%FINANCIAL_FRICTION_RUN.M computes unconditional moments implied by the financial- %friction model in the paper ``Real Business Cycles %in Emerging Countries?'' by Javier Garcia-Cicco, Roberto Pancrazi, and Martin Uribe (AER, %forthcoming). The estimated parameters %are assigned values corresponding to the median of their estimated posterior distribution. This %distribution was estimated using Bayesian methods and annual Argentine data on output %growth, consumption growth, investment growth, and the trade-balance-to-output ratio from 1900 to %2005. The other parameters of the model are calibrated. Their values are contained in the %program financial_friction_ss.m, which also computes the steady state of the model and %evaluates the first derivatives of the equilibrium conditions . The dynamic system and %its derivatives are computed analytically in the program financial_friction.m. % %The auxiliary programs gx_hx.m, num_eval_print2f.m, and mom.m are taken from the package for computing first- and second-order %accurate dynamics of DSGE models produced by Stephanie Schmitt-Grohe and Martin Uribe and %available online at www.columbia.edu/~mu2166/2nd_order.htm % %(c) Martin Uribe, September 2009. %Mean of posterior distribution of estimated parameters b =[ 1.009890776104921 0.010561526060797 0.323027844166870 0.033055089525252 0.864571930755821 0.539099453618175 0.850328786147732 0.018834174505537 0.205034667802314 0.057195449717680 0.906802888826967 4.810804146604144 2.867166241970346 0.000114861607534 0.000130460798135 0.001436553959841 0.000109652068259]; %Order of approximation approx = 1; [nfx, nfy, nfxp, nfyp, nvarshock, nETASHOCK] = financial_friction_ss(b); %Policy Functions [gx,hx, deterflag] = gx_hx(nfy,nfx,nfyp,nfxp); %MOMENTS %Compute Variance/covariance matrix of controls (var_y) and states (var_x) [var_y,var_x] = mom(gx,hx,nvarshock,0); clc %SECOND MOMENTS OF of gY, gC, gI, and TB/Y disp('From left to right, the figures correspond to output growth, consumption growth, investment growth and the trade-balance-to-output ratio') disp('Standard Deviations') STDEV = ((diag(var_y(1:4,1:4)).^(1/2))*100)' disp('Correlations with Output Growth') CGY = (var_y(1:4,1) ./ (diag(var_y(1:4,1:4)).^(1/2)) /var_y(1,1)^(1/2))' %First-order autocovariance [var_y1,var_x1] = mom(gx,hx,nvarshock,1); disp('First-Order Autocorrelations') autocorre1 = diag(var_y1)./ diag(var_y); FOAC = autocorre1(1:4)' %Second-order autocovariance [var_y2,var_x2] = mom(gx,hx,nvarshock,2); disp('Second-Order Autocorrelations') autocorre2 = diag(var_y2)./ diag(var_y); SOAC = autocorre2(1:4)' %Third-order autocovariance [var_y3,var_x3] = mom(gx,hx,nvarshock,3); disp('Third-Order Autocorrelations') autocorre3 = diag(var_y3)./ diag(var_y); TOAC = autocorre3(1:4)' %Fourth-order autocovariance [var_y4,var_x4] = mom(gx,hx,nvarshock,4); disp('Fourth-Order Autocorrelations') autocorre4 = diag(var_y4)./ diag(var_y); FFOAC = (autocorre4(1:4))' disp('Correlations with the Trade-Balance-to-GDP Ratio') CTBY = (var_y(1:4,4) ./ (diag(var_y(1:4,1:4)).^(1/2)) /var_y(4,4)^(1/2))'