%RBC.M computes unconditional moments implied by the RBC model in ``Real Business Cycles %in Emerging Countries?'' by Javier Garcia-Cicco, Roberto Pancrazi, and Martin Uribe (AER, %forthcoming). The parameters defining the stochastic processes of the two technology shocks %are assigned values corresponding to the median of their estimated posterior distribution. This %distribution was estimated using Bayesian methods and annual Argentine data on output %growth, consumption growth, investment growth, and the trade-balance-to-output ratio from 1900 to %2005. The other parameters of the model are calibrated. Their values are contained in the %program rbc_ss.m, which also computes the steady state of the model. The dynamic system and %its derivatives are computed in the program growoth.m. % %Calls: rbc.m rbc_ss.m gx_hx.m mom.m num_eval.m % %The auxiliary programs gx_hx.m, num_eval.m, and mom.m are taken from the package for computing first- and second-order %accurate dynamics of DSGE models produced by Stephanie Schmitt-Grohe and Martin Uribe, and %available online at www.columbia.edu/~mu2166/2nd_order.htm. % %(c) Martin Uribe, September 2009. %Estimated Structural Parameters (gross growth rate, stda, rhoa, stdz, rhoz, phi) b = [ 1.0050 0.0300 0.8280 0.0270 0.7650 3.3000]; %The Linearized Theoretical model [fx,fxp,fy,fyp,f] = rbc; %Order of approximation approx = 1; %Assign values to remaining parameters and compute steady-state [GAMA, DELTA, ALFA, PSSI, OMEGA, G, SIGMAG, RHOG, SIGMAA, RHOA, PHI, RSTAR, DBAR, BETTA, THETA, c, cp, h, hp, k, kp, k1, k1p, d, dp, iv, ivp, tb, tbp, la, lap, a, ap, tby, tbyp, g, gp, gy, gyp, gc, gcp, giv, givp, yy, yyp, yyback, yybackp, cback, cbackp, ivback, ivbackp, gback, gbackp]=rbc_ss(b); %Numerical evaluation of linearized model num_eval %Policy Functions [gx,hx, deterflag] = gx_hx(nfy,nfx,nfyp,nfxp); %MOMENTS %Construct Variance/Covariance Matrix of Innovations to State Process varshock = zeros(size(hx,1)); varshock(end-1:end,end-1:end)=[SIGMAG^2 0;0 SIGMAA^2]; %Compute Variance/covariance matrix of controls (var_y) and states (var_x) [var_y,var_x] = mom(gx,hx,varshock,0); %SECOND MOMENTS OF of gY, gC, gI, and TB/Y disp('From left to right, the figures correspond to output growth, consumption growth, investment growth and the trade-balance-to-output ratio') disp('Standard Deviations') STDEV = ((diag(var_y(1:4,1:4)).^(1/2))*100)' disp('Correlations with Output Growth') CGY = (var_y(1:4,1) ./ (diag(var_y(1:4,1:4)).^(1/2)) /var_y(1,1)^(1/2))' %First-order autocovariance [var_y1,var_x1] = mom(gx,hx,varshock,1); disp('First-Order Autocorrelations') autocorre1 = diag(var_y1)./ diag(var_y); FOAC = autocorre1(1:4)' %Second-order autocovariance [var_y2,var_x2] = mom(gx,hx,varshock,2); disp('Second-Order Autocorrelations') autocorre2 = diag(var_y2)./ diag(var_y); SOAC = autocorre2(1:4)' %Third-order autocovariance [var_y3,var_x3] = mom(gx,hx,varshock,3); disp('Third-Order Autocorrelations') autocorre3 = diag(var_y3)./ diag(var_y); TOAC = autocorre3(1:4)' %Fourth-order autocovariance [var_y4,var_x4] = mom(gx,hx,varshock,4); disp('Fourth-Order Autocorrelations') autocorre4 = diag(var_y4)./ diag(var_y); FFOAC = (autocorre4(1:4))' disp('Correlations with the Trade-Balance-to-GDP Ratio') CTBY = (var_y(1:4,4) ./ (diag(var_y(1:4,1:4)).^(1/2)) /var_y(4,4)^(1/2))'