Module Title: Analysis of Quantitative Data – II 

Overview and Check List

Objectives

To understand the basics of statistical modelling and to be acquainted with the wide array of techniques of statistical inference available to analyze research data.

At the end of this unit you should be able to:

· Recognize research situations that require analysis beyond basic one and two sample comparisons of means and proportions

· Understand the basics of simple and multiple linear regression

· Recognize the limitations of and extensions to linear regression modelling

· Describe the aims and techniques of more advanced model-building

· Write a “proposed statistical analysis” section for a grant proposal

· Communicate the results of statistical analysis

Introduction

The previous module (Analysis of Quantitative Methods I) focused first on descriptive statistics, then introduced the basic ideas of statistical inference, and concluded with confidence intervals and hypothesis tests for one and two means, and one and two proportions. The module ended with details of the famous two-sample t-test, paired t-test, and chi-square test of independence. These three procedures are useful in a wide range of research designs but, as you might expect, cannot possibly cover all situations. You have started the journey into the wonderful world of statistics and data analysis. In this module we continue the journey. You might have suspected this since that module was titled “… Part I”!

You might ask whether a sequel is really necessary. An introductory knowledge is unlikely to give you the breadth of skills needed for your work, whether it is the critical appraisal of journal articles or the analysis of data from your own studies. For example, the two-sample t-test compares, not surprisingly, two means! What happens if you have three groups to compare? What if there is another variable that might be influencing your outcome variable? Can you account for it? How could you assess whether a whole set of “predictor” variables has any ability to predict or explain your outcome? What happens when the t-test is not applicable because your data are not normally distributed? There are countless other situations that cannot be handled by the t-test or chi-square test.

But don’t worry! This module will give you a basic understanding of when various procedures apply, what the results might look like, how they can be explained in a paper, and how they all fit together. The mathematical details will be mercifully few and far between. 

Just to set the stage, recall the example in the previous module about the space shuttle Challenger disaster of Jan 28, 1986. The example discussed how an improper analysis of O-ring failures and ambient temperature led to the shuttle exploding, killing all on board. Putting the science aside, one statistical question is: Can the probability of an O-ring failure be estimated given the outdoor temperature on launch day? There are two variables: the outcome variable is binary – O-ring failure, Yes or No; the predictor variable is outdoor temperature. An appropriate statistical technique for this situation is “logistic regression”. It will answer two questions; what is the effect of temperature on O-ring failure, and, given a temperature what is the estimated likelihood of an O-ring failure?

Note that the key question is the first one discussed in the first module: Always begin with an assessment of the types of data you have! O-ring failure is binary; temperature is measurement. Establishing the suitability of logistic regression starts by looking for a technique where the outcome is binary and the predictor is measurement.

But we’re getting ahead of ourselves. First we need to discuss what is meant by a statistical model.

Statistical Models

G.E.P. Box: “All models are wrong, but some are useful.”

One major theme in statistical analysis is the construction of a useful model. What is a model? In our situation it is a mathematical representation of the given physical situation. The representation may involve constants, called parameters, which will be estimated from the data. For example, Hooke’s Law explains the relationship between the length of a spring and the mass hanging from the end of it. Newton’s laws include the famous “force = mass x acceleration”. Boyle’s law in physics says that “pressure x volume = constant” for a given quantity of gas.

In each of these examples there is a systematic relationship between the outcome and the predictors.

Statistical models are a little different. They have an added component. In addition to the systematic component there is also a random component (also called “error”, or a “stochastic” component if you want to impress people at cocktail parties). The random component happens for a variety of reasons; some are measurement error, others are natural variability between experimental units. For example, consider the height of citizens of Belltown. Different citizens have different heights, because people are different! That’s natural variability. But even if you measured the same person twice you could get different results. That’s measurement error.

You can think of a statistical model as a mathematical equation. Let’s try a little visualization. Imagine an “equal” sign. Variables to the left are the outcome or responses; variables to the right are predictors or explanatory factors. And the right-hand side has one more term, representing the random component.

Outcome = Math.Function of (Predictors) + Error

                  (Systematic component)         +(Random component)

Remember that it is impossible to represent a real-world system exactly by a simple mathematical model. But a carefully constructed model can provide a good approximation to both the systematic and random components. That is, it can explain how the predictors affect the outcome and how big the uncertainty is.

Here are the objectives of model-building (Ref: Chatfield 1988):

· To provide a parsimonious description of one or more sets of data. Note that “parsimonious” means “as simple as possible but still consistent with describing the important features of the data”.

· To provide a basis for comparing several different sets of data

· To confirm or refute a theoretical relationship suggested a priori

· To describe the properties of the random error component in order to assess the precision of the parameter estimates and to assess uncertainty of the conclusions

· To provide predictions

· To provide insight into the underlying process.

Note that this list DOES NOT include getting the best fit to the observed data. As Chatfield writes, ”The procedure of trying lots of different models until a good-looking fit is obtained is a dubious one. The purpose of model-building is not just to get the “best” fit, but rather to construct a model which is consistent, not only with the data, but also with background knowledge and with any earlier data sets.”

Remember, the model must apply not only to the data you have already collected but any other data that might be collected using the same procedures.

There are actually three stages in model building: formulation, estimation, and validation. Most introductory statistics courses emphasize the second stage, with a little bit on the third stage; the first stage is often largely ignored. In this module we will address all three stages.

Enough of the basic idea – let’s see how the inferential methods of Phase I can actually be thought of as statistical model-building.

1. A two-sample t-test of means can be thought of as a model with one measurement scale outcome variable and one binary categoric predictor variable. For example, a comparison of male salaries and female salaries using a two-sample t-test is really an assessment of whether sex (binary variable) is a predictor of salary (measurement variable).

2. A chi-square test of independence can be thought of as a model with one categoric outcome variable and one categoric predictor variable. For example is ethnicity a predictor of smoking status. If you replace the words “categoric” with “binary” in the previous sentence you get a two-sample z-test of proportion. For example, a comparison of the proportion of male drivers who wear a seatbelt with the proportion of female drivers who wear a seatbelt is really an assessment of whether sex (binary) is a predictor of seatbelt use (binary).

We can display these situations in the following table.

	Outcome variable
	Predictor variable(s)
	Model or Technique

	Measurement
	Binary
	Two-sample t-test of means

	Binary
	Binary 
	Two-sample z-test of proportions

	Categoric (≥2 categories)
	Categoric ((≥2 categories)
	Chi-square test of independence


By now you can see that there are many other possibilities, none of which can be handled by the previous tests. Here are some of the possibilities and the names of the techniques to be discussed and developed.

	Outcome variable
	Predictor variable(s)
	Model or Technique

	Measurement
	Measurement
	Simple linear regression

	Measurement
	2 or more measurement or categoric
	Multiple linear regression

	Binary
	Measurement
	Simple logistic regression

	Binary
	2 or more measurement or categoric
	Multiple logistic regression

	Measurement
	Categoric (≥2 categories)
	One-way analysis of variance

	Measurement
	2 categoric (each with ≥2 categories
	Two-way analysis of variance


Where is the paired t-test in the above? Conspicuously absent! In each of these scenarios, observations are made independently. There is no linkage between observations, no repeated measuring of the subjects. We will deal with these situations later – be patient!

We turn our attention next to linear regression models. We will study the simple linear regression model in detail. The lessons learned there are quickly applied and extended to multiple linear regression and most of the other statistical modeling techniques you are likely to need or encounter.

Linear Regression Models

Simple Linear Regression addresses the situation of one measurement outcome variable (also called the response or dependent variable) and one measurement predictor variable (also called the explanatory or independent variable).

Multiple Linear Regression addresses the situation of one measurement outcome variable, but many predictor variables, mostly measurement scale, but some categoric variables as well.

Correlation and Simple Linear Regression

A scatterplot is a plot of ordered pairs (xi, yi) for each case (Note: A case is also called an experimental unit or a subject if the case is a human being!) The correlation coefficient ( r ) is a measure of linear association; that is, the strength of clustering around a straight line. The formula for  r  is:
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The second form is useful if you find yourself in the unusual and unenviable position of having to compute correlation by hand (well, with a calculator in your hand). Most of the time you will have a computer compute this for you.

Properties of r, the correlation coefficient:

· -1 ≤ r ≤ +1

· the sign indicates positive or negative slope 

· r has no units (it is computed in “standard units” like z-scores)

· the roles of the X and Y variables are interchangeable (e.g. the correlation of height and weight equals the correlation of weight and height)

· correlation is not the same as causation (i.e. cause and effect). If two variables are correlated it means that one can predict another, not that one necessarily causes another 

In regression (in contrast with correlation), the roles of X and Y are NOT interchangeable; one is the predictor and the other is the outcome. Height predicts weight more logically than weight predicts height.

In simple linear regression the questions are: 

· How do we find the best-fitting straight line through the scatterplot?

· Can we summarize the dependence of Y on X with a simple straight line equation?

· Does the predictor variable (X) provide useful information to predict the response variable (Y)?

Define the estimated regression equation or regression line as: 
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Define a residual as: 
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= observed y – predicted y. A residual is computed for every point in the data set. A residual is the vertical deviation from the observation to the regression line.

A good fit is one where the residuals are small; that is, no point is very far from the line. The criterion for “best-fitting” is that the sum of squared residuals be as small as possible, a criterion called “least squares”. Calculus is used to find  b0  and  b1  so that the sum of the squared residuals is least, hence the name. 

The resulting least squares estimators of b0  and  b1  have a blessedly simple form:
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We can think of the main idea of regression in two simple ways.

1. A point that is 1 standard deviation above the mean in the X-variable is, on average, r standard deviations above the mean in the Y-variable.

2. For each value of X, the regression line goes through the average value of Y.

Watch the accompanying video clip to see a compelling illustration of regression!

[LINK TO VIDEO OF JB EXPLAINING REGRESSION WITH THE STYLIZED SCATTERPLOT]

Example: (Ref: Freedman, Pisani, Purves)

Sir Francis Galton and his disciple Karl Pearson did the pioneering work on regression, in the context of quantifying hereditary influences and resemblances between family members. One study examined the heights of 1078 fathers and their sons at maturity. A scatterplot of the 1078 pairs of values shows a positive linear relationship – taller fathers tend to have taller sons, and shorter fathers tend to have shorter sons. The summary statistics for the data set are as follows:

Mean height of fathers ≈ 68 inches; SD ≈ 2.7 inches

Mean height of sons    ≈ 69 inches; SD ≈ 2.7 inches,  r ≈ = 0.5

Using the least squares estimators we compute:
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Hence the regression equation is: Son’s height = 35 + 0.5 x Father’s height

This is a good time to discuss the regression effect. Consider a father who is 72 inches tall. A naïve prediction would be that, since the mean for all sons is one inch greater than the mean for all fathers, then a 72-inch father could be expected to have a 73-inch son! But that would mean that each generation is one inch taller than the previous! This would only be true if the correlation were perfect. But obviously there are other influences, such as the mother’s height!

Instead, the regression equation takes into account the weak correlation between fathers’ and sons’ heights. Using the regression equation son’s height would be predicted to be: 35 + 0.5x72 = 71 inches. So taller fathers do have taller sons, on average, but not necessarily as far above average.

Freedman et al. explain it this way: “In virtually all test-retest situations, the bottom group on the first test will, on average, show some improvement on the second test – and the top group will, on average, fall back. This is the regression effect. The regression fallacy consists of thinking that the regression effect must be due to something important, not just the spread around the line.” 

A good example of the regression fallacy is the so-called “sophomore jinx” in professional sports. By the way, the expression “regression to mediocrity” is how Galton described this regression effect.

The Simple Linear Regression Model

Least squares estimation deals with the systematic component which addresses the relationship between the predictor and the outcome. But we haven’t discussed the random component present in any statistical model. Here is the simple linear regression model.
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Y is the unknown dependent variable

X is the known independent variables

ε is a random variable representing random error

β0 and β1 are parameters (two of the three in the simple linear regression model; see below for the third)

In order to proceed a number of assumptions must be made about the error term, ε, namely, that it has the properties that it is unbiased, has constant variance (σ2), and is independent and normally distributed.

These assumptions aren’t that new. In a two-sample t-test the two samples are assumed to be independent from one another and normally distributed, and further, to have the same variance in order to use the pooled variance version. These are the same assumptions here. The only additional one is linearity, the straight-line relationship between X and Y!

A convenient way to check the suitability of simple linear regression is to look as the scatterplot. Oval-shaped scatterplots tend to satisfy the regression model assumptions.

There are three parameters in simple linear regression that need to be estimated. We have already estimated the first two β0 and β1. The third is σ2, the constant variance of the error term, is also estimated using least squares. We estimate it by s2, where  s  is the typical distance from an observation to the regression line.

(Recall the first use of “s”, in the univariate case, as the typical distance from an observation to the mean of the variable; here we have a bivariate situation.)

Once again, you’ll never need to compute this by hand, but if you insist, here’s the formula:
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Before proceeding to the inference of regression, recall how the t-test was developed for a population mean µ. We needed to know the sampling distribution of sample mean (which turned out to be normal) and the standard error of the sample mean (which turned out to be s/√n).

Remarkably (or maybe not), a similar thing happens in simple linear regression. The parameter estimates, 
[image: image11.wmf]1

b

 and 
[image: image12.wmf]o

b

, each have normal sampling distributions, with standard errors, respectively: 

SE(
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SE(
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This leads to confidence intervals for β0 and β1….

100(1-α)% CI  for  β1 : 
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100(1-α)% CI  for  β0 : 
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…and hypothesis tests for β0 and β1:

Ho: β1 = 0 

t = 
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Ha: β1 ≠ 0 

P-value = 2 x Pr (t > |tcalc|)

If Ho: β1 = β1*

t = 
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Ho: β0 = 0 

t = 
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Ha: β0 ≠ 0 

P-value = 2 x Pr (t > |tcalc|)

If Ho: β0 = β0*

t = 
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A “good news” note: Statistical software will compute not only the least squares estimates 
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 , but also the SEs, the t-statistics and corresponding P-values, and even, in most cases, 95% confidence intervals.

Question: Why do we need confidence intervals and hypothesis tests for the slope and intercept?

Answer: Actually, the CI and test for the intercept is largely useless! However, the CI and test for the slope is very useful. The test for slope is a determination of whether or not the perceived line is different from the horizontal. That is, whether the non-zero slope is real or can be attributed simply to sampling variation. If you took another sample the same way, would your new set of data still have the same slope? Also if it can be concluded that the slope is really different from zero that means that the X-variable really does help in predicting the Y-variable. Just how much help it is we’ll see shortly. 

Predicting Y:  Now that we have an estimated model, 
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, we can use it for prediction. 

Case 1: Confidence Interval for a Mean Response 

(Predict the mean Y for all units having a particular X-value, called x*)

Case 2: Prediction Interval for a Future Observation

(Predict a single value of Y for a single unit having a particular X-value, called x*)

The point estimates (
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Case 1: Point estimate 
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100(1-α)% CI  for the mean value of Y at a particular value X (x*):
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Case 2: The point estimate is still 
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100(1-α)% PI (prediction int.) for a single value of Y at a particular value X (x*):
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A few comments:

The Prediction Interval is wider than the Confidence Interval because it is harder to estimate precisely a single observation than the mean.

The precision decreases as x* gets further from 
[image: image39.wmf]x

; that is the penalty for extrapolation.

There is a very useful approximation that applies when n is large, and when the prediction is not too far from the middle of the x-values. In that case, a 95% approximate prediction interval can be computed simply as:
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That is, the margin of error for a prediction in simple linear regression is about twice the standard deviation of the regression line. Since the value of s is always reported in regression software output, margins of error are a snap to compute! 

Another test for β1: Analysis of Variance for Regression

We have now developed confidence intervals and hypothesis tests for the model parameters and for prediction. The most important part is probably the hypothesis test for β1 = 0. If the null hypothesis is rejected that means that the predictor variable has a significant (i.e. real) relationship with the outcome variable. 

Where do we go from here? This test works well in simple linear regression but does not generalize perfectly in multiple regression. We need another approach, a method called analysis of variance for regression.

· How can we summarize the sources of variation in the response variable?

· Is the regression worthwhile?

Consider what variation means here. Ask yourself the question, “Why don’t all the Y-values equal the mean value of Y?” The answer is twofold. First, because some Y-values have different X-values; and second, because even if two Y-values have the same X-value, there may be other variables, or simply random error, that explain the difference.

The basic idea of analysis of variance is that the variation can be “partitioned” into the two sources as just described. Here is the algebraic representation:

(*)
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Now, the total variation of y is defined as: 
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(which also happens to be equal to 
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Square both sides of (*) and sum over all the observations. If algebra scares you, close your eyes for the next two lines.
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= 
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Open your eyes again. The partitioned variation can be written as:

Sum of Squares Total = Sum of Squares Model + Sum of Squares Error

Using acronyms this becomes: SST = SSM + SSE

Note that some references call SSM, Sum of Squares Regression, and SSE, Sum of Squares Residual.

Note also that SSE = 
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Now all of this can be summarized in an Analysis of Variance table (the underlined letters lead to the very clever acronym, ANOVA)

	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	F-stat

	Model
	SSM
	1
	MSM=SSM/1
	MSM/MSE

	Error
	SSE
	n-2
	MSE=SSE/(n-2)
	

	Total
	SST
	n-1
	
	


Note: MSE = SSE/ (n-2) = s2  

Ho: β1 = 0
(The model is not worthwhile)

Ha: β1 ≠ 0 
(The model is worthwhile)

Test statistic: F = MSM / MSE

P-value = Pr (F > Fcalc)

F is indexed by two sets of degrees of freedom; one for the numerator and one for the denominator.

Coefficient of Determination (or R-squared) 

R2 = 
[image: image49.wmf]SST

SSM

 = proportion of total variation explained by the model 

Note that R2 can be expressed either as a proportion or a percentage; output reports proportions, but most people prefer percentages, likely because the numbers are bigger, and when it comes to R2, bigger does mean better.

In simple linear regression:

· r2 = R2 (where r is the correlation coefficient) 

· when the numerator degrees of freedom is 1, F1,k = tk2, so the t-stat for testing β1 = 0 is the square root of the F-stat for testing β1 = 0.)

Computational Formulas (for desert island data analysis only):
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Residual Plots – used to assess fit and assumptions

You will recall that the third stage of model-building is validation; that is, checking that the estimated model really does a good job of “fitting” the data. One way to do this is to examine the residuals, defined previously as: 
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. The residuals can be used to check the fit and the adequacy of the assumptions. The easiest way to use the residuals is to plot them. There are three types of residual plots:

1. Plot 
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2. Plot 
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3. Plot 
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 versus i  (called a time order plot)

The ideal residual plot is a horizontal band around the x-axis with approximately equal scatter on either side of the axis. Other patterns can indicate: skewness, curvature (non-linearity), non-constant variance, outliers, errors in computations.

There is also a whole set of quantitative techniques for analyzing residuals, called regression diagnostics. Although this is beyond the scope of this course, I encourage to think investigate them.

Example of Simple Linear Regression (Adapted from Moore and McCabe)

How well does the number of beers consumed predict blood alcohol content? Sixteen volunteers at the Belltown pub drank a randomly assigned number of cans of beer. Thirty minutes later, a police officer measured their blood alcohol content (BAC). The volunteers were equally divided between men and women and differed in weight and usual drinking habits. Because of this variation, many don’t believe that number of drinks predicts blood alcohol well. The data set follows.

Student    1     2     3     4     5     6     7     8

Beers      5     2     9     8     3     7     3     5

BAC       0.10  0.03  0.19  0.12  0.04  0.095 0.07  0.06

Student    9    10    11    12    13    14    15    16

Beers      3     5     4     6     5     7     1     4

BAC       0.02  0.05  0.07  0.10  0.085 0.09  0.01  0.05

Click here to see what the output from a simple linear regression using Excel would look like. 

[ADD A LINK TO THE SPREADSHEET beer.xls]

What do you conclude from the analysis?

Summary of important points in simple linear regression

R-squared is a useful one-number summary of the goodness of fit of the model. It is the proportion (or percentage) of variation in the outcome explained by the predictor variable.

The F-test in the ANOVA table is a test of whether the model is worthwhile, which in the case of simple linear regression is a test of whether the slope is zero or not. A non-zero slope means that the predictor variable is indeed related to the outcome. Regression software output reports a P-value so you can evaluate the test.

The equation of the estimated regression line is: 
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, where the estimated coefficients are computed using least squares and can be read directly from the output. Confidence intervals and hypothesis tests for the slope and intercept can also be read from the output. Note that the t-test for the slope is equivalent to the F-test from the ANOVA table, since both are tests for zero slope. In fact, if you square the t-statistic you get the F-statistic, and of course the P-values will be the same.

To check the assumptions required in simple linear regression, plot a scatterplot to check linearity, a histogram of the outcome variable to check normality, and a residual plot to check constant variance.

We have now finished our discussion of simple linear regression. It took some time, but ALL the concepts and techniques of simple regression extend easily and conceptually simply to multiple regression. Here goes….!

Multiple Linear Regression

Multiple Linear Regression addresses the situation of one measurement outcome variable, but many predictor variables, mostly measurement scale, but some categoric variables as well. We begin with the multiple linear regression model.
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p = # of X-variables

This is a linear combination of the β‘s: that’s why it’s called multiple LINEAR regression!

The model has a single dependent variable Y (measurement scale), and multiple independent predictor variables X1,…,Xp. You can see how this is an extension of the simple linear regression model. All that has changed is that the systematic component in the model involves a combination of predictor variables, not just one. But the outcome variable on the left-hand side and the error term on the right-hand side remain the same as before.

The Basic Question:

What set of independent variables provides a “good” explanation of the variation in Y?

OR:

How much further reduction in the remaining variation in Y is there as a result of including a particular variable in the model?

The assumptions are the same as in simple linear regression: “Linearity” (here a linear combination of the β‘s, not a straight line), constant variance, normality, and independence. (Nothing new to learn here!)

The data can be displayed as follows:

	Obs. #
	Y
	X1
	…
	Xp

	1
	y1
	x11
	…
	x1p

	2
	y2
	x21
	…
	x2p

	.
	.
	.
	…
	.

	n
	yn
	xn1
	…
	xnp


Depending on your background you can called this display of data a matrix, an array, a spreadsheet, a table, or a data set. It, too, looks like the data set for simple regression except that there are more columns, corresponding to the additional X-variables.

Once again, we use the method of least squares to solve a system of equations to get bo, b1, … bp   as estimates of βo, β1, …  βp . You will never be required to compute these by hand, not even on a desert island! Use software to get the fitted regression equation (once you get voted off the island!).

The estimated regression equation is: 
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Residuals are defined just as they were in simple linear regression: 
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(The change is that the denominator is n–p–1 instead of n–2. That’s because there are p X-variables instead of 1.

The ANOVA table looks familiar, but with minor changes in the Degrees of Freedom column.

	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	F-stat

	Model
	SSM
	P
	MSM=SSM/p
	MSM/MSE

	Error
	SSE
	n-p-1
	MSE=SSE/(n-p-1)
	

	Total
	SST
	n-1
	
	


R-squared is now formally called the Coefficient of Multiple Determination, but is defined the same way:

R2 = 
[image: image64.wmf]SST
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 = proportion of total variation explained by the model 

The hypotheses being tested by the F-stat are:

Ho: β1 = β2 = … = βp = 0
(The model is not worthwhile; none of the X-variables

has any explanatory power or value))

Ha: at least one βj  is not 0 
(The model is worthwhile; there are some

valuable X-variables somewhere in the model)

(Note: Do not write: Ha: β1 ≠ β2 ≠ … ≠ βp ≠ 0 ! This says that ALL the β’s are needed in the model.!

Test statistic: F = MSM / MSE

P-value = Pr (F > Fcalc)

Before going further, let’s look at the output from a multiple regression analysis.

Example: Patient Satisfaction

An administrator at Belltown C&W Hospital wanted to study the relationship between patient satisfaction and patient’s age, severity of illness and anxiety level. She randomly selected 23 patients and collected the data present below. Larger values represent more satisfaction, increased severity and higher anxiety.

   ID  Satisfaction  Age   Severity   Anxiety

    1       48        50       51       2.3

    2       57        36       46       2.3

    3       66        40       48       2.2

    4       70        41       44       1.8

    5       89        28       43       1.8

    6       36        49       54       2.9

    7       46        42       50       2.2

    8       54        45       48       2.4

    9       26        52       62       2.9

   10       77        29       50       2.1

   11       89        29       48       2.4

   12       67        43       53       2.4

   13       47        38       55       2.2

   14       51        34       51       2.3

   15       57        53       54       2.2

   16       66        36       49       2.0

   17       79        33       56       2.5

   18       88        29       46       1.9

   19       60        33       49       2.1

   20       49        55       51       2.4

   21       77        29       52       2.3

   22       52        44       58       2.9

   23       60        43       50       2.3

Click here to see what the output from a simple linear regression using Excel would look like. 

[ADD A LINK TO THE SPREADSHEET patsat.xls]

What do you conclude from the analysis?

You will have noticed another summary statistic in the regression output called the Adjusted R2. It is an alternative measure of the “goodness of fit” of the model. Here is how the adjustment works.

R2 = 
[image: image65.wmf]SST

SSM

 = proportion of total variation explained by the model 

Adjusted R2 = 
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The adjustment is for the complexity of the model. Although R2 cannot be maximized (since adding terms to the model will never decrease R2), the Adjusted R2 can be optimized.

More on Multiple Regression

1. Principle of Parsimony

Use the simplest model that still provides an adequate fit. Einstein said it best, “Everything in science should be made as simple as possible, but not simpler.” If you remove the words “in science”, you’re left with a marvellous motto to live by!

2. The Danger of Multicollinearity

Adding more explanatory variables will most certainly increase the R-square value, and hence increase the apparent “goodness of fit”. How does this reconcile with the principle of parsimony? Should you aim for the smallest adequate model or the model that gives you the largest R-square? The following illustration underscores the primacy of the principle of parsimony. (Impressive alliteration, don’t you think?)

Example: In this pathetically small data set, there are only four data points and two predictor variables.

	X1
	X2
	Y

	2
	6
	23

	8
	9
	83

	6
	8
	63

	10
	10
	103


Consider the following two possible estimated regression models:

·  
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Both models give the same computed predicted values of Y. The table becomes:

	X1
	X2
	Y
	Predicted Y

	2
	6
	23
	23

	8
	9
	83
	83

	6
	8
	63
	63

	10
	10
	103
	103


Why do both regression equations fit the data perfectly? Because X1 and X2 are perfectly correlated: 
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This is a case of perfect multicollinearity. All the information in X1 is duplicated in X2. The result is that the parameter estimates cannot be trusted.

In practice X-variables are unlikely to be perfectly correlated, but they can have very high correlations. That is, much of the information in one predictor variable is contained in another one or combination of other ones. A good model, therefore, is one where each of the predictor variables adds unique predictive information. Multicollinearity can be thought of as predictor variable redundancy.

3. The Extra Sum of Squares Principle

T-tests in multiple regression are tests of each variable as “the last predictor into the model”; that is, how much new or extra information comes from a particular variable given that all the other variables are in the model? 

In order to build a multiple regression model with t-tests, only one variable can be added or removed at a time. Is there a way to compare two models where one is a much smaller subset of the other? That is, can you test whether two or more predictor variables can be dropped at the same time? For example, is 
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 an improvement over 
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We need another F-test to compare Full and Reduced Models.

How much extra sum of squares is explained by X2 given that X1 is already in the model?
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We can easily extend this idea. The extra SS that the Full Model explains over and above the Reduced Model is:
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Full Model: 
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Reduced Model: 
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, where q < p

(Note: The Reduced Model must be a subset of the Full Model).

This leads to the F-test to compare Full and Reduced Models:

Ho: βq+1 = … = βp = 0
(The reduced model is adequate)

Ha: at least one of βq+1 ,…, βp  is not 0 
(The reduced model is not adequate; it discards some worthwhile predictors; therefore, it is better to keep the full model rather than this reduced model.)

The test statistic is:
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Note that p – q  is the number of extra variables in the Full Model that are not in the Reduced Model.

Here is another version of the F-statistic:
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Note that you need to compute these F-statistics yourself, because they depend on your choice of Reduced Model. In fact, you need to regression outputs to compute this. From the output for the Full Model you need the SSM(Full) and MSE(Full), and from the output for the Reduced Model you need only one number, the SSM(Reduced). Some assembly is required! 

Example: Patient Satisfaction, continued

Applications and Extensions of Multiple Regression

Polynomial Regression

Multiple regression can be used to analyze smooth curvilinear relationships between the response variable and a single predictor or to add “curvature” to multiple linear regression models.

One independent variable:
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That is, use multiple regression with  
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Several independent variables; for example, a “complete” second-order model in two predictor variables:
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Indicator (Dummy) Variables

Indicator (dummy) variables are binary (0/1) variables that provide a way to incorporate categoric predictor variables into the multiple regression model.

Example 1. Two hospitals, A, B, that could produce different response levels.

Add an indicator variable Z, where: Z = 0, for hospital A; Z =1, for hospital B
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This model is really two sub-models, one for each hospital:
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for hospital A
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for hospital B

Example 2. Three hospitals, A, B, C, that could produce different response levels.

This situation requires TWO indicator variables.

Indicator variable Z1, where: Z1 = 1, for hospital A; Z1 =0, otherwise

Indicator variable Z2, where: Z2 = 1, for hospital B; Z2 =0, otherwise

Note that Z1 = 0 AND Z2 =0 corresponds to hospital C
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This model is really three sub-models, one for each hospital:
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for hospital C
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for hospital B
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for hospital A

H0: “No hospital effect” corresponds to 
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General Result: If a categoric variable has k categories, then k-1 dummy variables are needed.

Example 3. So far, the resulting models are additive. Non-additive (multiplicative) models can be modeled by including interaction terms involving indicator variables.

Consider a single measurement scale predictor X and a categoric predictor with three categories.
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The terms XZ1 and XZ2 are called interaction terms.

This model also has three sub-models, one for each hospital:
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for hospital A  (Z1=1, Z2=0)


[image: image91.wmf]e

b

b

b

b

+

+

+

+

=

X

Y

)

(

)

(

5

1

4

0



for hospital B  (Z1=0, Z2=1)
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for hospital C  (Z1=0, Z2=0)

Test for any hospital effect:
H0: 
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Test for parallel lines:

H0: 
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(i.e. the difference between hospitals is independent of the X-variable)

One-Way ANOVA (Comparison of two or more means)

Recall that a two-sample t-test to compare the means of two independent populations can also be thought of as a statistical model with one measurement scale outcome variable and one binary categoric predictor variable. Since we now know how to use indicator variables for categoric predictor variables in regression we could even use regression in this situation. That is, the model would have one indicator predictor variable – that’s all!

What would you do if you wanted to compare the means of three independent populations? A crude solution would be to compare each pair of means with a series of three two-sample t-tests – that is, compare 1 to 2, 1 to 3 and 2 to 3. But that’s inefficient and prone to misinterpretation. A better solution would be to multiple regression with two indicator predictor variables. But that amounts to using a “power tool” when a simpler “hand tool” would suffice. The third solution is to use one-way analysis of variance.

You’ve seen the term analysis of variance before, so what exactly is the difference between simple linear regression and analysis of variance?

Regression assumes a linear relationship between the means of Y at each X. One-way ANOVA addresses the question of whether the means of Y at various X’s are different, but not necessarily in a simple linear relationship.

Do not confuse One-Way ANOVA with ANOVA in Regression. The common part of the name – ANOVA – represents the analysis of variance table that summarizes the computations. The “one-way” refers to the fact that we have classified the observations in one “way”, according to one categoric variable.

Data and parameters:

	Samples

	1
	2
	…
	k
	

	Y11
	Y21
	…
	Yk1
	

	Y12
	Y22
	…
	Yk2
	

	-
	-
	…
	-
	

	-
	-
	…
	-
	

	-
	-
	…
	-
	

	Y1n1
	Y2n2
	…
	Yknk
	

	____
	____
	____
	____
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	Sample Means

	s1
	s2
	…
	sk
	Sample SDs

	μ1
	μ2
	…
	μk
	Pop. Means

	σ1
	σ2
	…
	σk
	Pop. SDs


We also define the Overall Mean (also called Grand Mean) = 
[image: image98.wmf]Y

=
[image: image99.wmf]T

ij

n

Y

å

å


where 
[image: image100.wmf]T

n

 is the total number of observations

H0: 
[image: image101.wmf]k

m

m

m

=

=

=

L

2

1


H0: at least one 
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The main idea: Compare variance across the means with variance within the samples.

We will partition total variation just as in regression.

SST 
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SST     = SSFactor    + SSE

Note: SSFactor is also called SSGroup or SSTreatment (abbreviated as SSTrt); this looks just like the result in regression except that SSFactor is used instead of SSModel.

Again we summarize this in a One-Way ANOVA Table:

	Source of Variation
	Sums of Squares
	Degrees of Freedom
	Mean Square
	F-ratio

	Treatment/Factor
	SSTrt
	k-1
	MSTrt
	MSTrt/MSE

	Error
	SSE
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	Total
	SST
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Test Statistic: F = MSTrt/MSE  (= Fcalc)

Reject H0 if Fcalc > Fα; k-1, 
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Note:  If k=2; Fk-1, 
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So, MSE = Sp2   and the test becomes the pooled variance two-sample t-test.

The assumptions of one-way analysis of variance will look rather familiar: normality, constant variance, and independence. These are the same as in the two-sample t-test, and, with the exception of not needing the linearity assumption, the same as in regression.

To check the assumptions, compute the residuals  
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 , plot a histogram and a residual plot of the residuals.

Why is one-way ANOVA preferred over a series of two-sample t-tests?

1. When multiple tests are performed, each with a 0.05 chance of a Type I error (i.e. the level of significance), the chance of a Type I error somewhere increases dramatically. So you could be quite likely to get spurious significance; that is, conclude that a difference is real, when, in fact, it isn’t.

2. When two-sample t-tests are used, the estimate of the error variance, the pooled variance, uses only the two samples being compared, and this estimate will change in the next t-test. One-way ANOVA uses a pooled estimate from ALL the samples.

3. You get a single omnibus test which answers the question, “Is there ANY difference among group means?”

Post hoc Analysis (Multiple Comparisons)

The previous Point 3 leads to the following. If the F-test of H0: 
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 is rejected, we know that not all the means are equal. But we don’t yet know exactly which ones are different. For this we do a post hoc analysis using techniques called multiple comparisons. There are many to choose from but we will use only one due to R.A. Fisher (the same man for whom the F-distribution is named).

Fisher’s Least Significant Difference (LSD) Method”

To test whether H0: 
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 (for any i and j), compare sample means as follows:

Reject H0  if 
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Example: An ergonomist compiled data on productivity improvements last year for a sample of healthcare institutions. The firms were classified according to the level of their average expenditures on workplace health and safety (H&S Exp.) in the past three years (low, moderate, high). Data from the study are given below; note that productivity improvement is measured on a scale from 0 to 100.

Firm #:       1    2    3    4    5    6    7    8    9   10   11   12

H&S Exp.

1 Low        7.6  8.2  6.8  5.8  6.9  6.6  6.3  7.7  6.0

2 Moderate   6.7  8.1  9.4  8.6  7.8  7.7  8.9  7.9  8.3  8.7  7.1  8.4

3 High       8.5  9.7 10.1  7.8  9.6  9.5

Test whether or not mean productivity improvement differs according to the level of H&S expenditure. If so, what is the nature of the relationship? 

Table of Means, Standard Deviations and Sample Sizes

H&S Exp.         Mean      SD      n

1 Low           6.878    0.814     9

2 Moderate      8.133    0.757    12

3 High          9.200    0.867     6

ANOVA Table

SOURCE         SS      DF       MS        F

H&S Exp.     20.125     2    10.0625    15.72

Error        15.362    24     0.6401

Total        35.487    26
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Ha: at least one mean is different

F = 15.72 ; F.05;2,24 = 3.40, hence P-value < 0.01

Conclusion: There is strong evidence that not all the means are equal. In fact, higher H&S expenditure is associated with higher productivity.

A compendium of additional statistical techniques

Two-Way ANOVA 

One-way Analysis of Variance was first introduced as an extension to the two-sample t-test for the case when three or more means are to be compared. But we also saw that it could be thought of as a statistical model with one measurement scale outcome variable and one categoric predictor variable (with 2 or more categories). 

We can further extend this to the case where there are two categoric predictor variables. Although this situation can also be handled with multiple regression, using indicator variables, there is a simpler computational and interpretational way to do it. Two-way Analysis of Variance means that the observations are classified in two ways. It allows assessment not only of the “main” effect of each of the two categoric classification variables on the outcome, but also any interaction effect. 

For example, suppose a study is undertaken to examine the effect of length of break between classes and the presence of vending machines on the attentiveness of high school students at Belltown High. Three lengths of break (5, 10, and 15 minutes) are tested over six months, three without vending machines and three with vending machines. Random samples of 20 students in each of the six months are given a test of “attentiveness”. Two-way analysis of variance will compare the mean attentiveness for each of the break durations, compare means attentiveness with and without vending machines, and then assess whether the means for each break duration are dependent on whether there are vending machines. This is the interaction effect.

A two-way analysis of variance is better than two one-way analyses of variance precisely because of the ability to test for interactions. It may be that a 15 minute break is the best, but only if there are no vending machines, while a 5-minute break is best if there are vending machines, because the time is too short to be distracted by the bewildering array of junk food!

Two-way Analysis of Variance is part of a larger set of designs and analyses called factorial analysis of variance. However, rarely in practice do researchers go beyond two factors. Higher-way ANOVA is possible to compute, but much harder to interpret.

There are also variations in two-way analysis of variance. One common design is called a Randomized Block Design. It is like two-way analysis of variance but without the interaction effect. You will know from the “design” stage of your research whether you will need a randomized block analysis.

Analysis of Covariance

Analysis of variance methods handle categoric predictor variables, while regression methods are best at handling measurement scale predictor variables. Each of these methods arose under very different historical circumstances. Regression originated with Sir Francis Galton in his studies of heredity. Analysis of Variance has its roots (pun intended) in agricultural experimental design. 

Frequently in experimental design situations, where analysis of variance is the analytic technique, the researcher may want to “adjust” for differences in the experimental units. Those differences are usually expressed as a measurement variable. One previously widely used approach was Analysis of Covariance. The main idea was to use linear regression to adjust the observations on the basis of a variable that “co-varies” along with the categoric variables of interest. For example, to test the effect of three types of dietary advice and the effect of gender on blood cholesterol, the researcher may also want to include the effect of body mass index as a covariate.

Analysis of Covariance is used much less often now, and has been replaced by multiple regression. The reason is that if the predictors include a combination of measurement and categoric variables regression is much more flexible that analysis of covariance. The effects of all the predictors are assessed the same way, so interpretation is easier too. And, since computing power is vastly greater than in the old days, the algebraic convenience of analysis of covariance is unnecessary.

Repeated Measures ANOVA

In all the ANOVA techniques to date, the samples have been independent. A two-sample t-test requires two independent samples. A one-way ANOVA requires two or more independent samples. But frequently in research each subject or experimental unit is measured repeatedly.

You have seen this situation once before, in the paired t-test situation (Quant. Analysis Module 1). In that case, each subject provides a before and an after measurement, and the key outcome variable is the change or difference from before to after.

Just as One-way ANOVA was an extension of the two-sample t-test to the case of more than two means, repeated measures ANOVA is an extension of the paired t-test to more than two repeated measurements.

For example, you may be interested in the effect of an active treatment versus placebo on Belltown’s mean HgA1c before Krusty Kreme Donuts opened and then at 3 months, 6 months and 12 months after opening.

Repeated measures ANOVA can be combined with multi-way analysis of variance for all kinds of fancy analysis. Measurements that are repeated are called “within-subjects” factors. Measurements on different subjects are called “between-subjects” factors. In the previous example, there is only one “within-subjects” factor, namely, time (0, 3, 6, and 12 months). There are no “between-subjects” factors. If you also wanted to compare males and females in Belltown, then sex would be a “between-subjects” factor (double-entendre intended!).

Here is an example of a complicated design. Forty physicians, 20 males (10 paediatricians and 10 family doctors) and 20 females (10 paediatricians and 10 family doctors) undergo a 6-session training course for improving bedside manner. Three raters watch them during rounds before the training and then again after the training, and each rater provides a rating on a “doctor-patient interaction” scale. The before and after training aspect of the design is one kind of repeated measure; the three ratings of each doctor is another kind of repeated measure. And the differences between sexes and between the types of physician are two “between-subjects” factors.

Repeated measures ANOVA is usually used in combination with simpler techniques: paired t and two-sample t-tests, and one-way analysis of variance. Consult with an expert for help in interpreting output from repeated measures ANOVA.

Logistic Regression

The table at the beginning of this Module included models when the outcome variable is binary; these were called simple and multiple logistic regression. Logistic regression is actually an advanced nonparametric statistical procedure but it looks a great deal like regular linear regression.

Consider an outcome variable Y with only two values, such as success or failure, live or die, yes or no. If the values are denoted by 1 and 0, then the mean value of Y is actually just the proportion of 1s, which we denoted by p, just as before.

There are three main reasons why ordinary linear least squares regression is not suitable here. First, the outcome variable is obviously not normally distributed (How can it be? There are only 2 values!). Second, the variance of the outcome variable depends on the value(s) of the predictor variables(s) and hence is not constant. And third, there is not guarantee that the least squares estimated value of p will fall between 0 and 1, but it must because it represents a probability, namely, the probability of getting a “yes” or “success” outcome!

Instead of working with proportions, logistic regression works with odds. The odds is the proportion of one outcome divided by the proportion of the other outcome.
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The odds gives us a convenient way to model the relationship between p and X. We take the logarithm of the odds and set it equal to the linear function of the X-variable to get the following logistic regression model.

The logistic regression model is:  
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Unlike linear regression, which uses least squares to estimate the parameters β0 and β1, logistic regression uses a method called maximum likelihood. The details are necessary for you to use this technique. Simply rely on your software package. 

The software will also produce confidence intervals and hypothesis tests for β0 and β1 just as in simple linear regression. Rejecting the null hypothesis of β1  = 0 means that there is a statistically significant relationship between the X-variable and the binary outcome Y-variable.

Once the model has been fit and tested it can be used to estimate the probability of a “success” for any given value of X, by solving for p as follows. 
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A special case happens when X is also a binary (0/1) variable. In that case exp(b1) can be interpreted as an odds ratio. For example, if the outcome is lung cancer (Yes or No, coded as 1 or 0) and the predictor is smoking(Yes or No, coded as 1 or 0), then exp(b1) can be interpreted as the number of times higher the risk is of getting lung cancer as smoker compared with the risk of getting lung cancer as a non-smoker.

Simple logistic regression can be extended to multiple logistic regression analogously to the extension of simple linear regression to multiple linear regression. It provides a powerful modelling technique for assessing the joint effect of many predictor variables (measurement and categoric) on a binary outcome.

Factor Analysis

Factor analysis is a technique that comes under the general heading of “methods of data reduction.” It was developed by psychometricians as a method of uncovering a smaller number of latent variables or “factors” from a larger set of measured variables. You have been the unwitting beneficiary of this technique when you have a measure of depression, anxiety, satisfaction, social support, cognitive ability, etc. These concepts cannot easily be measured directly. Instead they are measured indirectly. For example, to measure satisfaction with hospital stay, patients are asked a series of 20 items about specific aspects of the stay – admitting, food, nursing care, bathroom facilities, noise, smells, etc. Each item is assessed on a 5-point scale from “very dissatisfied” to “very satisfied”. By summing up all 20 items you can get an overall measure of satisfaction. But there may also be subscales of interest. Some items may refer to physical environment, others to interactions with hospital staff. Factor analysis is a technique to find those subscales. 

There are many synonyms for a factor: we already mentioned “latent variable”. Others include: construct, domain, dimension, component, and subscale. The underlying model is complicated and the procedures for “extracting” the factors feels a bit like magic. The basic idea is to collect variables that are most highly correlated with one another. The thinking is that if high scores on one variable go along with high scores on another, perhaps they are measuring the same thing.

The hard part of factor analysis comes after the algorithm has extracted the factors. You then need to name the factors and decide if the variables that comprise a factor actually make sense. Johnson and Wichern explain it this way. “The criterion for judging the quality of any factor analysis… seems to depend on a WOW criterion. If, while scrutinizing the factor analysis, the investigator can shout, ‘Wow, I understand these factors,’ the application is deemed successful.

You will only need to consider using factor analysis if you are designed a new tool to measure an outcome or predictor of interest. Factor analysis is therefore an important technique in “tool development.”

=============

The last words:

If you’ve made it this far, congratulations! In the two quantitative analysis modules we have covered most of the curriculum of two full courses in statistics! My hope is that you have got a bit of the flavour of the applied statistics and the vast array of possibilities in the understanding of quantitative data. Don’t be frightened by the vastness. Just remember the basic principles, and, when in doubt, ask a professional. 

In spite of the length of these modules, there are still other techniques we haven’t discussed, among them, survival analysis, time series, agreement and association in two-way tables. But you are well-equipped for most of what you’ll encounter in your research. Good luck and happy analyzing!
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