Country Spreads and Emerging Countries: Who Drives Whom?

Martin Uribe and Vivian Yue
(JIE, 2006)
Country Interest Rates and Output in Seven Emerging Countries

--- Output --- Country Interest Rate
The Empirical Model

\[
\begin{bmatrix}
\hat{y}_t \\
\hat{\nu}_t \\
tbyt \\
\hat{R}^u_{ts} \\
\hat{R}_t
\end{bmatrix}
= \begin{bmatrix}
\hat{y}_{t-1} \\
\hat{\nu}_{t-1} \\
tbyt_{t-1} \\
\hat{R}^u_{ts} \\
\hat{R}_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
\epsilon^y_t \\
\epsilon^\nu_t \\
\epsilon^{tby}_t \\
\epsilon^{rus}_t \\
\epsilon^r_t
\end{bmatrix}
\]

Identification Assumptions:

- \(A \) is lower triangular
- \(R^US_t \) follows a univariate process

Countries: Argentina, Brazil, Ecuador, Mexico, Peru, the Phillipines, South Africa.

Sample Period: 1994:1 to 2001:4
Impulse Response To A Country-Spread Shock

Output

Investment

Trade Balance-to-GDP Ratio

World Interest Rate

Country Interest Rate

Country Spread

____ Point Estimate ____ Error Band
Impulse Response To A World-Interest-Rate Shock

Point Estimate Error Band
Impulse Response To An Output Shock

___ Point Estimate ___ Error Band
Variance Decomposition

\[\epsilon^{rus} + \epsilon^{r} \]
Alternative Identification Scheme: Place Country Spreads first in the VAR system

Implication: Output and investment expand in response to an increase in the world interest rate.

Problem: It’s difficult to rationalize this implication on theoretical grounds.
Aggregate Volatility With and Without Feedback of Spreads from Domestic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Feedback Std. Dev.</th>
<th>No Feedback Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\widehat{\gamma})</td>
<td>3.65</td>
<td>3.07</td>
</tr>
<tr>
<td>(\widehat{i})</td>
<td>14.11</td>
<td>11.93</td>
</tr>
<tr>
<td>(tby)</td>
<td>4.38</td>
<td>3.52</td>
</tr>
<tr>
<td>(R)</td>
<td>6.50</td>
<td>4.77</td>
</tr>
</tbody>
</table>

Result: Eliminating feedback of spreads from domestic variables reduces aggregate volatility by about 20 percent.

Caution: The Lucas critique applies. We will redo this exercise using a theoretical optimizing model.
Summary of Empirical Findings

1. An increase in the world interest rate or in the country spread causes output and investment to fall and the trade balance to improve.

2. An increase in the world interest rate causes a delayed overshooting in the country spread.

3. The effects of world-interest-rate shocks on domestic variables is measured with significant uncertainty.

5. Country-spread shocks explain about 12 percent of aggregate fluctuations in EM.

6. About 60 percent of movements in country spreads are explained by country-spread shocks.
The Theoretical Model

Standard small open economy neoclasscial model with 3 modifications:

- Habit formation
- Gestation lags and convex adjustment costs in investment
- Working-capital constraint on firms
Households

\[
\max E_0 \sum_{t=0}^{\infty} \beta^t U(c_t - \mu \tilde{c}_{t-1}, h_t),
\]

subject to

\[
d_t = R_{t-1}d_{t-1} - w_t h_t - u_t k_t + c_t + i_t + \Psi(d_t)
\]

\[
i_t = \frac{1}{4} \sum_{i=0}^{3} s_{it}.
\]

\[
s_{i+1t+1} = s_{it}
\]

\[
k_{t+1} = (1 - \delta) k_t + k_t \Phi \left(\frac{s_{3t}}{k_t} \right)
\]

\[
\lim_{j \to \infty} E_t \frac{d_{t+j+1}}{\prod_{s=0}^{j} R_{t+s}} \leq 0
\]
Decentralizing the Debt Adjustment Costs

Domestic Banks:

- Borrow externally at rate R_t
- Lend domestically at rate R_t^d
- Face operational costs $\Psi(d_t)$
- Compete atomistically for domestic deposits

Domestic Banks’ Objective

$$\max_{d_t} R_t^d [d_t - \Psi(d_t)] - R_t d_t$$

Optimality Condition

$$R_t^d = \frac{R_t}{1 - \psi'(d_t)}$$
Firms

Evolution of the Firm’s Debt Position
\[d^f_t = R^d_{t-1}d^f_{t-1} - F(k_t, h_t) + w_t h_t + u_t k_t + \pi_t - \kappa_{t-1} + \kappa_t \]

Working-Capital Constraint
\[\kappa_t \geq \eta w_t h_t; \quad \eta \geq 0 \]

Firm’s Objective
\[\max E_0 \sum_{t=0}^{\infty} \beta^t \frac{\lambda_t}{\lambda_0} \pi_t \]

Optimality Conditions
\[F_h(k_t, h_t) = w_t \left[1 + \eta \left(\frac{R^d_t - 1}{R^d_t} \right) \right] \]
\[F_k(k_t, h_t) = u_t \]
Driving Forces

\[\hat{R}_t = 0.63\hat{R}_{t-1} + 0.50\hat{R}^{us}_t + 0.35\hat{R}^{us}_{t-1} - 0.79\hat{y}_t + 0.61\hat{y}_{t-1} + 0.11\hat{i}_t - 0.12\hat{i}_{t-1} + 0.29tby_t - 0.19tby_{t-1} + \epsilon^r_t, \]

\[\hat{R}^{us}_t = 0.83\hat{R}^{us}_{t-1} + \epsilon^{rus}_t, \]

where \(\epsilon^r_t \) and \(\epsilon^{rus}_t \) are mean-zero iid innovations with standard deviations equal to 0.031 and 0.007, respectively.
Functional Forms

\[U(c - \mu \bar{c}, h) = \frac{[c - \mu \bar{c} - \omega^{-1} h \omega]^{1-\gamma} - 1}{1 - \gamma} \]

\[F(k, h) = k^\alpha h^{1-\alpha} \]

\[\Phi(x) = x - \frac{\phi}{2} (x - \delta)^2; \quad \phi > 0 \]

\[\Psi(d) = \frac{\psi}{2} (d - \bar{d})^2 \]

Calibrated Parameters (Quarterly)

\[\omega = 1.45 \]

\[\gamma = 2 \]

\[\alpha = 0.32 \]

\[R = \beta^{-1} = 1.0277 \]

\[\delta = 0.025 \]
Estimating ϕ, ψ, η, and μ

Criterion: Minimize the distance between empirical and theoretical Impulse Response Functions.

Formally, ϕ, ψ, η, and μ are set so as to minimize

$$[IR^e - IR^m(\psi, \phi, \eta, \mu)]'\Sigma^{-1}_{IR^e}[IR^e - IR^m(\psi, \phi, \eta, \mu)],$$

Result:

$$\psi = 0.0002$$

$$\phi = 128$$

$$\eta = 1.31$$

$$\mu = 0.26$$
Theoretical and Estimated Impulse Response Functions

- Response of Output to ϵ_{R}
- Response of Investment to ϵ_{R}
- Response of TB/GDP to ϵ_{R}
- Response of Country Interest Rate to ϵ_{R}

Empirical IR --- Error Band --- Theoretical IR
Counterfactual Experiment 1: Country Spreads Don’t Respond To The World Interest Rate

Replace baseline Interest-Rate process with:

\[
\hat{R}_t = 0.63\hat{R}_{t-1} + \hat{R}_{t}^{us} - 0.63\hat{R}_{t-1}^{us} - 0.79\hat{y}_t \\
+ 0.61\hat{y}_{t-1} + 0.11\hat{i}_t - 0.12\hat{i}_{t-1} + 0.29tby_t \\
- 0.19tby_{t-1} + \epsilon^R_t,
\]

Result: Aggregate volatility due to R_t^{us} shocks falls by two thirds \Rightarrow Most of the effects of world-interest-rate shocks on Emerging Countries are mediated through country spreads.
Counterfactual Experiment 2: Country Spreads Don’t Respond To Domestic Fundamentals

Replace baseline Interest-Rate process with:

\[\hat{R}_t = 0.63 \hat{R}_{t-1} + 0.50 \hat{R}_{t}^{us} + 0.35 \hat{R}_{t-1}^{us} + \epsilon_t^r, \]

Result: Aggregate volatility explained jointly by \(\epsilon_t^r \) and \(\epsilon_t^{rus} \) falls by one third.
Summary

1. US-interest-rate shocks account for 20 percent of aggregate fluctuations in EM.

2. Country-spread shocks explain about 12 percent of aggregate fluctuations in EM.

3. About 60 percent of movements in country spreads are explained by country-spread shocks.

4. US-interest-rate shocks affect domestic variables mostly through their effects on country spreads.

5. Domestic effects of world-interest-rate shocks are measured with significant uncertainty.

6. The fact that country spreads respond to business conditions in EM exacerbates aggregate volatility in the region.

7. The US-interest-rate shocks and country-spread shocks identified in this paper are plausible in the sense that they imply similar business cycles in the context of an empirical VAR model as they do in the context of a theoretical dynamic general equilibrium model of the emerging economy.