
Journal of Economic Theory 96, 40�69 (2001)

The Perils of Taylor Rules1

Jess Benhabib2

Department of Economics, New York University, New York, New York 10003

benhabib�fasecon.econ.nyu.edu

Stephanie Schmitt-Grohe�

Rutgers University and CEPR

and

Mart@� n Uribe

University of Pennsylvania

Received November 5, 1998; revised June 24, 1999;
published online December 7, 2000

Since John Taylor's (1993, Carnegie�Rochester Conf. Ser. Publ Policy 39, 195�214),
seminal paper, a large literature has argued that active interest rate feedback rules,
that is, rules that respond to increases in inflation with a more than one-for-one
increase in the nominal interest rate, are stabilizing. In this paper, we argue that
once the zero bound on nominal interest rates is taken into account, active interest
rate feedback rules can easily lead to unexpected consequences. Specifically, we
show that even if the steady state at which monetary policy is active is locally the
unique equilibrium, typically there exist an infinite number of equilibrium trajec-
tories originating arbitrarily close to that steady state that converge to a liquidity
trap, that is, a steady state in which the nominal interest rate is near zero and infla-
tion is possibly negative. Journal of Economic Literature Classification Numbers:
E52, E31, E63. � 2001 Academic Press

1. INTRODUCTION

Since John Taylor's [21] seminal paper describing Federal Reserve
policy, there has been a resurgence of interest in monetary policy rules that
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target the nominal rate. Much of the literature has explored the efficiency
and dynamic effects of such policies, with particular attention to their
stabilization properties. A central policy recommendation that has emerged
from this body of research is that ``active monetary policy,'' that is, a policy
that strongly responds to the rate of inflation in setting the nominal interest
rate, is stabilizing.3 In an earlier paper (Benhabib et al. [2]), we argued
that this result depends very much on the specification of the model, and
that indeed often active monetary feedback policies lead to multiple
equilibria under standard specifications, assumptions, and calibrations,
including models with sticky prices, Taylor rules that allow for leads or
lags, and Ricardian and non-Ricardian monetary�fiscal regimes. In this
paper, we take an even stronger position and argue that active monetary
policy generally leads to indeterminacy and multiple equilibria and that
pursuing such a policy can easily lead to unexpected consequences even in
the simplest and most innocuous monetary models, using the simplest and
most standard assumptions.

Our method of analysis departs from the conventional local approach to
study multiple equilibria that proceeds by linearizing around a steady state.
The reason for this departure stems from the observation that the nominal
rate must be constrained to be non-negative, since negative nominal rates
are impossible. It immediately follows from this observation, as we
illustrate below, that if there is a steady state with an active monetary
policy, there must necessarily exist another steady state with a passive
policy. As a result, local analysis is inadequate because paths of the
economy diverging from one steady state can converge to the other steady
state or to another attracting set, thus qualifying as equilibrium trajec-
tories. We show these results in the context of flexible and sticky-price
models both theoretically and through simulations of calibrated economies.

To intuitively illustrate the source of multiplicity, consider a simplified
Taylor rule whereby the monetary authority sets the nominal rate as a
non-decreasing function of inflation; R=R(?), where R denotes the
nominal interest rate and ? denotes the rate of inflation. Combining this
rule with the Fisher equation, R=r+?, where r is the real interest rate,
yields

R(?)=r+?.

This steady-state relation is common to a wide range of monetary models
with representative agents and with an infinite horizon, and it holds
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3 For papers arriving at this conclusion in the context of non-optimizing models, see Levin
et al. [12] and Taylor [22, 23]; for optimizing models with flexible prices, see Leeper [11];
and for optimizing models with nominal frictions see Rotemberg and Woodford [16, 17],
Christiano and Gust [7], and Clarida et al. [5].



irrespective of whether prices are flexible or sticky or of whether money
enters the model through the utility function, the production function, or
a cash-in-advance constraint. Suppose that there exists a steady state with
active monetary policy, that is, a value of ? that solves the above equation
and satisfies R$(?)>1. Suppose in addition that the feedback rule is con-
tinuous and respects the zero lower bound on nominal rates (R(?)�0).
Then there must exist another steady state in which monetary policy is
passive, that is, a steady state in which R$(?)<1 (Fig. 1). Note that for the
existence of two solutions to the steady-state Fisher equation it is not cru-
cial that the Taylor rule be continuous. It is sufficient that the Taylor rule
is non-negative and non-decreasing and that one solution occurs at a value
of ? for which monetary policy is active. The bottom right panel of Fig. 1
displays a case in which there is a unique solution to the Fisher equation
even though at that solution the feedback rule is active. The absence of a
second solution results not because the Taylor rule is discontinuous but
because it is non-monotonic. We will not explore the macroeconomic con-
sequences of Taylor rules of this type because we believe that they are
irrelevant, for it is implausible that the central bank will implement a
discrete increase in the nominal interest rate in the context of declining
inflation.

FIG. 1. Taylor Rules, zero bound on nomial rates, and multiple steady states.
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The existence of multiple solutions to the steady-state Fisher equation
immediately establishes the possibility of the existence of at least two
steady-state equilibria. However, this need not be the case, for in general
the equilibrium conditions will involve additional equations. In this paper,
we show that the presence of a steady-state equilibrium at which monetary
policy is active typically gives rise to at least one other steady-state
equilibrium at which monetary policy is passive. But it would be naive to
conclude that active interest rate rules are destabilizing solely because they
give rise to multiple steady-state equilibria. First, although empirical
studies show that in the past decades monetary policy in major indu-
strialized countries can be described quite accurately by active interest rate
feedback rules (e.g., Clarida et al. [6]), observed inflation dynamics are in
general quite smooth, giving little credence to a model in which movements
in inflation at business-cycle frequency are due to jumps from one steady
state to another. Second, it is equally unconvincing that policy makers
change the stance of monetary policy from active to passive at high
frequencies.

The main result of this paper is that Taylor rules are destabilizing
because the multiplicity of steady-state equilibria that they induce opens
the door to a much larger class of equilibria. Specifically, we show that in
general there exist an infinite number of equilibrium trajectories originating
in the vicinity of the active steady state that converge either to the steady
state at which monetary policy is passive (a saddle connection) or to a
stable limit cycle around the active steady-state. Interestingly, along both
the saddle connection and the limit cycle, the inflation rate fluctuates for
long periods of time around the steady-state at which monetary policy is
active. Thus, an econometrician using data generated from a saddle con-
nection equilibrium to estimate the slope of the interest rate feedback rule
may very well conclude that the economy is displaying stationary fluctua-
tions around the active steady-state, even though the economy is in fact
spiraling down into a liquidity trap.

Simulations of calibrated versions of a sticky-price model indicate that
saddle connections from the active steady-state to the passive steady-state
exist for empirically plausible parameterizations and are indeed the most
typical pattern as they are robust to wide parameter perturbations. This
type of equilibrium is of particular interest because it sheds light on the
precise way in which economies may fall into liquidity traps. The results
suggest that central banks that maintain an active monetary policy stance
near a given inflation target are more likely to lead the economy into a
deflationary spiral��like the one currently observed in Japan and, as some
may argue, in the United States��than central banks that maintain
a globally passive monetary stance such as an interest- or exchange-rate
peg.
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2. TAYLOR RULES, THE ZERO BOUND ON NOMINAL RATES,
AND LIQUIDITY TRAPS: A SIMPLE EXAMPLE

In the introduction we point out that Taylor rules in combination with
the zero bound on nominal rates may give rise to the existence of two
steady states, in one of which the inflation rate and the nominal interest
rate are below their intended targets and monetary policy is passive. In this
section, we present a simple flexible-price model to show that these two
steady states are connected by an equilibrium trajectory. Specifically, we
demonstrate that the economy can slide from the intended steady state to
the unintended one. We interpret this result as meaning that in the
presence of a Taylor rule, a liquidity trap may emerge as an equilibrium
outcome.

Consider an endowment economy populated by a large number of iden-
tical infinitely lived households with preferences defined over consumption
and over real balances and described by the utility function

|
�

0
e&rtu(c, m) dt,

where c denotes consumption and m denotes real balances. The
household's instant budget constraint is given by

c+{+a* =(R&?) a&Rm+ y,

where { denotes lump-sum taxes; a denotes real financial wealth, consisting
of interest-bearing bonds and money balances; R is the nominal rate of
return on bonds, ? is the inflation rate; and y is a constant endowment.
The right-hand side of the budget constraint represents the sources of
income: real interest on the household's assets net of the opportunity cost
of holding money and the endowment. The left-hand side shows the uses
of income: consumption, tax payments, and increases in the stock of real
wealth. Households are also subject to a borrowing limit of the form
limt � � e&�t

0 [R(s)&?(s)] dsa(t)�0, which prevents them from engaging in
Ponzi games. The household chooses paths for consumption, real balances,
and wealth that satisfy the instant budget constraint, the no-Ponzi-game
borrowing limit with equality, and the optimality conditions

uc(c, m)=* (1)

um(c, m)=*R (2)

*4 =*[r+?&R(?)], (3)
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where * is a Lagrange multiplier associated with the instant budget
constraint. Equilibrium in the goods market requires that consumption be
equal to the endowment,

c= y. (4)

Assuming that consumption and real balances are Edgeworth complements
(ucm>0) and that the instant utility function is concave in real balances
(umm<0), Eqs. (1), (2), and (4) define a decreasing function linking *
and R:

*=L(R); L$<0. (5)

Suppose that the monetary authority follows an interest rate feedback
rule of the form

R=R(?),

where the function R( } ) is positive, increasing, strictly convex, and differen-
tiable. Suppose further that there exists an inflation rate ?* at which the
steady-state Fisher equation is satisfied and at which the feedback rule is
active; that is, R(?*)=r+?* and R$(?*)>1. Then, as the top left panel of
Fig. 1 illustrates, there exists an inflation rate ?L<?* such that the steady-
state Fisher equation is satisfied and the interest rate rule is passive; that
is, R(?L)=r+?L, R$(?L)<1. Combining this feedback rule with (3) and
(5), we obtain the following first-order differential equation describing the
equilibrium dynamics of inflation4

?* =
&L(R(?))

L$(R(?)) R$(?))
[R(?)&?&r]. (6)

Because &L�(L$R$) is always positive, the sign of ?* is the same as the sign
of R(?)&?&r. Figure 2 illustrates the inflation dynamics implied by
Eq. (6). The high-inflation, active steady state ?* is unstable, in the sense
that trajectories initiating near ?* diverge from ?*. Thus, if one limits the
analysis to equilibria in which ? remains forever in a small neighborhood
around ?*, then the only perfect-foresight equilibrium is the active steady
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4 In equilibrium the no-Ponzi-game condition must hold with equality. This will be the case
if the fiscal authority follows a ``Ricardian'' policy whereby the present discounted value of
future expected total government liabilities converges to zero regardless of the particular paths
taken by inflation and nominal interest rates. We present an example of such fiscal policy in
the next section.



FIG. 2. The liquidity trap in a flexible price model.

state itself. However, if one allows equilibria in which ? can take values in
a larger neighborhood around ?* that includes the passive steady state ?L,
then a large number of equilibrium trajectories become possible. In
particular, any inflation path starting between ?L and ?* and satisfying (6)
represents a perfect-foresight equilibrium. All such trajectories converge to
the low-inflation, low-interest rate, passive steady state ?L. Note that
equilibrium trajectories of this type can originate arbitrarily close to the
high-inflation, high-interest rate, active steady state ?*. In this environ-
ment, all that is needed for the economy to fall into the liquidity trap is
that people expect the economy to slide into a deflationary phase. Taylor
rules in combination with the zero bound on nominal rates also give rise
to a saddle connection in the context of discrete-time models. Schmitt-
Grohe� and Uribe [19] show this result in the context of a cash-in-advance,
flexible-price model.

The simple flexible-price economy analyzed thus far conveys the main
message of the paper in a direct and transparent way. However, most of the
literature devoted to evaluating the stabilizing properties of Taylor rules
includes as a central theoretical element the presence of nominal rigidities.
Consequently, in the remainder of the paper we consider a model with
price stickiness. In the model discussed in this section, the existence of equi-
libria originating close to the active steady state and converging to the
passive steady state depends on the assumption that consumption and real
balances are Edgeworth complements. However, as we will show below in
the presence of sluggish price adjustment, a saddle path connection
between the two steady states also emerges for preferences displaying
Edgeworth substitutability as well as additive separability in consumption
and real balances.
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3. A STICKY-PRICE MODEL

The economy is assumed to be populated by a continuum of household�
firm units indexed by j each of which produces a differentiated good Y j.
Firms have market power and set prices to maximize profits. The demand
faced by firm j is given by Ydd(P j�P), where Yd denotes the level of
aggregate demand, P j the price firm j charges for the good it produces, and
P the aggregate price level. Such a demand function can be derived by
assuming that households have preferences over a composite good that is
produced from differentiated intermediate goods via a Dixit�Stiglitz
production function. The function d( } ) is assumed to be twice continuously
differentiable, to be decreasing, and to satisfy d(1)=1 and d $(1)<&1. The
restriction imposed on d $(1) is necessary for the firm's problem to be well
defined in a symmetric equilibrium. The production of good j uses labor,
h j, supplied by household j, as the only input:

Y j= y(h j),

where y( } ) is twice continuously differentiable, positive, strictly increasing,
and strictly concave and satisfies the Inada conditions.

We introduce nominal price rigidity, following Rotemberg [15], by
assuming that households face convex costs of adjusting prices. Specifically,
the household's lifetime utility function is assumed to be of the form

U j=|
�

0
e&rt _u(c j, m j)&z(h j)&

#
2 \

P4 j

P j&?*+
2

& dt, (7)

where c j denotes consumption of the composite good by household j, m j#
M j�P denotes real money balances held by household j, and M j denotes
nominal money balances. The utility function u( } , } ) is assumed to be twice
continuously differentiable and to satisfy uc , um>0, ucc , umm<0, uccumm&
u2

cm>0, and limc � 0 uc(c, m)=limm � 0 um(c, m)=�. To ensure normality
of consumption and of real balances, we further assume that ucc&ucmuc �um

<0 and umm&ucmum �uc<0. The function z( } ) measures the disutility of
labor and is assumed to be twice continuously differentiable, increasing,
and convex. The parameter # measures the degree to which household�firm
units dislike to deviate in their price-setting behavior from the constant rate
of inflation ?*>&r.

Let a j denote the real value of household j 's financial wealth, which con-
sists of the sum of real money holdings and government bonds. Then a j

evolves according to the law of motion

a* j=(R&?) a j&Rm j+
P j

P
y(h j)&{&c j, (8)
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where R denotes the nominal interest rate on government bonds, ? denotes
the rate of change in the aggregate price level, and { denotes real lump-sum
taxes. The instant budget constraint (8) says that the change in household
j 's real wealth, a* j, is equal to real interest earnings on wealth, (R&?) a j,
net of the opportunity cost of holding money, Rm j, plus disposable income,
(P j�P) y(h j)&{, minus consumption expenditure, c j. Households are also
subject to the following borrowing constraint that prevents them from
engaging in Ponzi-type schemes:

lim
t � �

e&�t
0 [R(s)&?(s)] dsa j (t)�0. (9)

Given the price firm j charges for the good it produces, its sales are
demand determined and equal to

y(h j)=Y dd \P j

P + . (10)

Household j chooses nonnegative measurable functions of time for the con-
trol variables c j, m j, and h j and absolutely continuous functions of time for
the state variables P j and a j to maximize (7) subject to (8)�(10) taking as
given a j (0), P j (0), and the time paths of {, R, Yd, and P. If the household's
problem has an interior solution, then there exist an absolutely continuous
function of time * j and a measurable function of time + j such that the
following conditions are satisfied,5

uc(c j, m j)=* j (11)

um(c j, m j)=* jR (12)

z$(h j)=* j P j

P
y$(h j)&+ jy$(h j) (13)

*4 j=* j (r+?&R) (14)
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5 Note that one can express the household's problem in the standard form of an infinite
horizon optimal control problem. Use Eq. (10) to eliminate h j from (7) and (8) and introduce
the variable q j#P4 j to eliminate P4 j from (7). The state vector function of the resulting
problem is (a j, P j), and the control vector function is (c j, m j, q j), with the additional evolu-
tion equation P4 j=q j. One can then apply a standard version of Pontryagin's Maximum Prin-
ciple for infinite horizon optimal control problems to show that if the household's problem
has a solution, then there exists an absolutely continuous function of time * j satisfying (11),
(12), (14), and (15), with h j and + j eliminated using (10) and (13). (See, for instance,
Seierstad and Syds$ter [20, Chapt. 3, Theorem 12].) It is clear from (13) that + j must be
measurable. We confirmed numerically that the Hamiltonian satisfies the conditions of the
Arrow sufficiency theorem for infinite horizons (Seierstad and Syds$ter [20, Chapt. 3,
Theorem 14]) for a j, P j in a neighborhood of the equilibrium functions a, P.



* j P j

P
y(h j)++ j P j

P
Ydd $ \P j

P +=#r(? j&?*)&#?* j (15)

lim
t � �

e&�t
0 [R(s)&?(s)] dsa j (t)=0 (16)

where ? j#P4 j�P j.

3.1. Monetary and Fiscal Policy.

The monetary authority is assumed to set the nominal interest rate as an
increasing function of the inflation rate. Specifically, it conducts open
market operations to ensure that

R=R(?)#R*e(A�R*)(?&?*) (17)

where R*, A, and ?* are positive constants.6 This specification of the feed-
back rule implies that the nominal interest rate is strictly positive and
strictly increasing in the inflation rate. We will refer to monetary policy as
active (passive) if the monetary authority raises the nominal interest rate
by more (less) than one-for-one in response to an increase in the inflation
rate, that is, if R$(?)>(<)1.

The instant budget constraint of the government is given by

a* =(R&?) a&Rm&{, (18)

where a denotes the real value of aggregate per capita government
liabilities, which consist of real balances and bonds. This budget constraint
says that the change in total government liabilities, a* , is equal to interest
paid on outstanding real liabilities, (R&?) a, minus interest savings from
the issuance of money, Rm, minus tax revenues, {. The monetary�fiscal
regime is assumed to be Ricardian in the sense of Benhabib et al. [2]. That
is, the monetary�fiscal regime ensures that total government liabilities
converge to zero in present discounted value for all (equilibrium or
off-equilibrium) paths of the price level or other endogenous variables7:

lim
t � �

e&�t
0 [R(s)&?(s)] dsa(t)=0. (19)
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6 Note that we assume that the constant ?* appearing in the interest rate feedback rule is
the same constant that plays a role in the household's cost of adjusting prices. We make this
assumption for analytical convenience.

7 As discussed in Benhabib et al. [2], an example of a Ricardian monetary�fiscal regime is
an interest rate feedback rule like (17) in combination with the fiscal rule {+Rm=:a; :>0.
In the case in which :=R, this fiscal rule corresponds to a balanced-budget requirement.



3.2. Equilibrium

In a symmetric equilibrium all household�firm units choose identical
functions for consumption, asset holdings, and prices. Thus, we can drop
the superscript j. In addition, the goods market must clear; that is,

c= y(h). (20)

Combining Eqs. (11) and (12) yields a liquidity preference function of the
form

m=m(c, R). (21)

Given our maintained assumption about the normality of consumption and
real balances, the demand for money is increasing in consumption and
decreasing in the nominal interest rate. Using (17), (20), and (21) to
eliminate R, c, and m from (11) yields the expression

h=h(*, ?), (22)

where h*<0, h?ucm<0 if ucm {0, and h?=0 if ucm=0.8

Let '#d $(1)<&1 denote the equilibrium price elasticity of the demand
function faced by the individual firm. Using (13), (17), and (22) to
eliminate +, R, and h from Eqs. (14) and (15) yields

*4 =* [r+?&R(?)] (23)

?* =r(?&?*)&
y(h(*, ?)) *

# _1+'&
'z$(h(*, ?))
* y$(h(*, ?))& . (24)

A perfect-foresight equilibrium is a pair of functions [*, ?] satisfying
(23) and (24). Given the equilibrium functions [*, ?], the corresponding
equilibrium functions [h, c, R, m] are uniquely determined by (22), (20),
(17), and (21), respectively. The assumed Ricardian nature of the
monetary�fiscal regime requires that the fiscal authority sets taxes in such
a way that, given paths for R, ?, and m and an initial condition a(0), the
path for a implied by Eq. (18) satisfies the transversality condition (19).
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8 To see this, note that h*=[umm&(um�uc) ucm]�[ y$(uccumm&u2
cm)]. The assumed con-

cavity of the instant utility function and normality of consumption imply, respectively, that
the denominator of this expression is positive and that the numerator is negative. Also, h?=
&h* ucmmR R$(?), which is of the opposite sign of ucm .



4. STEADY-STATE EQUILIBRIA

A steady-state equilibrium is defined as a pair of constant functions
[*, ?] satisfying Eqs. (23) and (24); that is,

0=r+?&R*e(A�R*)(?&?*) (25)

0=r(?&?*)&
*y(h(*, ?))

# \1+'&'
z$(h(*, ?))

*y$(h(*, ?))+ . (26)

Recalling that R*=r+?*, it is clear from (25) that in general there exist
two steady-state levels of inflation, ?* and ?� , with ?� <(>) ?* if A>(<)1.
If A=1, then ?* is the unique steady-state level of inflation. Note that if
A>1, then monetary policy is active at ?* and passive at ?� . Conversely,
if A<1, monetary policy is passive at ?* and active at ?� .

The steady-state level of * associated with ?*, **, is given by the solution to

1+'
'

*=
z$(h(*, ?*))
y$(h(*, ?*))

.

Because the right-hand side of this expression is positive and decreasing in
*, ** exists and is unique. The steady-state value of * associated with ?� is
the solution to

1+'
'

*=
z$(h(*, ?� ))
y$(h(*, ?� ))

&
r#
'

(?*&?� )
y(h(*, ?� ))

.

If A<1, then ?*&?� <0 and hence the right-hand side of this expression
is decreasing in *. Therefore, if a steady-state value of * exists, it is unique.
On the other hand, if A>1, then ?*&?� >0 and the right-hand side of the
above expression may not be monotone in *. Thus, multiple steady-state
values of * may exist.

5. LOCAL EQUILIBRIA

We now consider perfect-foresight equilibria in which * and ? remain
bounded in a small neighborhood around the steady state (**, ?*) and
converge asymptotically to it.

Linearizing Eqs. (23) and (24) around (**, ?*), we obtain the system

\*4
?* +=J \*&**

?&?*+ , (27)
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where

J=_ 0
J21

uc(1&A)
J22 &

J21=
y'
y$# _\z"&

z$y"
y$ + h*&

z$
*&>0

J22=r+
y'
y$# \z"&

z$y"
y$ + h? .

The sign of the coefficient J22 depends on the sign of h? , which in turn
depends on whether consumption and real balances are Edgeworth
substitutes or complements. Specifically, J22 is positive if ucm�0 and may
be negative if ucm<0.9

If monetary policy is active at ?* (A>1), then the determinant of J is
positive, so that the real part of the roots of J have the same sign. Since
both * and ? are jump variables, the equilibrium is locally determinate if
and only if the trace of J is positive. It follows that if ucm�0, the equi-
librium is locally determinate. If ucm<0, the equilibrium may be locally
determinate or indeterminate.10 If monetary policy is passive at ?*, (A<1),
then the determinant of J is negative, so the real parts of the roots of J are
of opposite sign. In this case, the equilibrium is locally indeterminate.

One may be tempted to conclude from the above analysis that if ucm�0,
there is no indeterminacy problem under active monetary policy in the
sense that there exists no equilibrium allocation other than the active
steady state, starting in a small neighborhood around that steady state,
with the property that * and ? remain forever bounded. Such a conclusion,
however, would be misplaced because globally the picture may be quite
different.

6. GLOBAL EQUILIBRIA

In order to characterize global equilibrium dynamics, in this section, we
assume particular functional forms for preferences and technology. We
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9 As shown in Benhabib et al. [2], an aggregate supply schedule like the one given by the
second row of (27) also arises in the context of a staggered price setting model with optimiz-
ing firms like Yun's [25] extension of Calvo [4]. In Calvo's original model, firms change
prices according to a rule of thumb that results in an aggregate supply function in which ?*
is a function only of aggregate demand (J22=0).

10 Benhabib et al. [2] show that the economy with ucm<0 is similar to one without money
in the utility function but money entering the production function.



assume that the instant utility function displays constant relative risk aver-
sion in a composite good, which in turn is produced with consumption
goods and real balances via a CES aggregator. Formally,

u(c, m)&z(h)=
[(xcq+(1&x) mq)1�q]w

w
&

h1+v

1+v
; q, w�1, v>0.

(28)

The restrictions imposed on q and w ensure that u( } , } ) is concave, c and
m are normal goods, and the interest elasticity of money demand is strictly
negative.11 The production function takes the form

y(h)=h:; 0<:<1.

In the recent related literature on determinacy of equilibrium under
alternative specifications of Taylor rules, it is typically assumed that
preferences are separable in consumption and real balances (e.g., Woodford
[24], Bernanke and Woodford [3], and Clarida et al. [5]). We therefore
characterize the equilibrium under this preference specification before
turning to the more general case.

6.1. Separable Preferences

The case of separable preferences arises when the intra- and intertem-
poral elasticities of substitution take the same value, that is, when q=w. In
this case the equilibrium conditions (23) and (24) become

*4 =*[r+?&R*e(A�R*)(?&?*)] (29)

?* =r(?&?*)&
1+'

#
*|x:%+

'
:#

*;x(1+v) %, (30)

where ;#(1+v)�(:(w&1))<0, |#w�(w&1), and %#1�(:(1&w)).
Throughout this section we assume that

R*=r+?*.
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This expression implies that ?* solves (29) when *4 =0. From evaluating
(30) at ?* =0 and ?=?*, it follows that ** must satisfy

1+'
#

**|x:%=
'
:#

**;x(1+v) %#M<0.

Evaluating (30) at ?=?� and setting ?* =0 yield the following expression
defining the steady-state value of *, *� , associated with ?� :

r(?� &?*)=M(*� |&*� ;).

Because ?� <?* for A>1 and |�0 for w�0, it follows from this expres-
sion that if A>1 and w�0, then *� exists and is unique.12 Thus, in this
section we assume that w�0; that is, the intertemporal elasticity of
substitution does not exceed unity.

The main result of this section is that in the economy described above
there exist an infinite number of equilibrium trajectories originating
arbitrarily close to the steady state at which monetary policy is active that
converge either to the steady state at which monetary policy is passive or
to a limit cycle. In Section 5, we showed that if one restricts the analysis to
equilibria in which ? and * remain forever bounded in an arbitrarily small
neighborhood of the active steady state, then the unique perfect-foresight
equilibrium is the steady state itself. Thus, the picture that arises from a
local analysis might wrongly lead one to conclude that active monetary
policy is stabilizing when in fact it is not. The following proposition
formalizes this result.

Proposition 1 (Global Indeterminacy under Active Monetary Policy
and Separable Preferences). Suppose preferences are separable in consump-
tion and real balances (q=w). Then, for r and A&1 positive and sufficiently
small, the equilibrium exhibits indeterminacy as follows: trajectories originat-
ing in the neighborhood of the steady state (*, ?)=(**, ?*), at which
monetary policy is active, converge either to the other steady state, (*� , ?� ), at
which monetary policy is passive or to a limit cycle around (**, ?*). In the
first case, there exists a saddle connection, and the dimension of indeter-
minacy is one, whereas in the latter case the dimension of indeterminacy is 2.

Proof. See the Appendix. K

This result is likely also to arise in models with alternative specifications
of the source of nominal rigidities. For example, in a model with staggered
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price setting like Yun's [25] extension of Calvo [4], the aggregate supply
schedule takes a form that is qualitatively similar to (30). Thus, we conjec-
ture that the Calvo�Yun model exhibits global indeterminacy of the kind
described in Proposition 1 as well.13

Figure 3 illustrates the existence of a saddle connection from the steady
state at which monetary policy is active to the steady state at which
monetary policy is passive. For the computation of the equilibrium
dynamics of ? and *, the assumed time unit is a quarter. The parameters
R*, ?*, and r were set at 0.06�4, 0.042�4, and 0.018�4, respectively. The
parameter A was set at 1.5, so that at the active steady state the Taylor rule
has the slope suggested by Taylor [21]. These parameter values imply that
at the active steady state the nominal interest rate is 60 per year, which
equals the average three-month Treasury Bill rate in the period
1960:1�1998:9, the inflation rate is 4.20 per year, which is consistent with
the average U.S. inflation rate over the period 1960:Q1�1998:Q3 as
measured by the GDP deflator, and the real discount rate is 1.80 per year.
In addition, we set w=q=&1 so that the instant utility function is
separable in consumption and real balances and the intertemporal elasticity
of substitution equals 1�2. The parameter x was set at a value consistent
with an annual consumption velocity of money of 3. The labor share, :,
was set at 0.7, and the labor supply elasticity at 1. The value of ' was
chosen so that the implied markup of prices over marginal cost at the
active steady states is 50, which is consistent with the evidence presented
by Basu and Fernald [1]. Finally, following Sbordone [18], we set #, the
parameter governing the disutility of deviating from the inflation target, at
&17.5(1+'). Table 1 summarizes the calibration. The inflation rate at the
passive steady state is 0.70 per year, and the sensitivity of the Taylor rule
with respect to inflation is 0.63. The active steady state is a source and the
passive steady state is a saddle. Thus, the active steady state is locally the
unique rational expectations equilibrium whereas around the passive
steady state the equilibrium is indeterminate. The solid line in Fig. 3 dis-
plays the saddle path converging to the passive steady state. The dashed
line corresponds to the unstable manifold diverging from the passive steady
state.

Three features of Fig. 3 are noteworthy. First, the indeterminacy result
established in Proposition 1 seems to hold not only for pairs (r, A) close to
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steady state. These cycles are enclosed by a homoclinic orbit formed by the connection of the
stable and unstable manifolds of the passive steady state. The period of the cycles approaches
infinity as the cycles get closer to the homoclinic orbit.



FIG. 3. Separable preferences: Saddle connection from the active to the passive steady
state.

(0, 1) but also for empirically relevant values. Second, the saddle connec-
tion is not inconsistent with the observation that the inflation rate
fluctuates for long periods of time in a region in which monetary policy is
active, as has been argued in the case of the U.S. economy since the
Volcker era (see Clarida et al. [5] and Rotemberg and Woodford [16]).
In our calibrated economy monetary policy is active for all inflation rates
exceeding 2.60 per year. Third, one argument for restricting attention to
local dynamics is that observed inflation fluctuations at business-cycle
frequencies are relatively small. The global dynamics illustrated in Fig. 3
suggest that the short-term fluctuations in the inflation rate along the saddle

TABLE 1

Calibration

R* ?* r A w q c�m : v '
1+' #

0.06�4 0.042�4 0.018�4 1.5 &1 &1 3�4 0.7 1 1.05 350

Note. The time unit is one quarter. x�(1&x)=(c�m)1&q�R*.
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connection are empirically plausible, with a maximum annual inflation rate
of 5.70 and a minimum of 0.70.

The dynamics are robust to wide variations in parameter values. Fig. 4
illustrates that the saddle path connecting the steady state at which
monetary policy is active with the steady state at which policy is passive
does not disappear if: (a) A, the slope of the Taylor rule at ?=?*, is
increased from the baseline value of 1.5 to a value of 2, which, as some
authors may argue, reflects more closely the stance of U.S. monetary policy
in the post-Volcker era (see, again, Clarida et al. [5] and Rotemberg and
Woodford [16]). (b) ?*, the inflation rate associated with the active steady
state, is set at 30 per year. This case illustrates that the global indeter-
minacy result does not hinge in any important way on the inflation rate
being high at the active steady state. (Note that the inflation rate at the
corresponding passive steady state is negative.) (c) #, the parameter govern-
ing the cost of deviating from the inflation target, is reduced from its
baseline value of 350 to 35. Although not noticeable in the figure, for such
a low value of #, the economy converges from the vicinity of the active
steady state to the passive steady state at a much higher speed than under
the baseline calibration. (d) The annual consumption velocity of money is

FIG. 4. Separable preferences: Sensitivity analysis.
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increased from 3 to 20. This result is of particular interest in light of the
view that as a result of financial innovation agents are increasingly able to
perform transactions without money. (e) The discount rate, r, takes a value
of 40 per year, a value commonly used in the real-business-cycle literature
(Prescott [14]). (f) A markup of prices over marginal cost of 200 is
assumed. This number reflects the upper range of available empirical
estimates (see Basu and Fernald [1]).

6.2. Non-separable Preferences

In this section, we consider preference specifications for which the intra-
and intertemporal elasticities of substitution are different (q{w). In this
case, the equilibrium conditions (23) and (24) can be written as

*4 =*[r+?&R*e(A�R*)(?&?*)] (31)

?* =r(?&?*)&
1+'

#
x:%*| _(R*)/ \1&x

x +
1&/

e(A�R*) /(?&?*)+1&
:!

+
'
:#

x(1+v) %*; _(R*)/ \1&x
x +

1&/

e(A�R*) /(?&?*)+1&
(1+v) !

, (32)

where ; and | are defined as in the previous section and /#q�(q&1),
!#(w&q)�[:q(1&w)]{0, and %#w�[:q(1&w)]. Let ** be the steady-
state value of * associated with ?=?*, A=1, r=rc, and R*=?*+rc (with
rc to be determined below). Then, by Eq. (32), ** is implicitly defined by

1+'
#

x:% (**)| \(R*)/ \1&x
x +

1&/

+1+
:!

=
'
:#

x(1+v) % (**); \(R*)/ \1&x
x +

1&/

+1+
!(1+v)

#M.

The parameter rc is defined as the value of r that makes the trace of the
Jacobian of the system (31)�(32) equal to zero for A=1. That is, rc is
implicitly given by

rc=&B! \ 1
rc+?*+ /M(1+v&:), (33)

where

B#(R*)/ \1&x
x +

1&/

<_1+(R*)/ \1&x
x +

1&/

& .
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Inspection of (33) reveals that the existence of a positive rc depends on
parameter values. For example, one can show that a positive rc always
exists if q # (0, 1) and q&w, ?*>0. Throughout this section, we assume
that R* is fixed and equal to rc+?*. When (r, A)=(rc, 1), the point
(*, ?)=(**, ?*) is the unique steady state of the system (31) and (32). At
that point, monetary policy is neither active nor passive (R$(?*)=1). For
parameter configurations in which (r, A){(rc, 1), the economy displays in
general either none or two steady-state values of ?. When two steady-state
values of ? exist, the larger of them corresponds to an active monetary
policy stance and the smaller one to a passive stance. In addition, each
steady-state value of ? is associated with one or two steady-state values of
*. The following lemma shows that under the assumption that the intertem-
poral elasticity of substitution is less than one (w<0), each steady-state
value of ? is associated with a unique steady-state value of *. For this
reason and because it is clearly the case of greatest empirical relevance, in
what follows we assume that w<0. The lemma also shows that the steady
state at which monetary policy is active is either a sink or a source, while
the steady state at which monetary policy is passive is always a saddle.

Lemma 1. Suppose w<0. Then, the steady states of the system (31) and
(32) satisfy: (i) for each steady-state value of ? there exists a unique
steady-state value of *; and (ii) the steady state at which monetary policy is
active is either a sink or a source and the steady state at which monetary
policy is passive is always a saddle.

Proof. See the Appendix. K

The next proposition contains the main result of this subsection.
Namely, if the steady state at which monetary policy is active is locally the
unique equilibrium (i.e., the steady state is a source), then the equilibrium
is globally indeterminate. Specifically, there exist equilibrium trajectories
originating arbitrarily close to the steady state at which monetary policy is
active that converge either to a limit cycle or to the other steady state, at
which monetary policy is passive.

Proposition 2 (Global Indeterminacy under Active Monetary Policy
and Non-separable Preferences). For parameter specifications (r, A)
sufficiently close to (rc, 1), the economy with non-separable preferences
exhibits indeterminacy as follows: There always exist an infinite number of
equilibrium trajectories originating arbitrarily close to the steady state at
which monetary policy is active that converges to: (i) that steady state, (ii)
a limit cycle, or (iii) the other steady state at which monetary policy is
passive. In cases (i) and (ii) the dimension of indeterminacy is 2, whereas in
case (iii) it is 1.
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Proof. See the Appendix. K

The following corollary establishes parameter restrictions under which
attracting limit cycles exist around the steady state at which monetary
policy is active.

Corollary 1 (Periodic Equilibria). If &(1&B)�(B(1+v+:))<!<0,
then there exists a region in the neighborhood of (r, A)=(rc, 1) for which the
active steady state is a source surrounded by a stable limit cycle. On the other
hand, if !>0 or !<&(1&B)�(B(1+v+:)), then stable limit cycles do not
exist.

Proof. See the Appendix. K

It is important to recall that the equilibrium remains globally indeter-
minate even if limit cycles do not exist. This is because in that case there
always exists an equilibrium trajectory connecting the active steady state
with the passive one. In fact, as shown in Figs. 5 and 6, a saddle connection
is the typical pattern that arises under plausible parameterizations of the
model with non-separable preferences. In both figures, the calibration is the
same as that used in the economy with separable preferences, summarized

FIG. 5. Non-separable preferences, w>q: Saddle connection from the active to the
passive steady state.
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FIG. 6. Non-separable preferences, w<q: Saddle connection from the active to the
passive steady state.

in Table 1, except, of course, that now the intratemporal elasticity of sub-
stitution between consumption and real balances, 1�(1&q), is assumed to
be different from the intertemporal elasticity of substitution, 1�(1&w). In
both figures, the intertemporal elasticity of substitution takes its baseline
value of 0.5. In Fig. 5, q is set at &9, a value consistent with a log�log
interest elasticity of money demand of &0.1.14 In this case w>q, which
implies that consumption and real balances are Edgeworth complements
(ucm>0).15 In Fig. 6, q is set at &0.975, which corresponds to a log�log
interest elasticity of money demand of &1�2. In this case w<q, so con-
sumption and money are Edgeworth substitutes (ucm<0). Under both
parameterizations, the active steady state is locally the unique perfect-
foresight equilibrium (i.e., the active steady state is a source). However, as
the figures suggest, from a global perspective it is clear that an infinite
number of trajectories originating arbitrarily close to the active steady state
and on the saddle connection can be supported as equilibrium outcomes
because they converge to the passive steady state.
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The pattern illustrated in Figs. 5 and 6 is unchanged for values of q
between &0.975 and &9, the two values assumed in the figures. As q is
increased above &0.975, the active steady state becomes a sink and thus
the equilibrium is locally indeterminate. If w>q (ucm>0), the simulation
results are, as in the case of separable preferences, robust to wide variations
in other parameter values. In particular, a saddle path connecting the
active steady state with the passive one continues to exist for more
aggressive Taylor rules (A�2) and lower costs of price adjustment (for
example, #=35). In the case q>w (ucm<0), parameter variations may or
may not eliminate the saddle connection. However, when the saddle con-
nection disappears, it is typically replaced by a situation in which the active
steady state is a sink, which is locally a more severe case of indeterminacy.

7. FINAL REMARKS

This paper shows that when a global analysis is undertaken in a sticky-
price model, the existence of a steady state with active monetary policy
generically leads to global indeterminacy. Although the propositions above
are proven for specific functional forms to facilitate checking for non-
degeneracies, it is clear from the general structure of the equilibrium
conditions that generically alternative specifications for smooth preferences
and the interest rate feedback rule will give rise to similar results, as long as
the feedback rule ensures the existence of a steady state with an active
monetary policy. The main results of the paper also obtain in flexible-price
versions of the model (Schmitt-Grohe� and Uribe [19]). In this case, equi-
librium dynamics are described by a scalar system where again a continuous
feedback rule generating a steady state with active monetary policy implies the
existence of a passive steady state, with all the implications for global indeter-
minacy, quite independent of the structure of preferences and production.

APPENDIX

Proof of Proposition 1

Preliminaries

To prove Proposition 1 we apply the following theorem due to Kopell
and Howard [9]:

Theorem (Kopell and Howard [9, Theorem 7.1.]). Let X4 =F+, &(X ) be
a two-parameter family of ordinary differential equations on R2, F smooth in
all of its four arguments, such that F+, &(0)=0. Also assume:
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1. dF0, 0(0) has a double zero eigenvalue and a single eigenvector e.

2. The mapping (+, &) � (det dF+, &(0), tr dF+, &(0)) has a nonzero
Jacobian at (+, &)=(0, 0).

3. Let Q(X, X ) be the 2_1 vector containing the terms quadratic in
the xi and independent of (+, &) in a Taylor series expansion of F+, &(X )
around 0. Then [dF(0, 0)(0), Q(e, e)] has rank 2.

Then there is a curve f(+, &)=0 such that if f (+0 , &0)=0, then X4 =F+0 , &0
(X )

has a homoclinic orbit. This one-parameter family of homoclinic orbits (in
(X, +, &) space) is on the boundary of a two-parameter family of periodic
solutions. For all |+|, |&| sufficiently small, if X4 =F+, &(X ) has neither a
homoclinic orbit nor a periodic solution, there is a unique trajectory joining
the critical points.

To apply this theorem, we must first perform several changes of variables
and a Taylor series expansion of the equilibrium conditions around the
steady state. Let p#?&?* and n#ln(*�**). Then the equilibrium condi-
tions (29) and (30) can be expressed as

n* =R*+ p&R*e(A�R*) p (34)

p* =rp&#&1(1+')(**)| e|nx:%

+:&1#&1'(**); e;nx%(1+v). (35)

Defining y= p�[M(;&|)] and s=R*n, we have

s* =R*2+M(;&|) R*y&R*2e(A�R*) M(;&|) y

y* =ry+(e(;�R*) s&e(|�R*) s)�(;&|).

We now take a Taylor series expansion of these two equations around
(s, y)=(0, 0), which yields

s* =R*(1&A) M(;&|) y&
[AM(;&|)]2

2
y2&

[AM(;&|)]3

3! R*
y3& }

(36)

y* =ry+
s

R*
+

1
;&| \(;2&|2)

2R*2 s2+
(;3&|3)

3! R*3 s3+ } } } + (37)

with Jacobian

J=_ 0
1�R*

R*(1&A) M(;&|)
r & ,
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which reduces to

_ 0
1�R*

0
0&

when r=(1&A)=0. We are now ready to prove Proposition 1.

Proof of Proposition 1

We prove the proposition by showing that for (r, 1&A) small enough,
the system of differential Eqs. (36) and (37) satisfies the hypotheses of the
Kopell�Howard theorem stated above. Let +#r, &#1&A, and X#[s; y].
Then, the system (36), (37) can be expressed as X4 =F+, &(X ). We have that
dF0, 0(0)=[0 0; 1�R* 0]. Clearly, dF0, 0 has a double zero eigenvalue and a
single eigenvector e=[0; 1]. The Jacobian of the mapping (+, &) �
(det dF+, &(0), tr dF+, &(0)) at (+, &)=(0, 0) is given by [0 &M(;&|); 1 0]
and is different from zero. Note that neither ** nor M depends on + or &.
The vector Q(e, e) is given by [&M2(;&|)2�2; 0]. It follows that
[dF0, 0(0) Q(e, e)] has rank 2. The proposition follows from the facts that
the active steady state is a source, the passive steady state is a saddle, and
both s and y are jump variables.

Proof of Lemma 1

(i) w<0 implies that |>0. Given a steady-state value ?� the unique-
ness of the associated steady-state value of * follows directly from evaluat-
ing (32) at ?* =0 and ?=?� and recalling that ;, 1+'<0. (ii) By definition,
monetary policy is active (passive) at a given steady state (*� , ?� ) if and only
if Ae(A�R*) ?&?� *>(<) 1. Let J denote the Jacobian of (31)�(32). Then
J11=0. Therefore, the determinant of J is given by &J21J12 . The element
J12 equals *� [1&Ae(A�R*)(?� &?*)], which is negative (positive) if monetary
policy is active (passive). The element J21 is given by

J21=&|
1+'

#
x:%*� |&1 _(R*)/ \1&x

x +
1&/

e(A�R*) /(?� &?*)+1&
:!

+;
'
:#

x(1+v) %*� ;&1 _(R*)/ \1&x
x +

1&/

e(A�R*) /(?� &?*)+1&
(1+v) !

,

which is clearly positive. Therefore, the determinant of J is positive
(negative) if and only if monetary policy is active (passive).
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Proof of Proposition 2

We prove the proposition by applying a theorem and a lemma from
Kuznetsov [10] that together allow us to transform the system of equi-
librium conditions into a simpler, topologically equivalent planar system of
differential equations with known bifurcation diagram. Technically, we
show that the system (31)�(32) exhibits a Bogdanov�Takens (double-zero)
bifurcation at (r, A)=(rc, 1).

Preliminaries

Let n#ln(*�**) and y#(?&?*)�[M(;&|)]. Then, equilibrium
conditions (31) and (32) can be written as

y* =ry&\ e|n

;&|+ (Be(A�R*) /M(;&|) y+1&B):!

+\ e;n

;&|+ (Be (A�R*) /M(;&|) y+1&B) (1+v) ! (38)

n* =r+?*+M(;&|) y&R*e(A�R*) M(;&|) y. (39)

Taking a Taylor series expansion of the right-hand side of this system
around ( y, n)=(0, 0) yields

y* =_r+B!
A

R*
/M(1+v&:)& y+n

+
1
2

B!(;&|) \ A
R*

/M+
2

[(1+v&:)(1&B)+B!((1+v)2&:2)] y2

+B!
A

R*
/M[;(1+v)&|:] yn+

1
2

(;+|) n2+ } } } (40)

n* =(r+?*&R*)+M(;&|)(1&A) y&
1
2

R* \ A
R*

M(;&|)+
2

y2& } } }

(41)

The Jacobian of this system is

_r+B!
A

R*
/M(1+v&:) 1& .

M(;&|)(1&A) 0
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At (r, A)=(rc, 1) this Jacobian collapses to

_0
0

1
0& ,

which has two zero eigenvalues (the Bogdanov�Takens condition). We
now state the aforementioned theorem and lemma from Kuznetsov [10].

Theorem (Normal Form Representation, Kuznetsov [10, Theorem 8.4]).
Suppose that a planar system

x* = f (x, :), x # R2, : # R2,

with smooth f, has at :=0 the equilibrium x=0 with a double zero eigen-
value. Via a Taylor series expansion around x=0 and transformation of
variables, this system can be expressed as

y* 1=y2+a00(:)+a10(:) y1+a01(:) y2

+ 1
2a20(:) y2

1+a11(:) y1y2+ 1
2 a02(:) y2

2+P1( y, :)

y* 2=b00(:)+b10(:) y1+b01(:) y2

+ 1
2b20(:) y2

1+b11(:) y1y2+ 1
2 b02(:) y2

2+P2( y, :),

where alk(:), b lk(:), and P1, 2( y, :)=O(&y&)3 are smooth functions of their
arguments. Assume that

a00(0)=a10(0)=a01(0)=b00(0)=b10(0)=b01(0)=0

and that the following nondegeneracy conditions are satisfied:

(BT.0) the Jacobian matrix �f
�x (0, 0){0;

(BT.1) a20(0)+b11(0){0;

(BT.2) b20(0){0;

(BT.3) the map

(x, :) [ \ f (x, :), tr \�f (x, :)
�x + , det \�f (x, :)

�x ++
is regular at the point (x, :)=(0, 0).

Then there exist smooth invertible variable transformations smoothly
depending on the parameters, a direction-preserving time reparameterization,
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and smooth invertible parameter changes, which together reduce the system
to

'* 1='2

'* 2=;1+;2'1+'2
1+s'1 '2+O(&'&3),

where s=sign[b20(0)(a20(0)+b11(0))]=\1.

The explicit steps of the transformation of variables are given in Kuznetsov
[10]. We note that ;1 and ;2 are functions of : satisfying ;1(:)=;2(:)=0
for :=0.

Lemma (Effect of Higher-Order Terms, Kuznetsov [10, Lemma 8.8]).
The system

'* 1='2

'* 2=;1+;2 '1+'2
1\'1 '2+O(&'&3)

is locally topologically equivalent near the origin to the system

'* 1='2

'* 2=;1+;2'1+'2
1\'1 '2 .

We are now ready to prove Proposition 2.

Proof of Proposition 2

We first show that the system (31), (32) of equilibrium conditions of the
economy with non-separable preferences is in general locally (i.e., near
(r, A)=(rc, 1)) topologically equivalent near the steady state (*, ?)=
(**, ?*) to the system

'* 1='2
(42)

'* 2=;1+;2'1+'2
1\'1 '2 .

The first step is to show that the conditions of Theorem 8.4 of Kuznetsov
[10] are satisfied by the transformation of (31), (32) given by (38), (39).
Let x#( y, n) and :#(1&A, r&rc). Then the system (38), (39) can be
expressed as x* = f (x, :). We have shown above that (38), (39) has at :=0
the equilibrium x=0 with a non-zero Jacobian. Thus, BT.0 is satisfied. We
have also shown that at (x, :)=(0, 0) the Jacobian has a double zero
eigenvalue. It is clear from (40), (41) that

a00(0)=a10(0)=a01(0)=b00(0)=b10(0)=b01(0)=0.
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Also, a20(0)=B!(;&|)( 1
R* /M)2 [(1+v&:)(1&B)+B!((1+v)2&:2)]

and b20(0)=&R*[1�R*M(;&|)]2 are in general non-zero while b11(0)
=0. Therefore, BT.1 and BT.2 are satisfied. The Jacobian of the mapping
(x, :) [ ( f (x, :), tr( �f (x, :)

�x ), det( �f (x, :)
�x )) at (x, :)=(0, 0) is given by

_
0
0

a20(0)
&b20(0)

1
0

a11(0)
0

0
0
rc

&1

0
1
1
0& ,

where a11(0)=B!/MR*&1[;(1+v)&|:]. The determinant of this
Jacobian is equal to &b20(0) rc, which is in general different from zero, so
that the map is regular at (x, :)=(0, 0) and condition BT.3 is satisfied. The
claim that the equilibrium conditions have the normal form representation
given by (42) follows from the theorem and the lemma stated above.
Proposition 2 then follows directly from Lemma 1 and the properties of the
the bifurcation diagram of (42) (see Kuznetsov [10, Sect. 8.4.2] for the case
in which the coefficient on '1 '2 is &1 and Guckenheimer and Holmes
[8, Sect. 7.3] for the case in which the coefficient on '1'2 is +1).

Proof of Corollary 1

The existence of stable limit cycles depends on the sign of the coefficient
of '1 '2 in (42), which is equal to the sign of the parameter s defined in
Theorem 8.4 of Kuznetsov [10] stated above. As shown in Kuznetsov
[10], if s is negative there exists a region in the vicinity of (r, A)=(rc, 1)
for which stable limit cycles emerge. If s is positive, then stable limit cycles
do not exist. In the economy with non-separable preferences, s=&sign
(a20(0)), where a20(0) is given in terms of the structural parameters of the
economy in the proof of Proposition 2.
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