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We derive a method for constructing the likelihood function of a
general class of linearized dynamic general equilibrium models that
does not require the application of the Kalman filter. The standard
approach is basedon aprediction-error decomposition,whichexpresses
the likelihood as a function of unobservable states. By contrast, we view
the observed sample as a single draw from a multivariate density,
which allows for a representation of the likelihood in terms of observ-
ables alone.

Our proposed approach for evaluating the likelihood function of
DSGE models is of use in instances in which the data is filtered using a
two-sided filter (such as the HP filter or a BP filter) before estimation.
In this case, consistency between data and model predictions requires
applying the same filter to the model predictions, which makes it
impossible to apply a recursive approach (such as the Kalman filter) to
evaluate the likelihood function.

Following Schmitt-Grohé and Uribe (2004), we consider a general
class of linearized DSGE models where an nx×1 state vector xt and an
ny×1 control vector yt evolve according to the law of motion

xt + 1 = h θð Þxt + η θð Þ�t + 1 ð1Þ
yt = g θð Þxt ; ð2Þ

where θ is an nθ×1 vector of deep structural parameters, which the
econometrician wishes to estimate, h(θ) is an nx×nx transition matrix
with roots inside the unit circle, η(θ) is an nx×n� matrix, and �t is an
n�×1 Gaussian vector with mean zero and variance–covariance
matrix equal to an identity matrix of size n�×n�. Assume that ny≤n�.
The vector xt may contain observable and unobservable endogenous
and exogenous state variables. The vector yt is assumed to be
observable.

Suppose that the sample consists of T observations of the vector yt.
Let Y denote the nyT×1 vector

Y =

y1
y2
⋮
yT

2
664

3
775:

We can interpret Y as a single draw from a N(μ,Ω) distribution,
where μ is a vector of order nyT×1 andΩ is a matrix of order nyT×nyT.
Clearly,

μ = t:
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In turn,

Ω = E YY ′
� �

= E

y1y′1 y1y′2 ddd y1y′T
y2y′1 y2y′2 ddd y2y′T
⋮ ⋮ ⋮ ⋮

yTy′1 yTy′2 ddd yTy′T

2
664

3
775:

We next show how to compute Ω for a given value of θ. Start with

Ey1y′1 = Eg θð Þx1x′1g θð Þ′

= g θð ÞEx1x′1g θð Þ′

= g θð ÞΣxg θð Þ′;

where Σx is the covariance matrix of xt, which, from the law of motion
of xt, must satisfy

Σx = h θð ÞΣxh θð Þ′ + η θð Þη θð Þ′:

Given θ, Σx can be readily computed.1 In general,

Eyiy
′
j =

g θð ÞΣx h θð Þ′½ �j−ig θð Þ′ if i≤j
g θð Þ h θð Þ½ �i−jΣxg θð Þ′ if i N j

;

(

for i, j=1,…,T. It follows that, given θ, the covariance matrix Ω can be
readily computed. The sample log-likelihood can then be written
immediately as

L θ jYð Þ = ð−Tny = 2Þln 2πð Þ + 1
2
ln jΩ−1 j−1

2
Y−μð Þ′Ω−1 Y−μð Þ:

This completes a procedure for evaluating the sample log-
likelihood for a linearized DSGE model with unobservable states
without use of the Kalman filter.
1 For example, by vec(Σx)=(I−h(θ)⊗h(θ))−1 vec(η(θ)η(θ)′). For more efficient
algorithms for computing Σx, see the program mom.m on our web sites.
1. Handling measurement error

Suppose yt is observed with measurement error. Specifically,
suppose that the econometrician observes a vector yto given by

yot = yt + mwt ;

where the measurement error vector wt is an autoregressive process
of the form

wt = nwt−1 + νμ t ;

where μt is a Gaussian random vector with mean zero and identity
variance–covariance matrix. Note that variables in yt that are
observed without error give rise to rows of m made up of zeros. Let
θ̃ be a new vector of parameters to be estimated which includes all of
the elements of θ plus some elements of m, n, and ν that the
econometrician wishes to estimate. Define

x̃t =
xt
wt ;

� �
; h̃ θ̃

� �
= h θð Þ t

t m

� �
; η̃ θ̃

� �
= η t

t ν

� �
;

�̃t =
�t
μ t

� �
; g̃ θ̃

� �
= g θð Þ m½ �:

Then one can write

x̃t + 1 = h̃ θ̃
� �

x̃t + η̃ θ̃
� �

�̃t + 1

yot = g̃ θ̃
� �

x̃t :

This system has the same structure as Eqs. (1) and (2), so its
associated sample likelihood can be constructed applying the
procedure described in the previous section.

Reference

Schmitt-Grohé, Stephanie, Uribe, Martín, 2004. Solving dynamic general equilibrium
models using a second-order approximation to the policy function. Journal of
Economic Dynamics and Control 28, 755–775 January.


	Evaluating the sample likelihood of linearized DSGE models without the use of the Kalman filter
	Handling measurement error
	Reference


