Pricing to Habits and the Law of One Price

Morten Ravn
Stephanie Schmitt-Grohé
Martín Uribe

Stylized facts we wish to address

- The Law Of One Price fails at the goodby-good level even for highly traded goods.
 - Goldberg and Knetter, JEL 1997.
 - Crucini and Shintani, 2006.
- A rise in government spending leads to
 - A real exchange rate depreciation.
 - An increase in private consumption.
 - A trade balance deterioration.

(Ravn, Schmitt-Grohé, and Uribe, 2007; Monacelli and Perotti, 2006; Perotti, 2006; Gali et al., 2006)

- Estimation of empirical impulse responses
 - 1. Use structural VAR to estimate effects of government purchases shocks.

$$AX_t = B(L)X_{t-1} + u_t$$

where

$$X_t = \begin{bmatrix} \log g_t \\ \log y_t \\ \log c_t \\ \frac{tb_t}{y_t} \\ \log e_t \end{bmatrix}$$

- 2. Four lags (L = 4).
- 3. Identification: government spending is not affected by structural innovations to any other variable than government spending itself.
- 4. Panel of Countries: Australia, Canada, U.K., and U.S.
- 5. Sample: Quarterly data from 1975 to 2005

A Unit Innovation in Domestic GovernmentPurchases

Solid lines: point estimate

Dashed lines: point estimate \pm 2 std

Theory

- We abstract from:
 - Nontraded goods.
 - Rule-of-thumb consumers.
 - Distribution costs.
 - Sticky prices or wages.
 - Incomplete asset markets.
 - Tariffs or quotas.
 - Nonseparabilities of preferences across consumption and leisure.

A Model of Pricing to Habits

- Two-country production economy without capital.
- Preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t [\phi \ln(x_t) + (1-\phi) \ln(1-h_t)]$$

ullet Two traded goods: a and b

$$x_{t} = \left[\omega x_{a,t}^{c}^{1-\frac{1}{\xi}} + (1-\omega)x_{b,t}^{c}^{1-\frac{1}{\xi}}\right]^{\frac{1}{1-\frac{1}{\xi}}}$$

External deep habits

as in Ravn, Schmitt-Grohé, and Uribe (RES, 2006)

Private Households

Habit-adjusted consumption of good a

$$x_{a,t}^{c} = \left[\int_{0}^{1} (c_{i,a,t} - \theta^{c} s_{i,a,t-1}^{c})^{1 - \frac{1}{\eta}} di \right]^{\frac{1}{1 - \frac{1}{\eta}}}$$
$$s_{i,a,t}^{c} = \rho s_{i,a,t-1}^{c} + (1 - \rho) \tilde{c}_{i,a,t}$$

Habit-adjusted consumption of good b

$$x_{b,t}^{c} = \left[\int_{0}^{1} (c_{i,b,t} - \theta^{c} s_{i,b,t-1}^{c})^{1 - \frac{1}{\eta}} di \right]^{\frac{1}{1 - \frac{1}{\eta}}}$$
$$s_{i,b,t}^{c} = \rho s_{i,b,t-1}^{c} + (1 - \rho)\tilde{c}_{i,b,t}$$

- Public sector

$$x_{a,t}^g = \left[\int_0^1 (g_{i,a,t} - \theta^g s_{i,a,t-1}^g)^{1 - \frac{1}{\eta}} di \right]^{\frac{1}{1 - \frac{1}{\eta}}}$$

$$x_{b,t}^g = \left[\int_0^1 (g_{i,b,t} - \theta^g s_{i,b,t-1}^g)^{1 - \frac{1}{\eta}} di \right]^{\frac{1}{1 - \frac{1}{\eta}}}$$

Domestic Demand for good a

$$d_{i,a,t} = \left(\frac{P_{i,a,t}}{P_{a,t}}\right)^{-\eta} x_{a,t} + \theta s_{i,a,t-1}$$

Price elasticity
$$= -\eta \left(1 - \theta \frac{s_{i,a,t-1}}{d_{i,a,t}}\right)$$

Foreign Demand for good a

$$d_{i,a,t}^* = \left(\frac{P_{i,a,t}^*}{P_{a,t}^*}\right)^{-\eta} x_{a,t}^* + \theta s_{i,a,t-1}^*$$

Price elasticity
$$= -\eta \left(1 - \theta \frac{s_{i,a,t-1}^*}{d_{i,a,t}^*}\right)$$

Firms

- Firms can price discriminate internationally.
- Production Function:

$$y_{i,a,t} = h_{i,a,t}$$

Optimal pricing

$$P_{a,t} = \left[1 - \frac{1}{\eta \left(1 - \theta \frac{d_{a,t-1}}{d_{a,t}}\right)} + \theta \Omega_{a,t}\right]^{-1} MC_t$$

$$P_{a,t}^* = \left[1 - \frac{1}{\eta \left(1 - \theta \frac{d_{a,t-1}^*}{d_{a,t}^*}\right)} + \theta \Omega_{a,t}^*\right]^{-1} MC_t$$

 \Rightarrow Time-varying deviation from the Law of One Price $(P_{a,t}^*/P_{a,t} \neq 1 \text{ and moves over time}).$

Calibration

Parameter	Value	Description
β	0.99	Subjective discount factor (quarterly)
σ	1	Intertemporal elasticity of substitution
ϕ	0.15	Preference parameter
ω	0.5	Preference parameter
ξ	1.5	Elasticity of substitution composite
η	5	Elasticity of substitution varieties
$_s_g, s_g^*$	0.2	Government shares

Estimation

• Goal: Estimate deep-habit parameters:

$$\Theta \equiv \begin{bmatrix} \theta^c & \theta^g & \rho \end{bmatrix}$$

- Strategy: Pick ⊖ to minimize the distance between empirical and theoretical impulse responses.
- Match 9 quarters of impulse responses of five variables.

Estimated Parameters

	Point	Standard
Parameter	Estimate	Deviation
θ^c	0.52	0.08
$ heta^g$	0.57	0.15
ho	0.99	0.03

Predicted and Estimated Impulse Responses

Response of the Domestic and Foreign Markups to a One-Percent Government Spending Shock

Response of the Real Exchange Rate to a Government Spending Shock

Response of Private Consumption to a Government Spending Shock

Response of the Real Wage to a Government Spending Shock

Conclusion:

- Under Pricing to Habits there are deviations from the LOOP
- Deviations from the LOOP are time varying
- Pricing to Habits can explain why in response to a demand shock
 - the real exchange rate depreciates
 - private consumption rises
 - the trade balance deteriorates
- Estimation of the model yields: $\theta^c = 0.52$, $\theta^g = 0.57$, and $\rho = 0.99$