
Online Appendix to ‘The Neo-Fisher Effect: Economet-
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by Mart́ın Uribe

Section A contains a detailed exposition of the empirical model. Section B presents details

of the optimizing model. And section C presents prior predictions of the empirical model.

A Detailed Exposition of the Empirical Model

Let Yt be a vector collecting these three variables,

Yt ≡




yt

πt

it



,

where yt denotes the logarithm of real output per capita, πt denotes the inflation rate ex-

pressed in percent per year, and it denotes the nominal interest rate expressed in percent

per year. Let Ỹt

Ỹt ≡




(yt −Xt) × 100

πt −Xm
t

it −Xm
t



,

where Xm
t is a permanent monetary shock, zm

t is a transitory monetary shock, Xt is a

nonstationary nonmonetary shock, and zt is a stationary nonmonetary shock. Let Ŷt denote

the deviation of Ỹt from its unconditional mean, that is,

Ŷt ≡




ŷt

π̂t

ît



≡ Ỹt −EỸt,
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where E denotes the unconditional expectations operator.

The law of motion of Ŷt takes the autoregressive form

Ŷt =

L∑

i=1

BiŶt−i + Cut (9)

where

ut ≡




xm
t

zm
t

xt

zt




,

xm
t ≡ ∆Xm

t − ∆Xm

and

xt ≡ (∆Xt − ∆X) × 100.

with ∆ denoting the time-difference operator, ∆Xm ≡ E∆Xm
t , and ∆X ≡ E∆Xt. The

variables xm
t and xt denote demeaned changes in the nonstationary shocks. The objects Bi,

for i = 1, . . . , L, are 3-by-3 matrices of coefficients, C is a 3-by-4 matrix of coefficients, and

L is a scalar denoting the lag length of the empirical model. The vector ut is assumed to

follow an AR(1) law of motion of the form

ut+1 = ρut + ψεt+1, (10)

where ρ and ψ are 4-by-4 diagonal matrices of coefficients, and εt is a 4-by-1 i.i.d. disturbance

distributed N(∅, I).

The observable variables used in the estimation of the empirical model are output growth

expressed in percent per quarter, the change in the nominal interest rate, and the interest-
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rate-inflation differential, defined as

rt ≡ it − πt.

The following equations link the observables to variables included in the unobservable system

(9)-(10):

100 ×∆yt = 100 × ∆X + ŷt − ŷt−1 + xt

rt = r + ît − π̂t (11)

∆it = ∆Xm + ît − ît−1 + xm
t

where r ≡ Ert represents the unconditional mean of the interest-rate-inflation differential.

The variables ∆yt, rt, and ∆it are assumed to be observed with measurement error. Let ot

be the vector of variables observed in quarter t. Then

ot =




∆yt × 100

rt

∆it




+ µt (12)

where µt is a 3-by-1 vector of measurement errors distributed i.i.d. N(∅, R), and R is a

diagonal variance-covariance matrix.

The state-space representation of the system composed of equations (9), (10), (11), and

(12) can be written as follows:

ξt+1 = Fξt + Pεt+1

ot = A′ +H ′ξt + µt,
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where

ξt ≡




Ŷt

Ŷt−1

...

Ŷt−L+1

ut




,

The matrices F , P , A, and H are known functions of Bi, i = 1, . . . L, C , ρ, ψ, ∆X, ∆Xm,

and r. Specifically, let

B ≡ [B1 · · ·BL],

and let Ij denote an identity matrix of order j, ∅j denote a square matrix of order j with all

entries equal to zero, and ∅i,j denote a matrix of order i by j with all entries equal to zero.

Also let L, S, and V denote, respectively, the number of lags, the number of shocks, and the

number of endogenous variables included in the empirical model. Then, for L ≥ 2 we have

F =




B Cρ
[
IV (L−1) ∅V (L−1),V

]
∅V (L−1),S

∅S,V L ρ



, P =




Cψ

∅V (L−1),S

ψ




;

A′ =




100 × ∆X

r

∆Xm



, and H ′ =

[
Mξ ∅V,V (L−2) Mu

]
,

where, in the specification considered in the body of the paper (S = 4, V = 3, and a

particular ordering of the endogenous and exogenous variables in the vectors Ŷt and ut), the
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matrices Mξ and Mu take the form

Mξ =




1 0 0 −1 0 0

0 −1 1 0 0 0

0 0 1 0 0 −1




and Mu =




0 0 1 0

0 0 0 0

1 0 0 0



.

The case L = 1 is a special case of L = 2 in which B2 = ∅V .
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B Detailed Exposition of the Optimizing Model

B.1 Households

The economy is populated by households with preferences defined over streams of consump-

tion and labor effort and exhibiting external habit formation. The household’s lifetime utility

function is

E0

∞∑

t=0

βteξt





[
(Ct − δC̃t−1)(1 − eθtht)

χ
]1−σ

− 1

1 − σ




, (5)

where Ct denotes consumption, C̃t denotes the cross sectional average of consumption, ht

denotes hours worked, ξt is a preference shock, θt is a labor-supply shock, and β, δ ∈ (0, 1)

and σ, χ > 0 are parameters.

Households are subject to the budget constraint

PtCt +
Bt+1

1 + It
+ Tt = Bt +Wtht + Φt, (6)

where Pt denotes the nominal price of consumption, Bt+1 denotes a nominal bond purchased

in t and paying the nominal interest rate It in t+1, Tt denotes nominal lump-sum taxes, Wt

denotes the nominal wage rate, and Φt denotes nominal profits received from firms.

The consumption good Ct is assumed to be a composite of a continuum of varieties Cit

indexed by i ∈ [0, 1] with aggregation technology

Ct =

[∫ 1

0

C
1−1/η
it di

] 1

1−1/η

, (13)

where the parameter η > 0 denotes the elasticity of substitution across varieties.

Households choose processes {Ct, ht, Bt+1}∞t=0 to maximize the utility function (5) subject

to the budget constraint (6) and to some borrowing limit that prevents them from engaging

in Ponzi schemes. Letting βtΛt/Pt denote the Lagrange multiplier associated with the budget
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constraint, the first-order conditions of the household’s optimization problem are

eξt(Ct − δC̃t−1)
−σ(1 − eθtht)

χ(1−σ) = Λt

χeθt(Ct − δC̃t−1)

1 − eθtht
=
Wt

Pt

and

Λt = β(1 + It)Et

[
Λt+1

1 + Πt+1

]
,

where Πt ≡ Pt/Pt−1 − 1 denotes the consumer-price inflation rate.

Given Ct, the household chooses the consumption of varieties Cit to minimize total expen-

diture,
∫ 1

0
PitCitdi, subject to the aggregation technology (13), where Pit denotes the nominal

price of variety i. This problem delivers the following demand for individual varieties:

Cit = Ct

(
Pit

Pt

)−η

, (14)

where the price level Pt is given by

Pt ≡

[∫ 1

0

P 1−η
it di

] 1

1−η

, (15)

and represents the minimum cost of one unit of the composite consumption good.

B.2 Firms

The firm producing variety i operates in a monopolistically competitive market and faces

quadratic price adjustment costs à la Rotemberg (1982). The production technology uses

labor and is buffeted by stationary and nonstationary productivity shocks. Specifically,

output of variety i is given by

Yit = eztXth
α
it, (7)
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where Yit denotes output of variety i in period t, hit denotes labor input used in the pro-

duction of variety i, and zt and Xt are stationary and nonstationary productivity shocks,

respectively. The growth rate of the nonstationary productivity shock, gt ≡ ln(Xt/Xt−1), is

assumed to be a stationary random variable. The expected present discounted value of real

profits of the firm producing variety i expressed in units of consumption is given by

E0

∞∑

t=0

qt

[
Pit

Pt

Cit −
Wt

Pt

hit −
φ

2
Xt

(
Pit/Pit−1

1 + Π̃t

− 1

)2
]
, (8)

where 1+ Π̃t = (1+ Π̃t−1)
γm(1+ Πt)

1−γm denotes the average level of inflation around which

price-adjustment costs are defined, and Πt ≡ Pt/Pt−1 − 1 denotes the inflation rate. The

parameter φ > 0 governs the degree of price stickiness, and the parameter γm ∈ [0, 1] the

backward-looking component of the inflation measure at which price adjustment costs are

centered. Both parameters are estimated. Allowing for a backward-looking component in

firms’ price-setting behavior is in order in the present context because, as pointed out by

Gaŕın, Lester, and Sims (2018), the larger is this component, the less likely it will be that

stationary but persistent movements in the inflation target are implemented with rising

interest rates and inflation in the short run. The variable qt ≡ βt Λt

Λ0
, denotes a pricing kernel

reflecting the assumption that profits belong to households. The price adjustment cost in the

profit equation (8) is scaled by the output trend Xt to keep nominal rigidity from vanishing

along the balanced growth path.

The problem of the firm producing variety i is to choose processes {Pit, Cit, Yit, hit}∞t=0 to

maximize (8) subject to the demand equation (14), the production technology (7), and the
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requirement that demand be satisfied at the price set by the firm,5

Yit ≥ Cit (16)

Letting qtPit/(Ptµt) be the Lagrange multiplier associated with the demand constraint (16),

the first-order conditions associated with the firm’s profit maximization problem are

µt =
Pit

Wt/(αeztXth
α−1
it )

ηCit

(
η − 1

η
−

1

µt

)
= −φXt

Pt/Pit−1

1 + Π̃t

(
Pit/Pit−1

1 + Π̃t

− 1

)
+φEt

qt+1

qt
Xt+1

Pit+1Pt/P
2
it

1 + Π̃t+1

(
Pit+1/Pit

1 + Π̃t+1

− 1

)

The first optimality condition says that the multiplier µt represents the markup of prices

over marginal cost. The second optimality condition says that, all other things equal, if the

price markup is above its normal level, µt > η/(η− 1), the firm will increase prices at a rate

below normal, Pit/Pit−1 < 1 + Π̃t.

B.3 Monetary and Fiscal Policy

The monetary authority follows a Taylor-type interest-rate feedback rule with smoothing, as

follows

1 + It

Γt
=

[
A

(
1 + Πt

Γt

)απ
(
Yt

Xt

)αy
]1−γI

(
1 + It−1

Γt−1

)γI

ezm
t , (17)

where Yt denotes aggregate output, zm
t denotes a stationary interest-rate shock, Γt is the

inflation-target, and A, απ, αy and γI ∈ [0, 1) are parameters. The inflation target is

assumed to have a permanent component denoted Xm
t and a transitory component denoted

5Strictly speaking, the right-hand side of this constraint must include the demand for goods of variety i

by all firms for the purpose of generating the units of composite goods devoted to cover the price adjustment

costs, which is given by φ
2
Xt

(
Pit

Pt

)−η ∫ 1

0

(
Pjt/Pjt−1

1+eΠt

− 1
)2

dj. However, because price adjustment costs are

quadratic in
Pjt/Pjt−1

1+eΠt

−1, which is zero along the deterministic balanced growth path, this source of demand

for good i and all of its derivatives with respect to Pit are zero in equilibrium up to first order.
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zm2
t . Formally,

Γt = Xm
t e

zm2
t .

The growth rate of the permanent component of the inflation target, gm
t ≡ ln

(
Xm

t

Xm
t−1

)
, is

assumed to be stationary.

Government consumption is assumed to be nil at all times, and fiscal policy is assumed

to be Ricardian.

The seven structural shocks driving the economy, ξt, θt, zt, gt, z
m
t , zm2

t , and gm
t are

assumed to follow AR(1) processes of the form

xt = ρxxt−1 + εxt ,

for x = ξ, θ, z, g, zm, z2m, gm.

B.4 Market Clearing and Equilibrium

Clearing of the labor market requires that the demand for labor by firms equal the household’s

supply of labor, that is, ∫ 1

0

hitdi = ht. (18)

Because all households are identical, so are individual and aggregate consumption per

capita,

Ct = C̃t.

I focus attention on a symmetric equilibrium in which all firms charge the same nominal

price and employ the same amount of labor, that is, an equilibrium in which hit and Pit

are the same for all i ∈ [0, 1]. We then have from equations (14), (15), (7), and (18) that

Pit = Pt, Cit = Ct, hit = ht, and Yit = eztXth
α
t , for all i. Output, measured in units of the

final good is then given by Yt ≡
(∫ 1

0
PitYitdi

)
/Pt = eztXth

α
t . As long as the nominal wage is

positive, the firm will choose to satisfy the demand constraint (16) with equality. By virtue
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of this condition, we have that in equilibrium

Yt = Ct.

Finally, I express the model in terms of stationary variables by dividing all variables with

stochastic trends by their respective permanent components. Thus, I create the variables

ct ≡ Ct/Xt, yt ≡ Yt/Xt, wt ≡ Wt/(PtXt), λt ≡ Λt/X
n−σ
t , 1 + πt ≡ (1 + Πt)/X

m
t , 1 + it ≡

(1 + It)/X
m
t , and 1 + π̃t ≡ (1 + Π̃t)/X

m
t .

A competitive equilibrium is then a set of process {yt, ht, λt, πt, it, wt,mct, π̃t} satisfying

eξt

(
yt − δ

yt−1

egt

)−σ (
1 − eθtht

)χ(1−σ)
= λt

χeθt
(
yt − δ yt−1

egt

)

1 − eθtht

= wt

λt = β(1 + it)Et

[
λt+1

1 + πt+1
e−gm

t+1−σgt+1

]
,

yt = ezthα
t

mct =
wt

αezthα−1
t

1 + πt

1 + π̃t

(
1 + πt

1 + π̃t
− 1

)
= βEte

(1−σ)gt+1
λt+1

λt

1 + πt+1

1 + π̃t+1

(
1 + πt+1

1 + π̃t+1
− 1

)
+

1

φ(µ− 1)
(µmct − 1) yt

(19)

1 + it =
[
A (1 + πt)

απ y
αy

t

]1−γI (1 + it−1)
γI ezm

t +(1−απ)zm2
t −γIzm2

t−1 ,

1 + π̃t = e−γmgm
t (1 + π̃t−1)

γm(1 + πt)
1−γm

where mct ≡ 1/µt and µ ≡ η/(η− 1) denote, respectively, the equilibrium real marginal cost

and the steady-state product markup. Equation (19) is a Phillips curve and says that all

other things equal, current inflation is increasing in the marginal cost.
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A first-order approximation of the Phillips curve around πt = π = 0 yields

π̂t − ̂̃πt = β̃Et(π̂t+1 − ̂̃πt+1) + κm̂ct, (20)

where β̃ ≡ βe(1−σ)g, κ ≡ (η−1)y
φ

, π̂t ≈ πt − π, ̂̃πt ≈ π̃t − π, m̂ct ≈ ln(mct/mc), and mc = 1/µ.

This is a familiar expression of a linear Phillips curve, except that it is cast in terms of

deviations of the cyclical component of inflation, π̂t from the cyclical component of a weighted

average of past inflations, ̂̃πt.
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C Prior Predictions
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Figure 13: Prior and Posterior Impulse Responses: Empirical Model
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Notes. Impulse responses are computed using the posterior mean (solid lines) and prior mean of
the vector of estimated parameters. Replication code: plot_prior_predictions.m in replication

folder empirical_model. 14



Figure 14: Prior and Posterior Responses of the Real Rate: Empirical Model

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
e

a
r

Permanent Interest−Rate Shock
Baseline Identification Scheme

 

 

posterior

prior

0 5 10 15 20
−1

0

1

2

3

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
e

a
r

Transitory Interest−Rate Shock
Baseline Identification Scheme

 

 

posterior

prior

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
e

a
r

Permanent Interest−Rate Shock
CEE Identification Scheme

 

 

posterior

prior

0 5 10 15 20
−1

0

1

2

3

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
e

a
r

Transitory Interest−Rate Shock
CEE  Identification Scheme

 

 

posterior

prior

Notes. Impulse responses are computed using the posterior mean (solid lines) and prior mean of
the vector of estimated parameters.
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Figure 15: Prior and Posterior Impulse Responses Under CEE Identification Restrictions:
Empirical Model

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
e

a
r

Permanent Interest−Rate Shock
Response of Inflation

 

 

posterior

prior

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

quarters after the shock
d

e
v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
e

a
r

Transitory Interest−Rate Shock
Response of  Inflation

 

 

posterior

prior

0 5 10 15 20
−0.5

0

0.5

1

1.5

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
r

Permanent Interest−Rate Shock
Response of the Interest Rate

 

 

posterior

prior

0 5 10 15 20
−0.5

0

0.5

1

1.5

quarters after the shock

d
e

v
. 

fr
o

m
 p

re
−

s
h

o
c
k
 l
e

v
e

l
%

 p
o

in
ts

  
p

e
r 

y
r

Transitory Interest−Rate Shock
Response of  the Interest Rate

 

 

posterior

prior

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

quarters after the shock

%
 d

e
v
 f

ro
m

 p
re

−
s
h

o
c
k
 l
e

v
e

l

Permanent Interest−Rate Shock
Response of Output

 

 

posterior

prior

0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

quarters after the shock

%
 d

e
v
 f

ro
m

 p
re

−
s
h

o
c
k
 l
e

v
e

l

Transitory Interest−Rate Shock
Response of  Output

 

 

posterior

prior

Notes. Impulse responses are computed using the posterior mean (solid lines) and prior mean of
the vector of estimated parameters. The CEE identification restrictions are C12 = C22 = 0.
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