Both inflation and output fall below trend and remain low for a number of quarters. The real interest rate, whose impulse response is shown with a broken line in the left panel of figure 4, increases on impact and remains above its long-run value during the transition, which is in line with the contractionary effect of the transitory increase in the interest rate. Interestingly, the model does not suffer from the price puzzle, which points to the importance of distinguishing between temporary and permanent shocks.
Figure 4: Response of the Real Interest Rate to Permanent and Transitory Interest-Rate Shocks

![Graph showing response of the real interest rate to permanent and transitory interest-rate shocks.](image)

Notes. Posterior mean estimates. The real interest rate is defined as $i_t - E_t \pi_{t+1}$.

Figure 5 displays impulse responses predicted by an SVAR specification that includes 8 lags of the endogenous variables. All other aspects of the model and its estimation are as before. The general message of the figure is the same as under the 4-lag specification, that is, following a permanent increase in the nominal interest rate, the rate of inflation rises to its long-run level in the short run. A difference with respect to the 4-lag specification is that now reflation does not occur instantaneously, but takes one quarter to materialize. In the quarter in which the interest-rate shock takes place (period 0), inflation falls by one annualized percentage point. However, just one quarter later (period 1) inflation is 0.5 percentage points above its pre-shock level and in the second quarter after the shock (period 2) it is virtually at its long-run value. As in the 4-lag SVAR specification, the response to a permanent interest-rate shock is characterized by an expansion in aggregate activity and low real interest rates (figure 4).

When was the United States subject to permanent monetary shocks? To answer this question, figure 6 displays the inferred path of the nonstationary monetary shock, X_t^m. The historical path of this variable is computed by smoothing using the Kalman filter (see, for example, Hamilton, 1994, page 394). The initial value of X_t^m, for which the smoothing algorithm has no prediction, was normalized to make the average value of X_t^m equal to
Figure 5: Impulse Responses to Interest-Rate Shocks: United States, Eight-Lag SVAR Specification

Note. See notes to figure 3.
Figure 6: Inferred Time Path of the Nonstationary Monetary Shock, X_t^m

Note. Quarterly frequency. The inferred path of X_t^m is computed by smoothing using the Kalman filter. The underlying SVAR model includes 8 lags. The initial value of X_t^m is normalized to make the average value of X_t^m equal to the average rate of inflation over the sample period, 1954:Q4 to 2016:Q4.
the observed average rate of inflation over the sample period, 1954:Q4 to 2016: Q4. The underlying SVAR model is the one with 8 lags just discussed. According to the SVAR model, inflationary factors began to build up much earlier than the oil crisis of the early 1970s. After peaking around 1980, the permanent component of inflation displayed a more or less monotonic decline until around 1995, and continued to fall since the onset of the great contraction. Thus, the model predicts that the large increases in inflation and interest rates observed during the 1970s and early 1980s, as well as the disinflation of the Volker-Greenspan period had an important permanent component. This result echoes the estimate of long-run inflation expectations reported in Cogley and Sargent (2005), in the context of a VAR model with time-varying parameters and stochastic volatility (see, in particular, their figure 5). The main difference has to do with the interpretation of the drivers of long-run inflation offered by each formulation. In the Cogley model, long-run inflation is driven by stochastic movements in the intercept and autoregressive coefficients of the VAR system. In the present model, long-run movements in inflation are caused by innovations in a nonstationary monetary shock.

6 The Neo-Fisher Effect in Japan

I now use Japanese data to estimate the SVAR model developed in section 3. The prior distributions continue to be the ones displayed in table 2. The data is quarterly and spans the period 1955:Q2 to 2016:Q4. Real GDP and the GDP deflator are taken from Japan’s Cabinet Office (esri.cao.go.jp). Population is taken from Official Statistics of Japan (e-stat.go.jp) and comes at an annual frequency. A quarterly series was obtained by geometric interpolation. The proxy for the nominal interest rate is the discount rate until the second quarter of 1995 and the call rate from the third quarter of 1995 until the end of the sample, reflecting the

3The source presents the data in three subsamples, 1955:Q2-1999:Q1, 1980:Q1-2011:Q2, and 1994:Q1-2017:Q1, which requires concatenation. The GDP deflator for the first subsample appears not to be seasonally adjusted (no information in English is provided by the source in this regard). For this reason, this series was seasonally adjusted using the software x-13arima-seats, developed by the United States Census Bureau. In the third subsample, the observation 2017:Q1 was dropped, as it was preliminary when it was downloaded.
Japanese monetary authority’s choice of the policy instrument. The source for both series is the Bank of Japan (stat-search.boj.or.jp) and both are monthly. A quarterly series was obtained by averaging. Given the series for real GDP, the GDP deflator, population, and the nominal interest rate, the proxies for the observables used in the estimation of the SVAR model, Δy_t, r_t, and Δi_t, were constructed as in the case of the United States.

ADF tests fail to reject the null hypothesis that y_t and i_t have a unit root and reject the hypothesis that $i_t - \pi_t$ has a unit root at standard significance levels, which is consistent with the assumed identification scheme, but does reject the hypothesis that π_t has a unit root.\(^4\)

Although the sample begins in 1955, I use 1975:Q1 as the starting point of the baseline estimation, because the growth rate of real GDP per capita displays a significant break around this time. Figure 7 displays the level and growth rate of real GDP per capita over the period 1955 to 2016. It is clear from the figure that Japan experiences a significant slowdown in the trend of GDP per capita around 1975, possibly marking the end of the postwar reconstruction. The average growth rate of GDP per capita from 1955 to 1975 was more than three times as large as over the period 1975 to 2016 (7.03 versus 1.98 percent per year). The first subperiod was also more volatile, with a standard deviation of real per capita GDP growth of 6.04 percent compared to 4.08 percent over the more recent subperiod. This marked change in the statistical properties of output growth can affect the estimated cyclical properties of the SVAR model, justifying the exclusion of the earlier subsample.

Notwithstanding this caveat, as a robustness check, at the end of this section I present an estimation of the SVAR model over the entire sample.

Figure 8 displays impulse responses of inflation, the nominal interest rate, and output to permanent and transitory interest-rate shocks. The construction of the figure is as explained in section 5. In response to a permanent increase in the interest rate of 1 percent, the economy

\(^4\) The p values for y_t, i_t, π_t, and $i_t - \pi_t$ are 0.414, 0.549, 0.032, and 0.001, respectively. These tests are robust to starting the sample in 1975:Q1, with associated p values of 0.843, 0.306, 0.027, and 0.021. See footnote 2 for more details.
reflates quickly. One quarter after the shock, the inflation rate is 0.75 percent above its pre-shock level, and three quarters after the shock it is virtually at its long-run position. Output experiences a short contraction, but recovers quickly after period 2, rising and staying above trend afterward, with a net output gain throughout the adjustment process. By contrast, a transitory increase in the interest rate causes falls in output and inflation, with both variables converging from below to their respective steady states.

The response of the real interest rate to permanent and transitory interest-rate shocks, shown in figure 9, follows the same pattern detected using U.S. data. In particular, a permanent increase in the interest rate is associated with a fall in the real interest rate and a gradual convergence from below. By contrast, a temporary increase in the interest rate triggers a rise in the real interest rate and convergence from above.

I close this section with two robustness checks. The first one, illustrated in figure 10, extends the lag length of the SVAR model from 4 to 8 quarters. The predictions of the model are robust to this change. Specifically, a permanent increase in the interest rate
Figure 8: Impulse Responses to Interest-Rate Shocks: Estimates on Japanese Data

Notes. The SVAR model includes 4 lags. See notes to figure 3.
is accompanied by a swift convergence of the inflation rate to its higher permanent level. Importantly, the small and short-lived contraction in output implied by the 4-lag version of the model is not present in the 8-lag specification, suggesting that it is not a robust prediction of the SVAR model estimated on Japanese data. Finally, figure 11 displays the predictions of the SVAR model estimated on Japanese data over the period 1955:Q3 to 2016:Q4. The quick reflation of the economy following the announcement of a long-run increase in interest rates also obtains over the long sample. As expected from my earlier discussion of the break in the output trend around 1975, the model estimated on the long sample has difficulties identifying the output effect of monetary shocks, which is reflected in wide error bands. Nonetheless, the point estimates indicate that a permanent increase in the nominal interest rate is not contractionary.

7 Conclusion

Discussions of how monetary policy can lift an economy out of chronic below-target inflation are almost always based on the logic of how transitory interest-rate shocks affect real and nominal variables. Nowadays, there is little theoretical or empirical controversy around
Figure 10: Impulse Responses to Interest-Rate Shocks: Eight-Lag SVAR Model Estimated on Japanese Data

Note. See notes to figure 3.
Figure 11: Impulse Responses to Interest-Rate Shocks: Estimates on Japanese Data from 1955:Q3 to 2016:Q4

Note. See notes to figure 3.
how this type of monetary shock transmits to the rest of the economy: An increase in the nominal interest rate causes an increase in the real interest rate, which puts downward pressure on both aggregate activity and price growth. Within this logic, a central bank trying to reflate a low-inflation economy will tend to set interest rates as low as possible. Soon enough these economies find themselves with zero or negative nominal rates and with the low-inflation problem not going away. After some time, the Fisher effect kicks in, and the situation perpetuates. The monetary authority keeps the interest rate low because inflation is still below target (the temporary-interest-rate-shock logic) and inflation is low because the interest rate has been low for a long period of time (the Fisher effect).

In this paper I argue, based on econometric evidence drawn from U.S. and Japanese data, that a gradual and permanent increase in the nominal interest rate causes a fast adjustment of inflation to a permanently higher level, low real interest rates, and no output loss. These findings are consistent with the prediction, sometimes referred to as neo-Fisherian, that a credible announcement of a gradual return of the nominal interest rate to normal levels can achieve a swift reflation of the economy with sustained levels of economic activity.
Appendix

Matrices of the State-Space Representation

Let

\[B \equiv [B_1 \cdots B_L], \]

and let \(I_j \) denote an identity matrix of order \(j \), \(\emptyset_j \) denote a square matrix of order \(j \) with all entries equal to zero, and \(\emptyset_{i,j} \) denote a matrix of order \(i \) by \(j \) with all entries equal to zero.

Also let \(L \), \(S \), and \(V \) denote, respectively, the number of lags, the number of shocks, and the number of endogenous variables included in the SVAR model. Then, for \(L \geq 2 \) we have

\[
F = \begin{bmatrix}
B & C \rho \\
[I_{V(L-1)}] \emptyset_{V(L-1),V} & \emptyset_{V(L-1),S} \\
\emptyset_{S,V,V} & \rho
\end{bmatrix},
\]

\[
P = \begin{bmatrix}
C \psi \\
\emptyset_{V(L-1),S} \\
\psi
\end{bmatrix};
\]

\[
A' = \begin{bmatrix}
100 \times \Delta X^n \\
r \\
\Delta X^m
\end{bmatrix}, \text{ and } H' = \begin{bmatrix}
M_\xi & \emptyset_{V,Y(V,L-2)} & M_u
\end{bmatrix},
\]

where, in the specification considered in the body of the paper (\(S = 4 \), \(V = 3 \), and a particular ordering of the endogenous and exogenous variables in the vectors \(\hat{Y}_t \) and \(u_t \)), the matrices \(M_\xi \) and \(M_u \) take the form

\[
M_\xi = \begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1
\end{bmatrix}
\]

and

\[
M_u = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}.
\]

The case \(L = 1 \) is a special case of \(L = 2 \) in which \(B_2 = \emptyset_V \).
References

Schmitt-Grohé, Stephanie, and Martín Uribe, “Liquidity Traps And Jobless Recoveries,”