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Abstract

This paper reviews a variety of alternative approaches to the specification of
the expectations of economic decisionmakers in dynamic models, and reconsid-
ers familiar results in the theory of monetary and fiscal policy when one allows
for departures from the hypothesis of rational expectations. The various ap-
proaches are all illustrated in the context of a common model, a log-linearized
New Keynesian model in which both households and firms solve infinite-horizon
decision problems; under the hypothesis of rational expectations, the model re-
duces to the standard “3-equation model” used in studies such as Clarida et
al. (1999). The alternative approaches considered include rationalizable equi-
librium dynamics (Guesnerie, 2008); restricted perceptions equilibria (Branch,
2004); decreasing-gain and constant-gain variants of least-squares learning dy-
namics (Evans and Honkapohja, 2001); rational belief equilibria (Kurz, 2012);
and near-rational expectations equilibria (Woodford, 2010). Issues treated in-
clude Ricardian equivalence; the determinacy of equilibrium under alternative
interest-rate rules; non-fundamental sources of aggregate instability; the trade-
off between inflation stabilization and output-gap stabilization; and the possi-
bility of a “deflation trap.”
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A crucial methodological question in macroeconomic analysis is the way in which

the expectations of decisionmakers about future conditions should be modeled. To the

extent that behavior is modeled as goal-directed, it will depend (except in the most

trivial cases) on expectations; and analyses of the effects of alternative governmental

policies need to consider how expectations are endogenously influenced by one policy

or another. Finding tractable ways to address this issue has been a key challenge

for the extension of optimization-based economic analysis to the kinds of dynamic

settings required for most questions of interest in macroeconomics.

The dominant approach for the past several decades, of course, has made use of

the hypothesis of model-consistent or “rational expectations” (RE): the assumption

that people have probability beliefs that coincide with the probabilities predicted

by one’s model. The RE benchmark is a natural one to consider, and its use has

allowed a tremendous increase in the sophistication of the analysis of dynamics in the

theoretical literature in macroeconomics. Nonetheless, the assumption is a strong one,

and one may wonder if it should be relaxed, especially when considering relatively

short-run responses to disturbances, or the consequences of newly adopted policies

that have not been followed in the past — both of which are precisely the types of

situations which macroeconomic analysis frequently seeks to address.

While the assumption that an economy’s dynamics must necessarily correspond to

an RE equilibrium may seem unjustifiably strong — and under some circumstances, is

a heroic assumption indeed — it does not follow that we should then be equally willing

to entertain all possible assumptions about the expectations of economic agents. It

makes sense to assume that expectations should not be completely arbitrary, and

have no relation to the kind of world in which the agents live; indeed, it is appealing

to assume that people’s beliefs should be rational, in the ordinary-language sense,

though there is a large step from this to the RE hypothesis.1 We should like, therefore,

to replace the RE hypothesis by some weaker restriction, that nonetheless implies a

substantial degree of conformity between people’s beliefs and reality — that implies,

at the least, that people do not make obvious mistakes.

The literature has explored two broad approaches to the formulation of a criterion

for reasonableness of beliefs that is weaker than the RE hypothesis. One is to assume

that people should correctly understand the economic model, and be able to form

correct inferences from it about possible future outcomes. The other is to assume that

that the probabilities that people assign to possible future outcomes should not be too

1This is stressed, for example, by Kurz (2012, p. 1).
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different from the probabilities with which different outcomes actually occur, given

that experience should allow some acquaintance with these probabilities, whether

or not people understand how these outcomes are generated. The former approach

supposes that beliefs should be refined through a process of reflection, independent

of experience and not necessarily occurring in real time, that Guesnerie (1992) calls

eduction, while the latter supposes that beliefs should be refined over time through a

process of induction from observed outcomes. Section 2 discusses the first approach,

while examples of the second approach are taken up in sections 3 and 4.

Within the category of inductive approaches, one may distinguish two important

sub-categories. A first class of approaches specifies the beliefs that should be regarded

as reasonable by specifying the patterns that people should be able to recognize in the

data on the basis of the rationality of the procedure used to look for such patterns. A

different class of approaches specifies a degree of correspondence between subjective

and model-implied probabilities that should be expected, without explicitly modeling

the process of inference through which such beliefs are formed. The first class of

approaches (models of econometric learning) is treated in section 3, while the second

class (theories of partially or approximately correct beliefs) is taken up in section 4.

The different possible approaches to the specification of expectations are compared

by illustrating the application of each in the context of the same general framework

for macroeconomic analysis, introduced in section 1. In each case, it is shown that

one can demand that the specification of beliefs satisfy quite stringent rationality

requirements without, in general, being able to conclude that the predictions of the

RE equilibrium analysis must obtain. I shall consider in particular the consequences

of alternative specifications of expectations for several familiar issues: the conditions

under which an interest-rate rule for monetary policy should be able to maintain a

stable inflation rate; the nature of the trade-off between inflation stabilization and

output stabilization; and the effects of the government budget on aggregate demand.

1 Temporary Equilibrium in a New Keynesian Model

I begin by introducing a framework for analysis of the determinants of aggregate

output and inflation, in which subjective expectations can be specified arbitrarily, in

order to clarify the role of alternative specifications of expectations. It allows the

effects of both monetary and fiscal policies to be considered, along with a variety of
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types of exogenous disturbances to economic “fundamentals” and possible shifts in

expectations. The model is one in which households and firms solve infinite-horizon

optimization problems, as in the DSGE models commonly used for quantitative policy

analysis; in fact, under the assumption of rational expectations, the model presented

here corresponds to a textbook New Keynesian model of the kind analyzed in Clarida

et al. (1999), Woodford (2003, chap. 4), Gali (2008, chap. 3), or Walsh (2010, chap.

8). Essentially, the goal of this section is to show how “temporary equilibrium” anal-

ysis of the kind introduced by Hicks (1939) and Lindahl (1939) and further developed

by Grandmont (1977, 1988) — in which a general competitive equilibrium is defined

at each point in time, on the basis of the (independently specified) expectations that

decisionmakers happen to entertain at that time — can be extended to a setting

with monopolistic competition, sticky prices, and infinite-horizon planning, for closer

comparison with the conclusions of conventional macroeconomic analysis. Some of

the best-known conclusions from RE analysis of the model are also recalled, as a basis

for comparison with the conclusions from alternative specifications of expectations in

the later sections.

1.1 Expectations and Aggregate Demand

The economy is made up of a large number of identical households, and a large

number of firms, each of which is the monopoly producer of a particular differentiated

good, with each household owning an equal share of each firm.2 At any point in

time, a household has an infinite-horizon consumption (and wealth-accumulation)

plan from that date forward, which maximizes expected discounted utility under

certain subjective expectations regarding the future evolution of income and the rate

of return on saving; and the household’s expenditure at that date is assumed to be the

one called for by the plan believed to be optimal at that time. (The household may

or may not continue to execute the same plan as time passes, depending on what is

assumed about how expectations change.) While I wish for now to leave the subjective

expectations unspecified, the expectations held at any date represent a well-behaved

probability measure over possible future evolutions of the state variables. Because I

2These and other aspects of the model structure are explained in more detail in Woodford (2003).

Here I focus only on the points at which an alternative model of expectations requires a generalization

of the standard exposition.
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shall not assume that subjective expectations are necessarily model-consistent, they

are not necessarily the same across households; nor shall I necessarily assume that a

household’s later expectations are those that it previously expected to hold.

To simplify, I shall assume that the only traded asset is riskless nominal one-

period government debt.3 I shall further assume that households have no choice but

to supply the hours of work that are demanded by firms, at a wage that is fixed by

a union that bargains on behalf of the households. A household then has a single

decision each period, which is the amount to spend on consumption. Because its

nonfinancial income (the sum of its wage income and its share of the profits of the

firms) is outside its control, in order to analyze optimal expenditure, we need only

specify households’ expectations regarding the time path of their total nonfinancial

income. If an equal amount of work is demanded from each household at the wage

fixed by the union, and households similarly each receive an equal share of the profits

of all of the firms,4 then each household’s nonfinancial income will be the same each

period, and equal to its share of the total value of output in that period; hence we

can equivalently specify nonfinancial income expectations as expectations regarding

the path of output.

A household’s perceived intertemporal budget constraint then depends only on its

expectations about the path of aggregate output, the path of aggregate tax collections

(also assumed to be levied equally on each household), and the real return on the

one-period debt. The consumption planning problem for an individual household at

a given point in time is then the familiar one faced by a household with rational

expectations and an exogenously given income process (discussed, for example, in

Deaton, 1992), and the solution is correspondingly the same, except with subjective

probabilities substituted for objective ones.5

3In many RE analyses, with a representative household and fiscal policy assumed to be Ricardian

(in the sense defined in Woodford, 2001), the model dynamics are unaffected by allowing additional

financial markets or even issuance of other types of government debt. The restriction to one-

period debt is no longer innocuous, however, once one allows for more general hypotheses regarding

expectations, as shown for example in Eusepi and Preston (2012b). Nonetheless, I here consider

only the most simple case.
4Equity ownership shares are assumed for simplicity to be non-tradeable.
5Note that the log-linear theory of aggregate demand derived here is the same as in a model

where households are assumed simply to have an exogenous endowment of the consumption good,

like that of Guesnerie (2008).
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I shall log-linearize this and other structural relations of the model around a deter-

ministic steady state, in which (i) all exogenous state variables are forever constant,

(ii) monetary and fiscal policy are specified to maintain a constant zero rate of infla-

tion and some constant positive level of public debt, and (iii) all subjective expecta-

tions are correct (i.e., households and firms have perfect foresight). The log-linearized

relations accordingly represent an approximation to the exact model, applying in the

case that exogenous disturbances are sufficiently small, monetary and fiscal policies

are sufficiently close to being consistent with this steady state, and expectational

errors are sufficiently small.

A log-linear approximation to the consumption function takes the form

cit = (1− β)bit +
∞∑
T=t

βT−tÊi
t {(1− β)(YT − τT )− βσ(iT − πT+1)

+(1− β)sb(βiT − πT )− β(c̄T+1 − c̄T )} . (1.1)

Here cit is total real expenditure by household i (on all of the differentiated goods)

in period t, measured as a deviation from the steady-state level of consumption, and

expressed as a fraction of steady-state output; bit is the value of maturing bonds carried

into period t by household i, deflated by the period t− 1 price level (rather than the

period t price level) so that this wealth measure is predetermined at date t − 1;6 Yt

is the deviation of aggregate output from its steady-state value, as a fraction of that

steady-state value; τ t is net tax collections, also measured as a deviation from the

steady-state level of tax revenues and expressed as a fraction of steady-state output;

it is the riskless one-period nominal interest rate on debt issued in period t; πt is

the inflation rate between periods t − 1 and t; and c̄t is an exogenous shock to the

utility from consumption in period t. In addition, 0 < β < 1 is the utility discount

factor, σ > 0 measures the intertemporal elasticity of substitution, and sb > 0 is the

steady-state level of government debt, expressed as a fraction of steady-state output.

The notation Êi
t{·} indicates the expected value of the terms in the brackets,

under the subjective expectations of household i in period t. The bit and YT−τT terms

then represent (a subjective version of) the usual permanent-income hypothesis;7 the

6The reduction in the real value of this wealth due to inflation between periods t − 1 and t is

then reflected in the −sbπt term inside the curly brackets.
7See, e.g., Deaton (1992) for an exposition of the standard theory, under the assumptions of

rational expectations, no preference shocks, and a constant real interest rate.
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σ(iT − πT+1) terms indicate how expectations of a real interest rate different from

the rate of time preference shift the desired time path of spending; the sb(βiT − πT )

terms indicate the income effects of variations in nominal interest rates and inflation;

and the c̄T terms indicate the effects of preference shocks on the desired time path of

spending.

Equation (1.1) involves subjective expectations of a number of variables at many

future horizons, but under our linear approximation we can write desired expenditure

as a function of the household’s forecast of a single variable,

cit = (1−β)bit+(1−β)(Yt−τ t)−β[σ−(1−β)sb]it−(1−β)sbπt+βc̄t+βÊ
i
tv

i
t+1, (1.2)

where the composite variable vit is defined as

vit ≡
∞∑
T=t

βT−tÊi
t {(1− β)(YT − τT )− [σ − (1− β)sb](βiT − πT )− (1− β)c̄T} . (1.3)

The advantage of this notation is that we need only to specify how people forecast a

single variable each period; note however that the variable that people must forecast

is a subjective state variable, that will depend on their own future forecasts.

Aggregate demand is then given by Yt =
∫
citdi+Gt, where Gt is the departure of

government purchases of the composite good from their steady-state level, also mea-

sured as a fraction of steady-state output. Substituting (1.2) for cit in this expression,

we obtain

Yt = gt + (1− β)bt + vt − σπt, (1.4)

where gt ≡ Gt + c̄t is a composite exogenous disturbance to “autonomous expen-

diture”,8 bt ≡
∫
bitdi is the aggregate supply of public debt, and vt ≡

∫
vitdi is the

average value of the expectational variable defined in (1.3). We thus obtain an equa-

tion for aggregate demand that separates out the effects of the exogenous disturbances

gt, the wealth effect of public debt, and the average state of expectation captured by

vt.

The government’s flow budget constraint implies a law of motion

bt+1 = β−1 [bt − sbπt − st] + sbit (1.5)

8To simplify, I treat government purchases as an exogenous disturbance, rather than as a possibly

endogenous policy choice.
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for the public debt, where st ≡ τ t − Gt is the real primary budget surplus in period

t, measured as a deviation from its steady-state level and expressed as a fraction of

steady-state output. The aggregate demand block of our model then consists of equa-

tions (1.4) and (1.5), together with monetary and fiscal policy equations that specify

the evolution of it and st respectively (generally as a function of other endogenous

variables), and a specification of the evolution of the forecasts {Êi
tv

i
t+1} (which de-

termine the expectational variable vt). We then have a system of four equations per

period (plus the specification of expectations) to determine the paths {Yt, bt, it, st}
given a path for the price level, or the paths {πt, bt, it, st} given a supply-determined

path for output, along with the composite disturbance gt and shocks to policy and

expectations.

Definition (1.3) has a recursive form, so that the only subjective expectations

involved in vit are i’s forecast of the corresponding variable one period in the future.

Specifically, (1.3) implies that

vit = (1− β)vt + β(1− β)(bt+1 − bt)− βσ(it − πt) + βÊi
tv

i
t+1, (1.6)

where in addition to substituting the forecast of vit+1 for the expectational terms,

I have used (1.4) to substitute out Yt and (1.5) to substitute out τ t. Hence to

specify the aspects of subjective expectations that are relevant for aggregate demand

determination it suffices that we specify an evolution for the {vit}, and subjective one-

period-ahead forecasts of those variables, that are consistent with (1.6). This result is

used below to characterize the possible temporary equilibrium (TE) dynamics, under

various more specific assumptions about expectations.

1.2 Ricardian Expectations

Equation (1.5) implies that non-explosive dynamics for the real public debt require

that

bt =
∞∑
T=t

βT−t[sT − sb(βiT − πT )].

I shall say that households have Ricardian expectations if they expect that the path

of primary surpluses will necessarily satisfy this condition, so that

Êi
t

∞∑
T=t

βT−t[sT − sb(βiT − πT )] = bt (1.7)
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at all times. It is not obvious that expectations must have this property, even under

the RE hypothesis;9 it is even less obvious that reasonable expectations must have

this property once one dispenses with the strict RE assumption. Nonetheless, this

property is frequently assumed (at least tacitly) in non-RE analyses, and I shall

mainly assume it in the discussion below, to simplify the analysis.10

Under this assumption, there is no longer a wealth effect of variation in the public

debt; the bt term in (1.4) is exactly canceled by the effects of the change in the

expected path of primary surpluses on the vt term. In fact, one can write (1.4) more

simply as

Yt = gt + v̄t − σπt, (1.8)

where v̄t ≡ vt+(1−β)bt is the average value of a subjective variable v̄it which (under

the hypothesis of Ricardian expectations) can be defined simply as

v̄it ≡
∞∑
T=t

βT−tÊi
t {(1− β)(YT − gT )− σ(βiT − πT )} . (1.9)

In this case, aggregate demand determination is completely independent of the paths

of both public debt and tax collections — so that “Ricardian equivalence” obtains

— as long as these fiscal variables have no direct effect on people’s expectations

regarding the evolution of the variables {Yt, πt, it, gt}; or more simply, as long they

have no direct effect on forecasts of the path of the variables {vit}.11

Under the assumption of Ricardian expectations, it is convenient to specify ex-

pectations by describing the evolution of the variables {v̄it}; these must be consistent

9It is possible for people to believe in a fiscal rule without this property, and yet for a RE

equilibrium to exist, as shown for example in Woodford (2001). (In equilibrium, debt does not

explode, and expectations are correct; but people believe that debt would explode in the case of

certain paths for endogenous variables that do not occur in equilibrium.) Some have disputed

whether such a specification of out-of-equilibrium beliefs should be considered to be consistent with

the RE hypothesis; see Bassetto (2002) for a careful discussion.
10In many NK models with adaptive learning, TE relations are derived by simply inserting subjec-

tive expectations into equations that hold (in terms of model-consistent conditional expectations) in

the RE version of the model; the fact that government liabilities are not perceived to be net wealth

in the RE analysis then leads to an assumption that they are not in the learning analysis, without

any discussion of the assumption. Evans and Honkapohja (2010) instead make the assumption of

Ricardian expectations explicit. Eusepi and Preston (2012a, 2012b) and Benhabib et al. (2012)

provide examples of analyses in which Ricardian expectations are not assumed.
11See Evans et al. (2012) for a more detailed discussion of the conditions under which Ricardian

equivalence obtains even without the RE hypothesis.
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with a relation of the form

v̄it = (1− β)v̄t − βσ(it − πt) + βÊi
t v̄

i
t+1, (1.10)

analogous to (1.6). The complete aggregate demand block of the model then consists

of equation (1.8), a monetary policy equation, and a specification of the evolution

of the expectational variable {v̄it} consistent with (1.10). This system provides two

equations per period to determine the paths of {Yt, it} given the evolution of the price

level, the exogenous disturbances {gt}, and shocks to policy and expectations.

1.3 Expectations and Aggregate Supply

Each of the monopolistically competitive firms sets the price for the particular good

that it alone produces. Prices are assumed to remain fixed for a random interval

of time: each period, fraction 0 < α < 1 of all goods prices remain the same (in

monetary terms) as in the previous period, while the other prices are reconsidered;

and the probability that any given price is reconsidered in any period is assumed to

be independent of both the current price and the length of time that the price has

remained fixed. It then follows that (again in a log-linear approximation) the rate of

inflation πt between periods t− 1 and t will be given by

πt = (1− α)p∗t , (1.11)

where for each firm j, p∗jt is the amount by which the firm would choose to set the log

price of its good higher than pt−1, the log of the general price index in period t− 1,

were it to be one of the firms that reconsiders its price in period t; and p∗t ≡
∫
p∗jt dj

is the average value of this quantity across all firms.

Each firm that reconsiders its price in a given period chooses the new price that

it believes will maximize the present value of its profits from that period onward.

In a Dixit-Stiglitz model of monopolistic competition, with a single economy-wide

labor market, profits in any period are the same function of a firm’s own price and

of aggregate market conditions for each firm. The single-period profit-maximizing

log price poptt is then the same for each firm, and a log-linear approximation to the

first-order condition for optimal price-setting takes the form

p∗jt = (1− αβ)
∞∑
T=t

(αβ)T−t Êj
t p

opt
T − pt−1, (1.12)
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where β is again the utility discount factor (also the rate at which real profits are

discounted in steady state), and Êj
t [·] indicates a conditional expectation with respect

to the subjective beliefs of firm j at date t. The recursive form of (1.12) implies that

internally consistent expectations on the part of any firm must satisfy

p∗jt = (1− αβ)(poptt − pt−1) + αβ(Êj
t p

∗j
t+1 + πt). (1.13)

Averaging this expression over firms j and using the resulting equation to substitute

for p∗t in (1.11), we see that inflation determination depends only on the average of

firms’ subjective forecasts of a single variable, namely each firm’s own value for the

expectational variable p∗jT one period in the future.

Suppose furthermore that the union sets a wage each period with the property

that at that wage, a marginal increase in labor demand would neither increase nor de-

crease average perceived utility across households, if for each household the marginal

utility of the additional wage income is weighed against the marginal disutility of the

additional work. This implies that (in a log-linear approximation)

wt = νt − λt,

where wt is the log real wage, νt is the log of the (common) marginal disutility of labor,

and λt is the average across households of λit, a household’s subjective assessment of

its marginal utility of additional real income. Since optimizing consumption demand

implies that

λit = −σ−1(cit − c̄t),

we obtain

wt = νt + σ−1(ct − c̄t) = νt + σ−1(Yt − gt),

just as in a representative-household model with RE and a competitive economy-wide

labor market. In a model in which labor is the only variable factor of production,

both νt and the marginal product of labor can be expressed as functions of hours

worked and hence as functions of output Yt and the exogenous level of productivity

in period t. We then obtain a relation of the form

poptt = pt + ξ(Yt − Y n
t ) + µt, (1.14)

where yt indicates the “output gap” (defined as Yt − Y n
t , where the “natural rate” of

output Y n
t is a composite exogenous disturbance, involving variations in gt, produc-
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tivity, and shocks to the disutility of labor), and µt measures exogenous variations in

the desired markup of prices over marginal cost.12

Substituting (1.11) for πt and (1.14) for poptt in (1.13), we obtain

p∗jt = (1− α)p∗t + (1− αβ) [ξyt + µt] + αβÊj
t p

∗j
t+1. (1.15)

In order for beliefs to be internally consistent, the evolution of the expectational

variables {p∗jt } and subjective one-period-ahead forecasts of those variables must

satisfy (1.15) at all times. Given such beliefs, the inflation rate will be determined by

(1.11). Thus equations (1.11) and (1.15) constitute the aggregate-supply block of the

model, which determines the evolution of the general price level, given the evolution

of output, exogenous disturbances, and expectations.

1.4 The Complete Model

In the complete TE system, then, the expectations that must be specified are paths

for {v̄it} for all households and {p∗jt } for all firms, consistent with relations (1.10) and

(1.15) respectively. Given these expectations, paths for the exogenous disturbances

{gt, Y n
t , µt}, and a monetary policy rule for the evolution of {it}, the evolution of

aggregate output and inflation are then given by equations (1.8) and (1.11).

Substituting for the variables vit and p
∗j
t in terms of current observables and fore-

casts of future conditions, (1.8) can be written as

Yt = gt − σit +

∫
Êi

t v̄
i
t+1di, (1.16)

and (1.11) can correspondingly be written as

πt = κyt + ut + (1− α)β

∫
Êj

t p
∗j
t+1dj, (1.17)

where

κ ≡ (1− α)(1− αβ)

α
ξ > 0, ut ≡

(1− α)(1− αβ)

α
µt.

We thus obtain an “IS equation” and “AS equation” to describe short-run output

and inflation determination, given monetary policy, exogenous disturbances, and ex-

pectations.

12The separation of the effects of exogenous disturbances into Y n
t and µt components in (1.14) is

useful only in the case that stabilization of the output gap is a goal of policy.
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If expectations are assumed not to change in response to policy changes or other

shocks, the model makes predictions like those of a standard undergraduate textbook

exposition. For example, an increase in the central bank’s interest-rate target it should

reduce output and inflation. An increase in government purchases (that increases gt,

and also increases Y n
t by a smaller amount) should increase both output and inflation.

And a “cost-push shock” ut > 0 should increase inflation, but have no effect on output

if the central bank’s interest-rate target is unchanged; if it is instead raised in response

to the increase in inflation, output should fall and the inflation increase will be more

modest.

But the model also indicates the effects on output and inflation of changes in

average expectations. For example, an increase in the average forecast by firms of

the log price that they would wish to choose if reviewing their price one period in

the future, relative to the current average price, should raise current inflation for any

current level of output, just as in the case of an exogenous cost-push shock. And there

is no general reason to suppose that expectations should be unaffected by shocks of

the kind considered in the previous paragraph; hence a complete analysis even of

short-run equilibrium requires a specification of how expectations are determined.

If expectations are Ricardian and monetary policy is unaffected by fiscal vari-

ables, the model implies that neither the size of the public debt nor the government

budget matter for output and inflation determination. If instead expectations are

not assumed to be Ricardian, it is more convenient to write the model in terms of

expectations of vit+1 rather than v̄it+1. The “IS equation” can then alternatively be

written in the form

Yt = gt − σit + (1− β)bt+1 +

∫
Êi

tv
i
t+1di, (1.18)

where one should recall from (1.5) that bt+1 is known at date t (though the debt

matures at t+ 1). In this case, since the endogenous public debt matters for output

and inflation determination, we must adjoin (1.5) to the system that describes TE

dynamics under a given specification of inflation.

The complete TE dynamics for the endogenous variables {πt, Yt, bt+1} are then

given in the non-Ricardian case by the system consisting of (1.5), (1.17) and (1.18),

given expectations {vit, p
∗j
t } consistent with (1.6) and (1.15). One observes that a

larger budget deficit (or smaller surplus) should increase output and inflation, to the

extent that it does not cause a reduction in the final expectational term in (1.18), of
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a magnitude as large as the increase in (1− β)bt+1.

1.5 RE Equilibrium

Thus far, I have been completely agnostic about the nature of subjective forecasts.

Under the RE hypothesis, all agents’ probability beliefs are identical, and coincide

with the probabilities predicted by one’s model, given the choices that people make

on the basis of those beliefs. Under the hypothesis that all beliefs are identical, we

can replace the operators {Êi[·]} and {Êj[·]} by the single expectation operator Ê[·].
And since in this case vit = vt for all i and p∗jt = p∗t for all j, equations (1.10) and

(1.15) reduce to

v̄t = −σ(it − πt) + Êtv̄t+1, (1.19)

p∗t = (1− α)−1 [κyt + ut] + βÊtp
∗
t+1 (1.20)

respectively. If we assume a monetary policy rule (or central-bank reaction function)

of the form13

it = ϕππt + ϕyyt + ϵit, (1.21)

where ϵit is an exogenous disturbance to monetary policy, and use equations (1.8),

(1.11), and (1.21) to substitute for it, πt and yt in equations (1.19)–(1.20), we obtain

a system that can be written in the form

zt = B Êtzt+1 + bξt, (1.22)

where zt is the vector of endogenous variables (v̄t, p
∗
t ), ξt is the vector of (composite)

exogenous disturbances (gt − Y n
t , ut, ϵ

i
t), and B and b are matrices of coefficients.

If subjective probabilities must coincide with objective probabilities, we can re-

place (1.22) by

zt = B Etzt+1 + bξt, (1.23)

where Et[·] denotes an expectational conditional on the state of the world at date t,

under the probability distribution over future paths that represents the equilibrium

outcome. An RE equilibrium (REE) is then a stochastic process {zt} consistent with

13This version of the “Taylor rule” (Taylor, 1993) reflects an implicit inflation target of zero. In

particular, if all exogenous disturbances are zero forever, this policy is consistent with the steady

state around which the model equations have been log-linearized.
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(1.23). (Note that any solution for the process {zt} completely determines the stochas-

tic evolution of the variables {πt, Yt, it}, using equations (1.8), (1.11), and (1.21).) We

shall here restrict attention only to the possibility of bounded solutions {zt}, on the

assumption that the disturbances {ξt} are bounded, since our log-linearized equations

are derived under this assumption.

The RE hypothesis does not necessarily determine a unique set of model-consistent

probability beliefs; because it is a consistency criterion, rather than a hypothesis

about how beliefs are formed, it essentially defines a fixed-point problem. RE beliefs

are a fixed point of the mapping from possible subjective probabilities into the implied

objective probabilities; see Evans and Honkapohja (2001) for further discussion of this

“T-mapping.” Such a fixed-point problem may or may not have a solution, and the

solution may or may not be unique. In the case of a linear system such as (1.23),

Blanchard and Kahn (1980) establish that the existence and uniqueness of bounded

solutions depend on the eigenvalues of the matrix B. Because no elements of zt are

predetermined, RE equilibrium is determinate (a unique bounded RE solution exists)

if and only if both eigenvalues of B lie inside the unit circle. Under the assumption

that the response coefficients in (1.21) satisfy ϕπ, ϕy ≥ 0, one can show (Woodford,

2003, chap. 4) that this condition is satisfied if and only if the response coefficients

also satisfy

ϕπ +
1− β

κ
ϕy > 1, (1.24)

sometimes called the “Taylor Principle.”14 If monetary policy satisfies (1.24), (1.23)

can be “solved forward” for zt as a linear function of current and expected future

values of the exogenous disturbances; in the case that the exogenous disturbances

follow linear-Markovian dynamics, so that Etξt+1 = Λξt for some stable matrix Λ,

this solution is given by

zt = Z ξt, (1.25)

14See Proposition 4.3 in Woodford (2003, chap. 4). Woodford analyzes a system of the form

(1.23) but in which the vector zt has inflation and the output gap as elements. But since this vector

is a non-singular linear transformation of the vector zt used here (plus an exogenous term, which

does not affect the determinacy calculation), the eigenvalues of the matrix B in Woodford (2003)

are the same as those of the matrix B here.
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where15

Z ≡
∞∑
j=0

BjbΛj.

The implied responses of inflation, output and interest rates to exogenous distur-

bances of various kinds are discussed further in Woodford (2003, chap. 4) and Gali

(2008, chap. 3).

If instead (1.24) is not satisfied, there are an infinite number of REE (even re-

stricting our attention to bounded solutions), including solutions in which inflation

and output fluctuate in response to “sunspots” (random events with no consequences

for the economic fundamentals ξt) or in which the fluctuations in inflation and output

are arbitrarily large relative to the magnitude of the exogenous disturbances. In the

case of such a policy, the economy may be vulnerable to instability due purely to the

volatility of expectations, even under the assumption that the economy must evolve

in accordance with an REE. Because instability of this kind is undesirable, it is often

argued that a policy commitment should be chosen that ensures the existence of a

determinate RE equilibrium (see, e.g., Woodford, 2003, chaps. 2, 4); in the context of

New Keynesian models of the kind sketched here, this provides an argument for the

desirability of an interest-rate rule that conforms to the Taylor Principle (see, e.g.,

Clarida, et al., 2000).16 Apart from the use of the determinacy result as a criterion

for the choice of a monetary policy rule, the predicted character of the fluctuations

due to self-fulfilling expectations when the Taylor Principle is not satisfied has been

proposed by some as a positive theory of the aggregate fluctuations observed during

periods when monetary policy has arguably been relatively “passive” (e.g., Clarida

et al., 2000; Lubik and Schorfheide, 2004). As discussed below, however, relaxation

of the RE hypothesis opens up additional possibilities for instability under regimes

that fail to pin down expectations sufficiently precisely.

Some argue that avoidance of indeterminacy of REE need not be a concern when

15Note that this infinite sum must converge, because we have assumed that both B and Λ have

all eigenvalues inside the unit circle.
16Some object to this argument for the Taylor Principle on the ground that it ensures only a locally

unique REE — there is only one equilibrium in which the endogenous variables remain forever near

the target steady state — but does not exclude the possibility of other REE, including sunspot

equilibria, that do not remain near the steady state (e.g., Benhabib et al., 2001). This is issue is

beyond the scope of the current review, owing to our reliance on a local log-linear characterization

of equilibrium dynamics; but see Woodford (2003, chap. 2, sec. 4) for further discussion.
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choosing a monetary policy rule, on the ground that even in the indeterminate case,

there is no reason to expect people’s expectations to coordinate on a sunspot equilib-

rium, or even on one with excessive fluctuations in response to fundamental distur-

bances (e.g., McCallum, 1983). Such authors argue that a model’s positive prediction

should be based on some further refinement of the set of equilibria, such as a restric-

tion to Markovian equilibria, in which endogenous variables depend only on those

aspects of the state of the world that affect either the equilibrium relations that de-

termine those variables, or the conditional probabilities of states that will be relevant

for equilibrium determination in the future.17

If {ξt} is Markovian in the above example, this would mean restricting attention

to REE of the form (1.25), for some matrix Z. Since (1.25) represents an REE if and

only if the matrix Z satisfies

Z = BZΛ + b,

and these are a system of 6 linear equations for the 6 elements of Z, there is a

unique solution of this form for generic parameter values, even when the monetary

policy rule fails to satisfy (1.24). (McCallum, 1983, calls this the “minimum-state-

variable solution.”) But the question whether, or under what circumstances, we

should expect people to coordinate on the particular expectations specified by the

Markovian solution is a question that cannot be answered by the RE hypothesis

itself; and the consideration of plausible restrictions on expectations that do not

simply assume RE can be of help in justifying a particular selection from among the

set of REE, as proposed by McCallum.

2 Rationalizable TE Dynamics

As discussed in the introduction, one broad approach to the formulation of a criterion

for reasonableness of beliefs — without simply postulating an exact correspondence

between people’s forecasts and those that are correct (according to one’s model of

the economy) — is to assume that people should correctly understand the economic

model, and be able to form correct inferences from it about possible future outcomes.

This approach supposes that beliefs should be refined through a process of reflection,

17This refinement is closely related to the idea of restricting attention to the Markov perfect

equilibria of dynamic games (Maskin and Tirole, 2001).
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independent of experience and not necessarily occurring in real time, that Gues-

nerie (1992) calls eduction. While RE beliefs would certainly withstand a process of

scrutiny of this kind, such beliefs need not be the only ones that could be rationalized

in this way.

2.1 “Eductive Stability” Analysis

For the sake of concreteness, let us consider the case of Ricardian expectations and

monetary policy specified by (1.21). The assumption that people in the economy “un-

derstand the model” means, in the present context, that people understand that the

TE dynamics of inflation, output and interest rates will be determined by equations

(1.16), (1.17) and (1.21) each period, given the average one-period-ahead forecasts of

others. In order for someone’s expectations regarding the paths of the endogenous

variables to be consistent with this knowledge, the expected paths must be able to be

generated by these equations, under some supposition about the average expectations

of others.

Let a possible conjecture about the evolution of average one-period-ahead forecasts

be specified by a vector stochastic process e ≡ {et}, where at any date the two

elements of et specify
∫
Êi

t v̄
i
t+1di and

∫
Êj

t p
∗j
t+1dj. For any such evolution of average

forecasts, the structural equations determine unique TE processes {πt, Yt, it}. Hence
any agent (household or firm) that expects average expectations to evolve in the future

in accordance with the process e, and that understands the model, must (in order to

have internally consistent beliefs) forecast precisely this particular evolution of the

variables {πt, Yt, it}. There is then a unique internally consistent anticipated evolution

of this agent’s own one-period-ahead forecasts {Êi
t v̄

i
t+1} (in the case of a household),

implied by (1.10), and similarly a unique internally consistent anticipated evolution

{Êj
t p

∗j
t+1} (in the case of a firm), implied by (1.15). This allows us to determine a

new vector stochastic process e′ ≡ {e′t} that describes the one-period-ahead forecasts

that must be made by agents who understand the model and believe that the average

forecasts of others will evolve according to e.

Let Ψ denote the mapping that determines e′ = Ψ(e) in the way just described.

Then individual beliefs ei are consistent with knowledge of the model only if there

exists some specification of average beliefs e such that ei = Ψ(e). In this case we can

say that the beliefs ei can be rationalized by the conjecture e about average beliefs.
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Because of the linearity of the mapping Ψ, it is evident that if all agents understand

the model, a specification of average beliefs e is rationalizable if and only if there exists

some conjecture about average beliefs e1 such that e = Ψ(e1). But if in addition all

agents understand that all agents understand the model, their conjectures about

average beliefs are consistent with this knowledge only if e1 can itself be similarly

rationalized, which is to say, if there exists a conjecture e2 such that e1 = Ψ(e2). Any

number of levels of rationalization might be demanded in a similar way.

Even if we assume that agents’ forecasts should be grounded in reasoning of this

kind, it may be reasonable only to demand some finite number of levels of rationaliza-

tion, either because it is only assumed that people understand that others understand

... that others understand the model, to some finite order of recursion; or because it

is not considered practical for agents to check their beliefs for this degree of internal

consistency beyond some finite number of levels.18 In this case, kth-order beliefs (for

some finite k) are allowed to be specified arbitrarily (required to be internally con-

sistent, but not necessarily consistent with understanding the model). In this case,

obtaining definite conclusions requires a specific theory of kth-order beliefs (perhaps

some fairly simple specification), or at least some bounds on the class of possible

specifications of kth-order beliefs that may be entertained.

Alternatively, one may, as in the literature on “rationalizable equilibria” in game

theory (Bernheim, 1984; Pearce, 1984), require that beliefs be consistent with an

infinite hierarchy of beliefs, each level of which is rationalized by the next higher

level of beliefs. RE beliefs represent one possible type of rationalizable beliefs in this

sense; but not all rationalizable beliefs need be RE beliefs, and even when REE is

determinate, there may be a large multiplicity of rationalizable beliefs, even under the

requirement that beliefs satisfy some uniform bound at all levels. Guesnerie (1992,

2005) calls an investigation of whether the REE beliefs are the unique rationalizable

beliefs “eductive stability analysis.” If the REE is eductively stable, he considers

the REE outcome to be a reasonable prediction of one’s model; but if not, the other

rationalizable paths are taken to be equally plausible predictions.

The existence of a large set of possible equilibrium outcomes, including the possi-

bility of fluctuations in response to sunspots, or large fluctuations in response to small

18See, e.g., Phelps (1983) or Evans and Ramey (1992) for proposals of this kind. Evans and

Ramey propose to endogenize the number of levels of rationalization in terms of “calculation costs”

involved in iterating the mapping Ψ another time.
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changes in fundamentals, is regarded as an undesirable form of instability. Hence

Guesnerie proposes as a criterion for policy choice the desirability of finding a policy

under which the REE is eductively stable.19 This is in the spirit of the proposal,

discussed above, that policy be designed to ensure determinacy of RE equilibrium,

but is an even stronger requirement, since uniqueness of rationalizable equilibrium

necessarily implies determinacy of REE, while the converse is not true.

2.2 The Taylor Principle and Determinacy Reconsidered

As an illustration, let us consider whether a monetary policy rule of the form (1.21)

ensures unique (uniformly bounded) rationalizable dynamics. To simplify, as in Gues-

nerie (2008), let us consider the limiting case of perfectly flexible prices. In this limit,

output Yt is determined by exogenous fundamentals, and (1.16) and (1.21) jointly

determine it and πt given expectations and exogenous fundamentals. Calculations

are also simplified if there are assumed to be no exogenous disturbances (including

no variation in Yt), as the issue of the multiplicity of solutions is unaffected by the

amplitude of disturbances. Hence the monetary policy rule (1.21) reduces simply to

it = ϕππt. REE is determinate if and only if ϕπ > 1.20 When this condition is satisfied,

the unique bounded REE has v̄t = 0 for all t, implying that it = πt = 0 for all t.

While ϕπ > 1 is therefore also a necessary condition for uniqueness of the ratio-

nalizable dynamics, it is not sufficient. Guesnerie (2008) shows that if 1/2 < β < 1

and

ϕπ > (2β − 1)−1 > 1, (2.1)

then even though REE is determinate, there is a large multiplicity of uniformly

bounded rationalizable equilibria. For example, consider the hierarchy of beliefs that

may support a rationalizable TE at some date t. The requirement of rationalizability

does not establish any necessary linkages between what happens at different dates:

only between what happens at date t and what people expect at date t that people

will expect at later dates about what people will expect ... will happen at still later

dates. Thus for each date t we may separately specify what happens at that date,

along with the hierarchy of forecasts of forecasts that rationalize it.

19Since the REE is necessarily a rationalizable equilibrium, uniqueness of rationalizable equilib-

rium requires that the REE be the only such equilibrium.
20This is the implication of (1.24) in the limit in which κ → ∞.
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Substituting the policy rule for it in (1.10), and then using (1.8) to eliminate πt,

we obtain the requirement that

v̄it = (1− βϕπ)v̄t + βÊi
t v̄

i
t+1 (2.2)

for all i. In a rationalizable TE, not only must this hold at date t, but everyone must

expect anyone else to expect anyone else ... to expect it to hold at any future date.

One such specification of the hierarchy of beliefs is given by v̄it = ϵ, and

Êi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄int+jn
= (−µ)1−nϕπϵ,

Êi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄
in+1

t+jn
= (−µ)−nϵ

for any sequences of households and dates of the kind assumed above, where ϵ is an

arbitrary real number and

µ ≡ βϕπ − 1

(1− β)ϕπ

.

These beliefs satisfy all of the requirements for rationalizability for any real number

ϵ, as discussed further in the Appendix (available online). If (2.1) is satisfied, µ > 1,

and forecasts of all orders also satisfy a uniform bound. There is thus (at least) a

continuum of uniformly bounded rationalizable TE. Moreover, ϵ may represent the

realization of a “sunspot” event unrelated to fundamentals, so that there are seen to

exist bounded sunspot equilibria, despite the fact that monetary policy satisfies the

Taylor Principle.

If instead

1 < ϕπ < (2β − 1)−1, (2.3)

one can show that the determinate REE is also the only uniformly bounded rational-

izable TE. Note that (2.2) implies that

v̄t = ϕ−1
π

∫
Êi

t v̄
i
t+1di. (2.4)

Hence if it is common knowledge that there exists some finite bound κ such that

|v̄it| ≤ κ for all i and t, it follows from (2.4) that it must also be common knowledge

that |v̄t| ≤ ϕ−1
π κ for all t. Using this bound, (2.2) then implies that

|v̄it| ≤ |1− βϕπ|ϕ−1
π κ+ βκ = λκ,
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where

0 < λ ≡ max{ϕ−1
π , 2β − ϕ−1

π } < 1.

Hence common knowledge that |v̄it| ≤ κ implies that it must be common knowledge

that |v̄it| ≤ λκ. By the same reasoning, it must then be common knowledge that

|v̄it| ≤ λ2κ, and so on, until a bound smaller than any positive quantity is established.

Thus it must be common knowledge that vit = 0 for all i and all t, and hence that

it = πt = 0 for all t.

In such a case, Guesnerie says that the REE is “eductively stable,” and argues

that there is reason (in this case, and this case only) to expect this equilibrium

to obtain. While this is possible, the restrictions on the coefficient ϕπ are much

more stringent than those required for determinacy under the RE hypothesis. If,

for example, β = 0.99 (a common calibration for quarterly New Keynesian models),

(2.3) requires that 1 < ϕπ < 1.02. This very tight bound is violated by the rule

recommended by Taylor (1993), as well as by most estimated central-bank reaction

functions.

If the avoidance of instability due to self-fulfilling expectations of this particular

type is a design criterion for monetary policy, it follows that one must be careful

about seeking to stabilize inflation in the face of real disturbances simply by using a

rule of the form (1.21) with a very strong inflation response coefficient. Instead, the

simultaneous achievement of eductive stability and stable inflation despite exogenous

disturbances is possible only in the case of a policy rule that directly responds to

the underlying determinants of inflation, namely, the exogenous disturbances and

observed subjective forecasts.

3 Learning Dynamics

An alternative way of disciplining the specification of expectations does not demand

that they be consistent with a correct structural model of the variables that are

forecasted, but instead requires that the probabilities assigned to possible future

outcomes are not too different from the probabilities with which outcomes actually

occur. The idea is that it is not reasonable to suppose that people should fail to

notice predictable regularities in economic data, whether or not they understand why

those regularities exist.
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But which regularities are the ones that one can reasonably expect people to take

into account? A common answer assumes that forecasts should be derived through

extrapolation from prior observations. Such approaches, based on explicit models

of learning, have the advantage of explaining how the postulated similarity between

subjective beliefs and actual patterns in the data comes about. They also reduce

the problem of indeterminacy of the model’s predictions, pervasive in the case of

approaches like those discussed thus far, which demand only that beliefs be a fixed

point of a certain mapping. While there may be many possible asymptotic states of

belief under an explicit model of learning, with the one that is reached depending

on initial conditions and/or random events along the way, a model of learning often

makes a unique prediction conditional upon initial conditions and the subsequent

history of shocks.

The most common approach of this general type assumes that agents’ forecasts at

any time t are derived from an econometric model, estimated using the data observed

up until that date.21 Let the model be specified by a vector θ of parameters, and

suppose that any model θ implies that forecasts et should be some function of the

current state ζt. Then in any period t, new estimates θ̂t and ζ̂t are formed of the

parameters and of the state, based on the data available at that point. Under a

recursive estimation scheme, the new estimates are functions of the prior estimates

and of the new data observed since the formation of the prior estimates,

θ̂t = Θt(θ̂t−1, ζt−1, xt), (3.1)

ζ̂t = Zt(θ̂t−1, ζ̂t−1, xt) (3.2)

where xt is some vector of new data.22 Given these new estimates, period t forecasts

are given by a function23

et = Ψ(ζ̂t; θ̂t). (3.3)

21See Evans and Honkapohja (2001, 2009) and Sargent (2008) for reviews of work of this kind.
22The time subscripts on the functions Θt(·) and Zt(·) allow for the possibility that the updating

rules may depend on the size of the existing dataset. Equation (3.15) below for the evolution of the

mean estimates provides a simple example.
23Here, for simplicity, I assume that every household i and every firm j forecasts in the same way,

using the same observed data, so that average forecasts are simply the common forecasts, given by

a function of the common estimates. One may, however, allow each household and to have its own

estimated model θ̂
i

t, evolving according to a separate equation of the form (3.1), and then define∫
Êi

t v̄
i
t+1di as a function of the entire probability distribution of estimates {θ̂

i

t}, rather than simply

as a function of a single estimate θ̂t; and similarly with the firms.
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Given these beliefs, the TE values of the variables zt are determined by (1.22), given

the exogenous disturbances ξt. This system, possibly along with additional structural

equations, determines the new data xt.
24 Thus the system of equations (1.22) and

(3.1)–(3.3) jointly determines θ̂t, ζ̂t, et, and xt, given the lagged estimates and the

disturbances ξt. Solution of these equations in each of a succession of periods yields

the predicted dynamics of both beliefs and endogenous variables, as a function of the

history of exogenous disturbances.

3.1 Restricted Perceptions Equilibrium

A focus of much of the literature on TE dynamics with learning has been to ask

whether learning dynamics should converge asymptotically to REE; indeed, much

of the early literature (beginning with Bray, 1982) was concerned more with the

foundations of the REE concept — seeking to provide a causal explanation for how

the postulated coincidence between subjective and objective probabilities could come

about — than with the provision of an alternative model of economic dynamics.

Obviously this is only possible if the class of forecasting models that are contemplated

includes a model θRE that produces the forecasts associated with the REE. If one

does not assume that economic agents are endowed with knowledge of the structural

model, and hence with the information required to compute the REE, it is not obvious

that their forecasting approach should even entertain as a possibility the precise

forecasting rule implied by the REE; but if no value of θ results in forecasts of this

kind, convergence to REE beliefs (and hence to the REE dynamics) is obviously

impossible.

There might, however, still be convergence of beliefs to some fixed point θ̄ with

the property that under the TE dynamics generated by the beliefs θ̄, θ̄ is the model

(among the class of models considered) that yields the best forecasts (under some

24It is common in the literature on learning dynamics to specify a recursive causal structure by

assuming that the data xt are actually determined in period t − 1 (i.e., they include πt−1 rather

than πt, and so on). In this case, all of the arguments of the functions in (3.1)–(3.2) are predeter-

mined, so that these equations determine the new estimates (θ̂t, ζ̂t) independently of the period-t

shocks; equation (3.3) then determines the forecasts et; and finally equations (1.22) determine the

endogenous variables zt given the shocks. But it is not obvious why, in the logic of the NK model

presented here, one should suppose that period t forecasts must be made prior to the observation of

period t endogenous variables.
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criterion that is used for the estimation). For example, suppose that the class of

models considered consists of those in which both v̄t+1 and p∗t+1 are linear functions

of ζt and unforecastable disturbances at t + 1; that the elements of ζt are all part

of the history of the observables {xt, xt−1, . . .}, so that ζt is observable; and that the

coefficients of the linear model are estimated so as to minimize the mean squared

error of the forecasts of v̄t+1 and p∗t+1. Then forecasts will be of the form et = θ̂
′
ζt,

where the vector ζt is assumed to include an element equal to 1 each period; and

with an infinite sequence of data generated by the TE dynamics under beliefs θ̄, the

estimated coefficients will satisfy

θ̂
′
= E[zt+1ζ

′
t]E[ζtζ

′
t]
−1, (3.4)

where E[·] indicates an unconditional expectation under the ergodic TE dynamics

resulting from some beliefs θ. Alternatively, we can write et = Pt[zt+1], where Pt[·]
denotes the linear projection of the random variable inside the brackets on the space

spanned by the elements of ζt.

The beliefs θ̄ constitute a restricted perceptions equilibrium (RPE) if the optimal

estimate θ̂ given by (3.4) is equal to θ̄ when the unconditional expectations are the

ones implied by the TE dynamics generated by beliefs θ = θ̄ (Evans and Honkapohja,

2001, chap. 13; Branch, 2004). This is a weaker requirement than that of an REE, as

forecasts are assumed to be optimal only within a particular class of linear models,

rather than within the class of all forecasts that might be made on the basis of

information available in period t. Note that in the special case that the optimal

forecast of zt+1 is indeed a linear function of ζt, so that

Et[zt+1] = Pt[zt+1] = T (θ)′ζt (3.5)

when the TE dynamics are generated by beliefs θ, then (3.4) implies that θ̂ = T (θ).

Hence in this case, θ̄ describes RPE beliefs if and only if T (θ̄) = θ̄, which is also the

condition for REE beliefs. More generally, however, when the forecasting variables

ζt do not span a large enough space, or at any rate not the correct one, RPE beliefs

will differ from REE beliefs.

Conditions can be established under which the learning dynamics resulting from

repeated re-estimation of an OLS forecasting equation (least-squares learning dynam-

ics) converge with probability 1 to an RPE as the length of the observed data set

grows large enough. But even in such a case, the dynamics need not coincide, even
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asymptotically, with the model’s REE dynamics. Fuster et al. (2010, 2011, 2012)

provide examples in which more complex dynamics of asset prices, consumption and

investment are implied by RPE dynamics than would be associated with REE dynam-

ics of the same models; here the suboptimality of forecasts results from estimation of

lower-order autoregressive models of the data than the correct model.

3.1.1 Application to the NK Model

Suppose that we equate the subjective expectations in (1.22) with linear projections,

to obtain

zt = BPtzt+1 + bξt. (3.6)

This is the set of conditions that must be satisfied in order for the evolution of the

expectational variables {zt} to represent an RPE, under either of two possible inter-

pretations of how forecasts for horizons more than period in the future are formed.

On the one hand, we might assume, as Preston (2005) does, that forecasts for

arbitrary future horizons are formed by estimating a vector-autoregressive system

Ptxt+1 = Λxζt, Ptζt+1 = Λζζt,

where xt is the vector of variables that must be forecasted, other than the future values

of the forecasting variables ζt themselves. Forecasts for arbitrary future horizons can

then be computed as

Êi
txt+j = Êi

tÊ
i
t+1 · · · Êi

t+j−1xt+j = ΛxΛ
j−1
ζ ζt

for any j ≥ 1. That is, forecasts for horizons more than one period in the future are

formed by forecasting one’s own future one-period-ahead forecasts, while one-period-

ahead forecasts are given by linear projections on the forecasting variables ζt.
25 Given

forecasts of this kind, the definitions (1.9) and (1.12) of the expectational variables

then imply that their evolution must satisfy (3.6).

Alternatively, we might assume, as Evans and McGough (2009) propose, that

people estimate the values of the expectational variables zt, not using the definitions

(1.9) and (1.12) of these variables in terms of long-horizon forecasts of variables with

25An advantage of this method is that forecasts Êi
txt+j can be formed for arbitrarily large j,

using coefficients that can be estimated using finite data sets, as there is no need to actually regress

observed values of xt+j on the prior forecasting variables ζt.
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objective definitions, but instead using the recursive relations (1.10) and (1.15) to

estimate values on the basis of one’s current forecasts of one’s own estimates in the

next period. These forecasts of one’s own future estimates can be obtained by col-

lecting data on what one’s estimates have been, and regressing them on the previous

period’s values of the forecasting variables ζt. Also under this assumption, if there

is convergence to an RPE, the expectational variables will necessarily satisfy (3.6).

Note that these two approaches to “least-squares learning” are not mathematically

equivalent, but if in each case there is convergence to an RPE, then the RPE is the

same in both cases.26

Given a solution for the dynamics of the expectational variables {zt}, the dynamics

of inflation, output, and interest rates are then determined by equations (1.8), (1.11)

and (1.21), as under other specifications of expectations. The difference between

REE and RPE predictions then stems entirely from the difference between (3.6) and

(1.23). When (3.5) holds, the predictions are necessarily the same.

3.1.2 Failure of Ricardian Equivalence

As an illustration of how macroeconomic dynamics in an RPE may differ from the

REE dynamics predicted in the case of a given policy rule, let us reconsider the

argument for Ricardian equivalence. Suppose that expectations are not Ricardian,

i.e., that people do not assume that the future path of primary surpluses must satisfy

(1.7), and instead estimate an econometric model to forecast future surpluses that

does not impose this condition as an a priori restriction.27 The TE dynamics are then

determined by the system consisting of (1.5), (1.17) and (1.18), given expectations of

the future evolution of the variables {p∗jt , vit} defined by (1.6) and (1.15), and specified

paths for the policy variables {it, st}.
Suppose further that monetary policy is described by a Taylor rule of the form

(1.21), the coefficients of which satisfy the Taylor Principle (1.24), while fiscal policy

26Since the learning dynamics outside the RPE are in general not identical, the conditions for

convergence to an RPE are not always the same in the two cases.
27Note that each household needs only to forecast its own tax obligations in excess of the value of

government purchases; its use of a forecasting model that violates (1.7) does not necessarily imply

that it believes that aggregate tax collections do not satisfy the present-value relation. While I

assume that the tax obligations of all households are the same, this is not necessarily known to the

households.
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is described by a feedback rule of the form

st = ϕbbt + ϵst , (3.7)

where

1− β < ϕb < 1, (3.8)

and ϵst is an exogenous disturbance. This specification, together with (1.5), implies

debt dynamics that remain bounded in the case of any bounded processes for inflation

and the nominal interest rate, and hence that model-consistent expectations will be

Ricardian, in the case of any REE involving bounded fluctuations. Such a specifica-

tion of monetary and fiscal policy implies the existence of a determinate REE in the

case of any bounded disturbance processes, and in this REE, the fiscal shocks {ϵst}
have no effects on the evolution of output, inflation or interest rates.28 Hence in such

a model, rational expectations imply Ricardian equivalence.

Let us consider instead the possible character of RPE dynamics. Suppose, for

example, that the vector of forecasting variables ζt consists only of the single state

variable st.
29 Then RPE forecasts are of the form et = ψst,

30 for some vector of

coefficients ψ. Substituting these forecasts into (1.17) and (1.18), one can solve for

the TE values of πt, yt, it, and bt+1 as linear functions of bt, st and ξt.

The calculations are especially simple if we consider a case in which ϕy = sb =

κ = 0, and assume that there are no exogenous disturbances other than the fiscal

shock {ϵst}, which is assumed to be unforecastable (white noise). In this limiting case,

there are no equilibrium fluctuations in πt or it, and the solutions for yt and bt+1 are

given by

yt = (β−1 − 1)(bt − st) + ψvst, (3.9)

28See Woodford (2001) for further discussion of the consequences of a “locally Ricardian” fiscal

policy of this kind, under an REE analysis.
29Note that under the REE dynamics, if the disturbances are all unforecastable (white noise),

none of the state variables that must be forecasted by households or firms are forecastable, except

the primary surplus (that must be forecasted in order to estimate vit). It is perhaps not implausible

to suppose that households forecast future primary surpluses using only the current level of the

surplus. This would not, however, constitute a model-consistent forecast, as (1.5) and (3.7) imply

that an optimal forecast of future primary surpluses depends on the value of bt+1, or alternatively

upon both st and bt.
30In this non-Ricardian case, the first element of et is assumed to be

∫
Êi

tv
i
t+1di rather than∫

Êi
t v̄

i
t+1di.

27



bt+1 = β−1(bt − st), (3.10)

where ψv (to be determined) is the first element of ψ. It then follows from (1.6) that

vit = yt − (1− β)bt (3.11)

for all i.

From this one can show that

e1t = Pt[yt+1 − (1− β)bt+1]

= (β−1 − 1)(1− β)Pt[bt+1] + (ψv + 1− β−1)Pt[st+1]

= [(1− β − ϕb)(β
−1 − 1) + ϕbψv]Pt[bt+1],

where for any variable xt+1 known at date t, Pt[xt+1] denotes the linear projection

of xt+1 on st. (Here the first line uses the fact that (3.11) must also hold at date

t + 1; the second line uses the fact that (3.9) must also hold at t + 1; and the third

line uses the fact that st+1 is determined by (3.7).) Writing Pt[bt+1] = Λbst, where

the coefficient Λb depends only on β and ϕb (not the assumed value of ψv), one then

observes that ψv must satisfy the consistency condition

ψv = [(1− β − ϕb)(β
−1 − 1) + ϕbψv]Λb. (3.12)

Under assumption (3.8), this equation has a unique solution for ψv, and implies

that31

ψv < β−1 − 1. (3.13)

Equation (3.9) then implies that in the unique RPE, an exogenous positive innovation

in the size of the primary surplus st lowers current output yt. It will also reduce the

debt bt+1 carried into the next period, with persistent effects on economic activity in

later periods as well. Hence Ricardian equivalence does not hold in the RPE, even

though the specification of fiscal policy implies that in the model’s unique bounded

REE, fiscal shocks have no effect on output, either immediately or subsequently.

While (3.10) implies that even under the RPE dynamics, a correct forecast would

satisfy (1.7) at all times, households’ forecasts do not satisfy this condition, as a

resulting of forecasting future surpluses purely on the basis of the current primary

surplus; and because of this systematic forecasting error, Ricardian equivalence fails.

31See the Appendix for details.
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3.2 “Learnability” of REE

Even when the class of contemplated forecasting models does include the REE fore-

casts, and even when the estimator used to determine θ̂ is one that should be asymp-

totically consistent, in the case of a sufficiently long series of data generated by the

REE, it need not follow that θ̂ must converge asymptotically to θRE under the TE

dynamics with learning. The reason is that, at each point in time, the observed data

will actually be generated by the behavior that results from current beliefs θ̂t, and

not by REE behavior. If a departure of people’s estimates from θRE gives rise to pat-

terns in the data that justify estimates even farther from θRE, the learning dynamics

may diverge from RE beliefs almost surely, even if people start out with beliefs quite

near to RE beliefs. The question whether the REE can in fact be reached as the

asymptotic outcome of a learning process of the kind described above is therefore a

non-trivial one. Authors such as Bullard and Mitra (2002) and Evans and Honkapo-

hja (2003, 2006) propose as a design criterion for a monetary policy rule not only

that the rule should be consistent with a desirable REE, but that the rule should

imply that learning dynamics should converge to that REE, so that the desirable

equilibrium is “learnable.”

3.2.1 Adaptive Estimation of Means

As a simple example, suppose that the disturbances ξt are all independently and

identically distributed (i.i.d.) random variables, with mean zero. In this case, there

is a unique Markovian REE, in which zt = bξt each period, and the RE forecasts

satisfy Etzt+1 = 0 at all times. In this equilibrium, πt, yt and it will also each be

a linear function of ξt, and the RE forecast of each variable will be zero (i.e., the

constant steady-state value) at all times. Suppose furthermore that the class of

forecasting models considered by decisionmakers consists of all models under which

the forecast of each variable is a constant (that is, people believe that each of these

is an i.i.d. random variable, and seek only to estimate its mean). This simple class of

models includes the forecasting rule used in the Markovian REE, so the assumption

of such a restricted class does not in itself rule out the possibility of convergence to

RE beliefs.

Finally, suppose that people estimate the means of each of the stationary variables
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using the sample mean of the values observed to date, so that

x̂t = t−1

t∑
s=1

xs, (3.14)

where xt refers to any of the variables πt, yt, it or to any of the elements of ξt; x̂t is

the estimate of the variable’s mean at date t (common to all agents); and 1 is the

date at which the available data series begins.32 This can be written recursively in

the form

x̂t = x̂t−1 + γt(xt − x̂t−1), (3.15)

where the “gain” γt = 1/t indicates the degree to which estimates are adjusted in

response to an observation that differs from what has been forecasted. Note that if the

case that the economy were to reach the REE, each of the variables xt would indeed

be i.i.d., and the estimators (3.14) would almost surely converge asymptotically to

the true means (and hence to the REE beliefs), by the law of large numbers. Hence

the estimation strategy is not inherently incompatible with learning the REE beliefs.

Any set of estimates of the means implies forecasts given by33

Êi
t v̄

i
t+1 = ŷt − ĝt −

σ

1− β
(βı̂t − π̂t), (3.16)

Êj
t p

∗j
t+1 =

1

1− αβ
π̂t + ξŷt + µ̂t, (3.17)

for each household and each firm. Hence in vector form we can write

et = C x̂t, (3.18)

for a certain matrix of coefficients C, where x̂t is the vector of estimates (3.14). The

system consisting of (1.16), (1.17) and (1.21) allows us to solve for TE values

xt = D et + d ξt, (3.19)

for certain matrices D and d, where xt is the vector of actual values of the variables

xt. Equations (3.15), (3.18) and (3.19) then completely describe the TE dynamics of

32This is an example of least-squares learning, in which the vector st has a single element, 1, each

period.
33Here I use the notation ĝt for the current estimate of the mean of the composite disturbance

gτ − Y n
τ , for simplicity.
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actual values and forecasts with adaptive learning, given the exogenous disturbances

{ξt} and initial prior estimates x̂t−1.

Combining these equations, we obtain a law of motion

[I − γtDC] x̂t = (1− γt)x̂t−1 + γtdξt (3.20)

for the estimates; thus the TE dynamics are uniquely defined as long as the matrix

in square brackets is non-singular, as I shall assume.34 In fact, all that matters about

these estimates is the implied forecasts et; so we can reduce the dimension of the

system (3.20) by pre-multiplying by the matrix C, yielding

[I − γtA] ∆et = −γt [I − A] et−1 + γtaξt, (3.21)

where A ≡ CD, a ≡ Cd. This equation determines the dynamics of the forecasts {et}
given initial forecasts and the evolution of the exogenous disturbances; the paths of

the other relevant variables are then given by (3.19). The TE dynamics converge

asymptotically to the REE dynamics (and subjective expectations coincide asymp-

totically with the REE forecasts) if and only if et → 0 for large t.

Using the stochastic approximation methods introduced by Marcet and Sargent

(1989) and expounded in detail in Evans and Honkapohja (2001), one can show that

in the case of a decreasing gain sequence {γt} like the one implied by (3.14), the path

for {et} implied by the stochastic law of motion (3.21) eventually converges to one of

the trajectories of the ordinary differential equation (ODE) system

ė = −[I − A] e(τ), (3.22)

where τ is a re-scaled time variable defined by τ t ≡
∑t

s=1 γs, and the dot indicates a

derivative with respect to τ .

The ODE system (3.22) has a unique rest point ē = 0 (corresponding to REE

forecasts) if and only if the 2 × 2 matrix A has no eigenvalue exactly equal to 1 (so

that I − A is non-singular); and the trajectories of (3.22) converge asymptotically

to this rest point if and only if both eigenvalues of A have real parts less than 1 (so

that both eigenvalues of I −A have positive real parts). If the latter condition holds,

(3.21) implies that et → 0 with probability 1 as t grows large; beliefs asymptotically

34For any matrices C and D, this will be true for all small enough values of the gain γt. We are

here only concerned with TE dynamics in the low-gain case.
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approach the REE forecasts, and one may say that the REE is “learnable” following

the procedure postulated above. If, instead, A has an eigenvalue with real part

greater than 1, the trajectories of (3.22) diverge from the rest point for almost all

initial conditions, and correspondingly, one can show that there is zero probability

of the beliefs implied by (3.21) remaining forever within a neighborhood of the REE

beliefs, even if people begin with initial beliefs near (or exactly equal to) the REE

beliefs.

Hence the learnability of the REE depends on the eigenvalues of A. In the case

of a policy (1.21) with ϕπ, ϕy ≥ 0, one can show that both eigenvalues of A have real

part less than 1 (implying learnability) if and only if the response coefficients satisfy

(1.24) — that is, policy conforms to the Taylor Principle.35 This is identical to the

condition for determinacy of the REE dynamics, and the connection between the two

results is not accidental. The matrix A has an eigenvalue equal to 1 if and only if the

model’s steady-state inflation rate and output gap are indeterminate: the associated

right eigenvector ē indicates the direction in which a constant forecast (et = ē for

all t) may differ from zero and still constitute a perfect foresight equilibrium if the

disturbances equal zero.36 (Any multiple of ē is also a possible perfect-foresight steady

state in such a case.) But there exists a continuum of steady states if and only if the

matrix B in (1.23) has an eigenvalue equal to 1, and ē must also be the associated

right eigenvector of B. We have seen above that B has such an eigenvalue if and only

if (1.24) holds with equality.

Intuitively, the Taylor Principle guarantees determinacy of the REE dynamics,

because perturbations of the expected future values of the elements of z result in a

current TE value of zt that is closer to zero than whatever is expected for the next

period; hence REE forecasts Etzt+j cannot be bounded for all j and also consistent

with this contraction requirement, unless they are exactly zero for all j. But the

fact that forecasts et different from zero give rise to TE values zt that are closer to

zero (on average) also implies that adaptive learning will move the forecasts closer

to zero (on average), so that the learning dynamics eventually converge to the REE

35In fact, when (1.24) is satisfied, both eigenvalues of A are inside the unit circle. When it fails,

there is a real eigenvalue greater than 1.
36If Aē = ē, then forecasts et = ē each period lead to outcomes xt = Dē each period. Then

x̂t = Dē will be a perfect-foresight estimate each period, implying that the correct forecasts each

period will be CDē = ē.
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forecasts.37

The analysis above assumes a very simple kind of least-squares learning, in which

the only contemplated forecasting rules are ones in which the forecasts are constants

(estimates of the means of the various variables) and the same for all horizons. But

Preston (2005) establishes the same conditions for learnability of the REE when

people use forecasting rules of the form

Êtxt+1 = â+ b̂′ξt

for each variable x, and estimate the coefficients â, b̂′ by regressing observations of

xt−j on ξt−j−1 (for 0 ≤ j ≤ t− 1). Longer-horizon forecasts are then formed using

Êtxt+k = â+ b̂′ Êtξt+k−1,

where forecasts of the future disturbances are based on estimated autoregressive mod-

els of each disturbance.38

A policy inconsistent with the Taylor Principle still leads to instability, because

perturbations of the estimated constant terms â result in average values of the vari-

ables that differ from zero by an even greater amount, leading to explosive dynamics

for the estimates as above. And on the other hand, conformity to the Taylor prin-

ciple remains sufficient for stability of the learning dynamics, since the conditions

under which estimates of the response coefficients b̂′ diverge are even more restrictive

than those required for divergence of the estimates of the constant terms. Preston

also shows that the Taylor Principle is necessary and sufficient for learnability of the

MSV REE (1.25) using this approach, in the case that the disturbances are AR(1)

processes (and hence Markovian). This result again follows because the key to conver-

gence to the REE forecasting rule is the convergence of the estimates of the constant

terms â, and the mean dynamics of these estimates are unaffected by the stationary

fluctuations in the disturbances.39

37See Woodford (2003, chap. 4, sec. 2.3) for further discussion.
38See the discussion above in section 3.1.1 for further description of Preston’s method of VAR-

based forecasts.
39Bullard and Mitra (2002) reach a similar conclusion, though on the basis of assumed TE dy-

namics derived by substituting subjective expectations for objective expectations in certain Euler

equations of the REE model, rather than deriving the TE dynamics from infinite-horizon optimiza-

tion under subjective expectations, as above. For comparison of this “Euler-equation approach” to

modeling learning dynamics with the one used here, see Preston (2005) and Evans and McGough

(2009).
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3.2.2 The Possibility of a “Deflation Trap”

Thus under this approach we again conclude that a rule (1.21) that fails to conform

to the Taylor Principle (1.24) makes the economy vulnerable to instability due to

self-fulfilling fluctuations, though through a different mechanism than in section 1.5

above. The explosive dynamics of forecasts in the case of insufficient feedback from

aggregate outcomes (especially for inflation) to the interest-rate target generalizes

the informal argument of Friedman (1968) about the instability resulting from an

interest-rate peg.40

The problem is not necessarily avoided, however, by commitment to a rule that

satisfies the Taylor principle. The reason is that the linear TE dynamics analyzed

above cannot hold globally; in particular, policy cannot be described by (1.21) for

all possible inflation rates and output gaps, because of the zero lower bound on the

nominal interest rate.41 Even if the central bank follows (1.21) with coefficients satis-

fying (1.24) until the lower bound becomes a binding constraint, the altered response

at low levels of inflation and output implies the existence of a second (deflationary)

perfect-foresight steady state consistent with the policy rule, as discussed by Ben-

habib et al. (2001); and the insensitivity of the interest rate to variations in inflation

and output once the lower bound binds implies that the learning dynamics will be

unstable near the forecasting rule associated with the deflationary REE.42

This is illustrated in Figure 1, where the global behavior of the ODE system

corresponding to (3.22) is plotted now taking into account the zero lower bound

(ZLB). Note that the third row of (3.19) can be written as it = D′
iet, if we average

out the values of ξt (in order to describe the mean dynamics, which approximately

characterize the asymptotic dynamics of our system). The asymptotic dynamics

described by (3.22) are therefore consistent with the zero lower bound as long as e(τ)

40Howitt (1992) was the first attempt to formalize Friedman’s argument through an analysis of

the convergence of learning dynamics to the REE.
41The other structural relations assumed above are merely local approximations to relations that

should actually be nonlinear; but even if they are assumed to hold globally, the zero lower bound

prevents (3.21) from holding globally.
42Evans and Honkapohja (2010) and Benhabib et al. (2012) show this in the context of NK models

with adaptive learning closely related to the one presented here.
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remains in the region satisfying the inequality43

r̄ +D′
ie ≥ 0, (3.23)

where r̄ > 0 is the steady-state real rate of interest.44 Because both elements of Di

are positive under the sign assumptions stated above, the region in Figure 1 where

the dynamics (3.22) apply is the region above and to the right of the line labeled

ZLB, along which (3.23) holds with equality.

When (3.23) is violated, (1.21) must instead be replaced by

it = −r̄ < 0. (3.24)

Solving the system consisting of (1.16)–(1.17) and (3.24), one obtains a linear solution

of the form

xt = x+Det + dξt (3.25)

instead of (3.19). The complete TE solution for xt is then given by (3.19) when

(3.23) is satisfied, and (3.25) otherwise. (Note that this is a continuous, piecewise

linear solution.) Repeating the derivation of (3.22), one finds that ė is given by (3.22)

when (3.23) is satisfied (a region that includes a neighborhood of the origin), and

instead by

ė = −(I − A)e+ Cx (3.26)

in the region where the inequality is reversed, where A ≡ CD. (Note that this makes

ė a continuous, piecewise-linear function of e.) This is the system the trajectories of

which are plotted in Figure 1.45

One observes that the origin e = 0 (corresponding to the zero-inflation steady

state) is a rest point of these dynamics, and locally stable under the ODE dynamics

as discussed above. If the dynamics (3.22) applied globally (i.e., if the ZLB constraint

were not an issue), this steady state would also be globally stable: the learning

dynamics would converge to it asymptotically from all possible initial states of belief.

43Recall that in the notation used here, it is the amount by which the nominal interest rate exceeds

its steady-state value, so that the requirement for the nominal interest rate to be non-negative is

r̄ + it ≥ 0.
44Because we log-linearize our equations around a stationary equilibrium with zero inflation, r̄ is

also the steady-state nominal interest rate.
45Analytical derivations of qualitative properties of this figure are given in the Appendix.
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But the dynamics when the ZLB constraint binds are different; as a consequence,

there is a second steady state in the region below the ZLB line, at

e = e∗ ≡ (I − A)−1Cx,

corresponding to steady-state values

π∗ = i∗ = −r̄ < 0, y∗ = −(1− β)r̄/κ < 0.

Because I − A has two real eigenvalues, one positive and one negative, trajectories

of (3.26) converge to e∗ only from initial conditions along the line SM in the figure,

the one-dimensional stable manifold. Trajectories above and to the right of this

line eventually converge to the zero-inflation steady state, while those below and

to the left of it diverge from e∗ in the opposite direction, eventually being drawn

into (and remaining forever in) the shaded region. Because the actual dynamics of

inflation are stochastic (even for arbitrarily large t) rather than precisely equal to

the approximating ODE dynamics, there is actually zero probability of convergence

of the learning dynamics to the REE represented by e∗, even from initial conditions

on the line SM ; the learning dynamics must diverge from e∗ in one direction or the

other.46

One might think that the non-learnability of the deflationary REE (while the

learning dynamics are instead locally convergent near the REE consistent with the

central bank’s inflation target) implies that one need not be concerned about the

possibility of falling into a self-fulfilling “deflation trap” of the kind stressed by Ben-

habib et al., on the basis of the REE analysis. But the divergent dynamics near the

46Figure 2 of Evans and Honkapohja (2010) is qualitatively similar, though plotted in the plane

of inflation and output expectations (π̂t, ŷt). These authors obtain an autonomous differential

equation system in the π̂ − ŷ plane only by assuming that interest-rate forecasts are obtained from

inflation and output forecasts using people’s knowledge of the policy rule. This is not consistent

with the assumption made here that interest rates (like all other variables) are forecasted on the

basis of past observations of that variable. In particular, when trajectories in Figure 1 cross the

ZLB line, the nominal interest rate becomes positive, and under the learning rule assumed here, a

positive nominal interest rate must be expected in the future as well. Under the Evans-Honkapohja

forecasting assumption, instead, people would continue for some time to forecast a zero nominal

interest rate into the indefinite future, because inflation and output expectations (which lag behind

actual inflation and output) would still be at levels that would imply an expectation that the zero

lower bound should continue (indefinitely) to bind.
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deflationary REE include the existence of trajectories that diverge in the direction of

ever-lower levels of inflation and output (those in the shaded region of the figure),47

as a result of which the learning dynamics do imply the possibility of a “deflation

trap,” albeit not one that involves convergence to the deflationary REE emphasized

by Benhabib et al. As Evans and Honkapohja (2010) and Benhabib et al. (2012) dis-

cuss, to the extent that expectations are necessarily formed in this backward-looking

way, the only way out of such a “trap” is to use other tools of policy (such as fiscal

stimulus48) to raise inflation and/or output long enough for inflation and output ex-

pectations to return to the region in which the learning dynamics can be expected

to converge toward the target REE without further artificial support. In this view,

other tools of policy have an important stabilization role to play in deep crises, even

if monetary policy alone suffices as a stabilization tool except when unusual shocks

drive expectations far enough away from the target REE forecasting rule.

3.3 Learning Dynamics as a Source of Persistence

Much of the early literature on TE dynamics with learning was concerned with the

question of asymptotic convergence to an REE; the positive prediction of interest was

whether an REE (or which REE) should be reached, and hence observed in practice.

But the learning dynamics themselves might also be regarded as a source of positive

predictions. One such positive prediction of particular interest is the existence of

persistent fluctuations resulting from the dynamics induced by evolving estimates of

the coefficients of people’s forecasting rules.

47In fact, one can show that all trajectories that begin in the region that is below both the ZLB

line and the SM line converge eventually to the shaded region, where they remain forever, and

diverge farther and farther from the deflationary steady state.
48Even if fiscal policy expectations are Ricardian, and the forecasts et are purely backward-looking

as assumed above, an increase in government purchases should increase output and inflation, by

increasing the term gt in (1.16). If a current increase in net government transfers does not reduce

the present value of forecasted future net transfers — for example, because future primary surpluses

are forecasted using an estimator like (3.14) — then an increase in net transfers will also increase

output and inflation, by increasing the term bt+1 in (1.18), while (if anything) also increasing the

forecasts Êivit+1.
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3.3.1 Constant-Gain Learning

To study the macroeconomic dynamics that result from learning, it is convenient to

assume that the gain γt in (3.15) takes some constant value 0 < γ < 1 for all t,

so that convergence to the REE never occurs, even asymptotically. A “constant-

gain” learning algorithm of this kind may be justified as making sense if people

believe that the coefficients of the correct forecasting model may shift over time, and

consequently place more weight on the most recent observations in their estimates of

the current coefficients.49 In this case, the predicted TE dynamics are time-invariant,

and can be characterized in terms of predicted unconditional moments (variances,

autocovariances, etc.).

The dynamics of forecasts are again given by (3.21), but now with the constant

value γ substituted for γt; the implied TE dynamics of other variables are then given

by (3.19).50 Equation (3.21) can alternatively be written in the form

et = Λ et−1 + λ ξt, (3.27)

where

Λ ≡ (1− γ)[I − γA]−1, λ ≡ γ[I − γA]−1a.

If policy satisfies (1.24), both eigenvalues of A are inside the unit circle, so that

[I − γA] is invertible, Λ and λ are well-defined, and both eigenvalues of Λ are also

inside the unit circle. Hence (3.27) defines stationary dynamics for the forecasts {et}
and consequently for the variables {xt} as well.

Equation (3.21) implies that the forecasts will be serially correlated, even if the

disturbances are i.i.d. More precisely, it implies that each element of et will be

a linear combination of two first-order autoregressive processes (the innovations in

which are generally correlated), with coefficients of serial correlation equal to the

49See Sargent (1993) or Evans and Honkapohja (2001) for further discussion.
50The type of adaptive learning dynamics considered here are again of a fairly simple kind, since

people’s forecasting rules are assumed simply to forecast constant future values for each of the

variables, and the only coefficients that must be learned are the estimated means of each variable.

However, as Eusepi and Preston (2012b) discuss, even if one allows updating of the slope coefficients

of a more complex linear regression model, in a local linear approximation to the implied TE

dynamics, linearizing around the REE steady state, there are no additional dynamics resulting from

the updating of the slope coefficients; the updating of the additional coefficients has only second-

order effects on the TE dynamics.
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two eigenvalues of Λ. If γ is small (estimates are based on a fairly long history), the

eigenvalues of Λ will be near 1, and these processes will be highly persistent. It then

follows from (3.19) that fluctuations in inflation and the output gap will have highly

persistent components under the TE dynamics with learning. This contrasts sharply

with the prediction of the REE analysis, according to which inflation and the output

gap should both be serially uncorrelated if all fundamental disturbances are, as a

consequence of (1.25).

If the fundamental disturbances are instead themselves serially correlated, then

persistent fluctuations in inflation and output are possible even under the REE dy-

namics. However, empirical New Keynesian models, such as those of Christiano et

al. (2005) or Smets and Wouters (2007), generally find it necessary to introduce

additional sources of persistence (indexation of prices and wages to past inflation,

adjustment costs for expenditure), of debatable microeconomic realism, in order to

fit the kind of persistence that is actually observed.51 Learning dynamics provide an

alternative potential source of intrinsic persistence, and some studies (e.g., Milani,

2005, 2007, 2011; Slobodyan and Wouters, 2009) find that there is less need for ad

hoc structural persistence in econometric models that assume least-squares learning

rather than rational expectations.52

3.3.2 Consequences for Policy Evaluation

The additional dynamics resulting from learning can change one’s conclusions regard-

ing the relative desirability of alternative monetary policy rules, even with respect to

comparisons among rules that do not imply explosive learning dynamics. As a simple

example, suppose that the central bank’s short-run inflation target depends linearly

on the cost-push shock,

π∗
t = ϕuut, (3.28)

51See Woodford (2003, chap. 5) for discussion of the reasons for this.
52Eusepi and Preston (2011) similarly find that the introduction of learning dynamics introduces

a new channel for the propagation of the effects of technology shocks in an otherwise standard real

business cycle model, and argue that the model with learning produces fluctuations more similar to

observed business cycles. Even larger departures from REE business-cycle dynamics are predicted

in the case of a model of learning that involves discrete switching between simple forecasting models

of dramatically different character, as proposed by DeGrauwe (2010).
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for some 0 ≤ ϕu ≤ 1, and it is adjusted each period as necessary in order to ensure

that πt = π∗
t . The required interest rate can be determined, as a function of current

disturbances and expectations, from equations (1.16) and (1.17); these equations also

indicate the implied evolution of the output gap.

Under the further assumption of RE beliefs, the model predicts that

yt = −(1− ϕu)κ
−1ut, (3.29)

and hence that the unconditional variances of inflation and of the output gap will be

var(π) = ϕ2
uσ

2
u, var(y) = (1− ϕu)

2κ−2σ2
u,

where σ2
u is the variance of the cost-push shock. It follows that for all ϕu in this

interval, increasing ϕu increases the volatility of equilibrium inflation, but reduces

the volatility of the equilibrium output gap. If policy is concerned to minimize some

weighted average of the two variances, the optimal choice of ϕu will be somewhere

between the two extremes, at a point that depends on the relative weight on the two

stabilization objectives.

If we instead assume adaptive learning of the kind specified by (3.15), substitution

of the policy rule (3.28) into the TE relation (1.17) implies that the output gap each

period will be given by

yt = −(1− ϕu)κ
−1ut − (1− α)βκ−1p̂∗t , (3.30)

where p̂∗t is the common forecast at date t of the value of p∗t+1. The latter forecast

will be given by (3.17); if the estimates of the means of each of the variables evolve

in accordance with (3.15), for some 0 < γ < 1, this implies that

p̂∗t = (1− γ)p̂∗t−1 + γ[(1− αβ)−1πt + ξyt + µt].

Substituting (3.28) and (3.30) for πt and yt respectively in this expression yields a

law of motion for the forecast of the form

p̂∗t = ρp̂∗t−1 + ϕuψut, (3.31)

where

0 < ρ ≡ (1− γ)(1− αβ)

1− (1− γ)αβ
< 1, ψ ≡ γ

α[1− (1− γ)αβ]
> 0
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both are independent of the choice of ϕu.

Equation (3.31) implies that if ϕu > 0, a positive cost-push shock immediately

raises the forecast p̂∗t , and the forecast continues to be higher in subsequent periods

as well (to an extent that decreases exponentially over time). Comparing (3.30) with

the REE prediction (3.29), we see that with adaptive learning, the output reduction

in the period of the shock is greater than would occur under rational expectations;

moreover, the negative effect on the output gap persists, rather than being limited

to the period of the shock. For both reasons, a given value of ϕu > 0 does not

reduce the predicted variance of the output gap as much as is predicted by the REE

analysis, though it continues to to increase the predicted variance of inflation by

the same amount. Thus the trade-off between inflation stabilization and output-gap

stabilization is steeper in the case of learning: less reduction in the variance of the

output gap is achieved by a given increase in the variance of inflation. The implication,

as argued by Orphanides and Williams (2005), is that under given preferences with

regard to inflation and output-gap stability, it will be optimal to choose a lower value

of ϕu (maintaining tighter control of inflation) when one recognizes that people must

learn to forecast macroeconomic conditions, relative to what one would conclude from

the REE analysis.53

4 TE Dynamics with Nearly Correct Beliefs

There is, however, another way of ensuring that one’s model’s predictions do not

depend on a supposition that people will fail to notice patterns in the data that

should actually be easily discerned. These alternative approaches are based not on

an explicit specification of the procedure used to look for such patterns, as in the

case of econometric learning models, but rather on a direct requirement that proba-

bility beliefs — however obtained — not be too different from the true probabilities

(according to one’s model). Approaches of this kind propose no model of how people

reason to the probability beliefs that they hold, but instead focus on defining the

respects in which subjective beliefs should reasonably be expected to be similar to

53Orphanides and Williams consider a one-parameter family of policies similar to the one consid-

ered here, but in the context of a simpler model of the way in which expectations affect aggregate

supply. For implications of learning dynamics for the optimal choice of a policy rule within more

complex families of candidate policies, see Gaspar et al. (2011).
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objective probabilities, and the other respects in which one might expect more varia-

tion in subjective beliefs. In this section, I discusses two examples of how this might

be done: the “rational belief equilibria” of Mordecai Kurz and coauthors (Kurz, 1994,

1997, 2012; Kurz and Motolese, 2011), and the “near-rational expectations” proposed

by Woodford (2010) and explored further in Adam and Woodford (2012).

Before describing these approaches, it is important to note that a hypothesis that

beliefs are “nearly correct” does not imply that they are nearly the same as (any

possible) REE beliefs. The extent to which beliefs are correct depends on their con-

formity with the actual TE dynamics, which may differ greatly from REE dynamics,

and not their conformity with REE predictions. This difference is emphasized in

particular by Kurz (2012), who emphasizes the possibility of sizeable aggregate fluc-

tuations even when the magnitude of exogenous disturbances to “fundamentals” is

much smaller than must be postulated to account for the fluctuations using DSGE

models that assume rational expectations.

4.1 “Rational Belief Equilibria”

Kurz (1994) proposes a relaxation of the rational expectations hypothesis in which

the probability beliefs of decisionmakers are required to imply model-consistent values

for some data moments, but not for all of the data moments that are relevant to their

forecasts and hence to their decisions. Certain quantities (including conventional

macroeconomic aggregates, such as rate of growth of GDP or the CPI) are assumed

to be objectively measurable, and as a consequence everyone is assumed to agree

about the current and past values of these variables. The postulate of “rational

beliefs” (RB) then requires that in any stationary equilibrium (a “rational belief

equilibrium,” RBE) consistent with some time-invariant policy, everyone must also

agree about all of the unconditional first and second moments54 of these objectively

measurable variables, and assign values to these moments that coincide with the

predictions of the model about this particular RBE.55

54By “all second moments” I mean to include all covariances between leads and lags of the various

variables.
55In fact, Kurz (1994) proposes the stronger postulate that the subjective assessment of the

unconditional joint distribution of the objectively measurable variables must coincide with their

model-implied unconditional distribution. In the case of a linear model with additive Gaussian

disturbances, of the kind used in applications such as Kurz (2012), and in the example presented
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But these variables are not the only ones on the basis of which individuals form

their forecasts; there are also subjective variables (“belief states”) about which they

need not agree. A given decisionmaker is assumed to have coherent probability beliefs

about the joint distribution of her own belief states and the objectively measurable

variables, on the basis of which the belief states modify her forecasts of the future

paths of the objectively measurable variables; but these data moments need not be

ones about which others agree, and the probability beliefs of an individual need not

coincide in this respect with the predictions of the model. It is in this latter respect

that the RB postulate is weaker than RE. Insofar as people are assumed to learn the

correct values of some data moments but not others, the RBE concept is a cousin of

the RPE concept discussed in section 3.1.

The content of the RB postulate, as well as the sense in which it is weaker than

RE, is best illustrated using an example. Suppose that the natural rate of output is

the sum of two components,

Y n
t = Ȳ n

t + ξ2t, (4.1)

where the permanent component Ȳ n
t evolves as a random walk,

Ȳ n
t = Ȳ n

t−1 + ξ1t, (4.2)

with {ξ1t} an i.i.d. innovation distributed as N(0, σ2
1), and the transitory compo-

nent ξ2t is another i.i.d. innovation, distributed as N(0, σ2
2) and independent of the

permanent shocks. If the process {Y n
t } is objectively measurable but its permanent

and transitory components are not, and no other objectively measurable variables

provide information about this decomposition, then an optimal estimate of the per-

manent component (or optimal forecast of the long-run level) of Y n
t at any time t is

given by an exponentially-weighted moving average56

Ȳt ≡ (1− λ)
∞∑
j=0

λjY n
t−j,

where the smoothing factor 0 < λ < 1 is given by

λ =
2

2 + q +
√
q2 + 4q

, q ≡ σ2
1

σ2
2

.

below, identity of the two unconditional distributions is equivalent to identity of the complete list

of first and second moments.
56This corresponds to the Bayesian posterior mean, or minimum-mean-squared-error forecast,

using a Kalman filter (Harvey, 1989, chap. 4), as originally derived by Muth (1960).
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Conditional only on objectively measurable data, then, an optimal forecast of the

future natural rate at any horizon k ≥ 0 will be given by

ĒtY
n
t+k = Ȳt. (4.3)

Suppose, however, that in addition to the objectively measurable data, each in-

dividual price-setter j has a subjective estimate of the permanent component, that I

shall denote zjt . If each price-setter correctly understands the laws of motion (4.1)–

(4.2), this implies that subjective forecasts will be given by

Êj
tY

n
t+k = zjt , (4.4)

rather than by (4.3). Note that each individual’s beliefs are described by a completely

specified, internally consistent probability measure, that is moreover consistent with

the true first and second moments of all objectively measurable data; for example,

these beliefs imply correct (model-consistent) values for the unconditional moments

E[∆Y n
t ] and cov(∆Y n

t ,∆Y
n
t−k) for all k, as these can be derived from (4.1)–(4.2).57

But individual beliefs about the statistics of the subjective belief state zjt and its

co-movement with objectively measurable data need not coincide with the beliefs of

others, or with the way that the model describes the evolution of these variables.

In our example, while each individual j believes that zjt = Ȳ n
t , it does not follow

that zjt must take the same numerical value for all j. Moreover, even if, as in Kurz

and Motolese (2011) and Kurz (2012), we suppose that the population distribution

of subjective beliefs, and hence the population mean Zt ≡
∫
zjt dj, are objectively

measurable data, it does not follow that zjt must equal Zt for each individual. In-

dividuals can be aware that their personal estimate zjt differs from the average esti-

mate, without any internal inconsistency of their beliefs. The RB postulate requires

that people all have model-consistent beliefs about unconditional moments such as

E[Y n
t −Zt],E[∆Zt], cov(∆Y

n
t+k, Y

n
t −Zt), and so on. But awareness of these moments

and observation of Zt does not give a price-setter any reason to doubt the validity

of her forecast (4.4), given her belief in the laws of motion (4.1)–(4.2) and her belief

57Kurz does not refer to these common beliefs as “correct” beliefs about unconditional moments,

but only as “empirical frequencies.” However, in applications such as Kurz and Motolese (2011) or

Kurz (2012), the calculations used to explain or predict data are carried out under the assumption

that the empirical frequencies correspond to model-implied unconditional moments, under time-

invariant stochastic processes for the various disturbances specified in the model.
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that zjt is an accurate (but personal) observation of the value of Ȳ n
t . (This simply

requires each individual to believe that others’ personal assessments of the value of

the permanent component are erroneous, even though she understands that, like her,

they each believe their personal assessments to be correct.58)

As one possible example of how this makes possible an additional source of

aggregate fluctuations, suppose that people’s subjective assessments are given by

zjt = Ȳt + νjt , where ν
j
t is a random term that evolves independently of all “funda-

mental” variables, including both the permanent and transitory components of Y n
t .

Thus, since Ȳt is objectively measurable, the subjective state zjt reflects no additional

information about the future evolution of the natural rate (or any other fundamen-

tals). Moreover, suppose that the errors νjt are correlated across individuals, so that

the aggregate error νt ≡
∫
νjtdj is not equal to zero. Then because νt represents

an error in the average estimate of a variable that is relevant for pricing decisions

(the error in the average estimate
∫
Êj

t [Ȳ
n
t − Ȳt]dj), it will affect the determination of

endogenous aggregate variables, such as output and inflation; and variation in νt will

be an additional source of variability in these variables, in addition to the random

variation in fundamentals such as {ξ1t, ξ2t}.
To illustrate the effects of fluctuations in the aggregate belief state on endogenous

variables, let the monetary policy rule be specified by a target criterion: that is, the

central bank adjusts its instrument as necessary in order to ensure that the linear

relationship

πt + ϕ(Yt − Ȳt) = 0 (4.5)

holds at all times.59 This represents a form of “flexible inflation targeting” (Svensson,

1999), where the concept of the output gap in the central bank’s target criterion

58Thus this equilibrium concept allows a much wider range of possible specifications of belief

dynamics than a rational-expectations model with “private information,” of the kind considered by

Rondina and Walker (2012). In the latter paper, all individuals are assumed to agree about the

joint distribution of all publicly or privately observable variables, though individuals do not observe

other individuals’ private signals about the separate components of the aggregate disturbance. In

Kurz’s work, instead, people “agree to disagree.” It is therefore not necessary to suppose that

there is anything secret about individuals’ subjective beliefs; it is only the basis for accepting these

subjective assessments as correct that is not shared.
59The state-contingent path for the interest rate it required in order for (4.5) to hold each period

will depend on the subjective expectations of both price-setters and consumers. I suppose here that

the central bank observes average expectations when setting it, and so can implement a reaction

function that makes (4.5) a necessary consequence of the TE relations that determine πt and yt,
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is output relative to the central bank’s estimate of long-run potential, rather than

relative to the current natural rate of output. As a simple example in which belief

fluctuations provide an independent source of aggregate variability, suppose that νt

evolves as an AR(1) process,

νt = ρνt−1 + ϵt, (4.6)

where 0 ≥ ρ < 1, and {ϵt} is an i.i.d. innovation, with distribution N(0, σ2
ϵ) inde-

pendent of all fundamental states. We can then solve for the equilibrium dynamics

of inflation and output implied by the TE relations, (4.5) and the above assumptions

about subjective expectations, using the method of undetermined coefficients.

Let us conjecture beliefs on the part of each price-setter j of the form

Êj
t p

∗j
t+1 = γ1(Ȳt − zjt ) + γ2(Ȳt − Zt), (4.7)

for coefficients γ1, γ2 that remain to be determined. Average beliefs are then given

by ∫
Êj

t p
∗j
t+1dj = γ(Ȳt − Zt),

where γ ≡ γ1 + γ2. Let us also suppose for simplicity that the cost-push shock ut is

equal to zero at all times.60 The TE relation (1.17) then implies that inflation and

the output gap must be given by

πt =
κϕ

κ+ ϕ
(Ȳt − Y n

t )−
(1− α)βγϕ

κ+ ϕ
νt, (4.8)

yt =
ϕ

κ+ ϕ
(Ȳt − Y n

t ) +
(1− α)βγ

κ+ ϕ
νt. (4.9)

Since equations (4.8)–(4.9) are relationships among objectively measurable vari-

ables,61 the RB postulate requires that the subjective probability beliefs of each

price-setter be consistent with them. These relations, together with the laws of mo-

tion (4.1)–(4.2) and (4.6) for the exogenous aggregate state variables, further imply

regardless of what those subjective expectations may be. Thus (4.5) can be treated as an equilibrium

relation in solving for the equilibrium dynamics under a given hypothesis about expectations.
60Note that even under this assumption, the model implies the existence of equilibrium fluctuations

in inflation and in the output gap, owing to the discrepancy between the concept of potential output

(Ȳt) used in the central bank’s target criterion (4.5) and the one (Y n
t ) that shifts the AS relation

(1.17).
61Recall that νt = Zt−Ȳt, and the average belief state Zt is assumed to be objectively measurable.
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that correct forecasts of future inflation and output are given by

Etπt+k =
κϕ

κ+ ϕ
λk(Ȳt − Ȳ n

t )−
(1− α)βγϕ

κ+ ϕ
ρkνt,

Etyt+k =
ϕ

κ+ ϕ
λk(Ȳt − Ȳ n

t ) +
(1− α)βγ

κ+ ϕ
ρkνt

for any horizon k ≥ 1, where Et[·] refers to the expectation conditional on the history

of all exogenous states up through period t, including the (unobserved) value of Ȳ n
t .

If price-setters are assumed to correctly understand these laws of motion,62 then

their subjective forecasts of future inflation and output gaps must conform to these

equations as well, but with the value of Ȳ n
t replaced by each individual’s subjective

estimate of this state. Thus for any price-setter j, each of the forecasts is a linear

function of Ȳt − zjt and νt ≡ Zt − Ȳt.
63

Substituting these subjective forecasts into definition (1.12), we can obtain an

expression for Êj
t p

∗j
t+1 as a linear function of Ȳt − zjt and Ȳt − Zt, as conjectured

in (4.7). We now however have expressions for the coefficients γ1, γ2 (given in the

Appendix) as functions of the assumed value of γ. Requiring the implied values of

these coefficients to equal their conjectured values yields two linear equations to solve

for the unknown coefficients γ1, γ2. As shown in the Appendix, our sign assumptions

on parameters imply the existence of a unique solution, with γ > 0.

We thus obtain TE dynamics consistent with the RB postulate in which fluctua-

tions in the aggregate belief state νt cause random variations in inflation and output.

62The RB postulate requires that price-setters all correctly understand the autocorrelation func-

tion of the objectively measurable process {νt}, but it does not require that they agree that an

unbiased forecast of νt+k at time t depends only on the current value νt; they may have subjective

judgments about the likely future path of the aggregate belief state that they believe are more ac-

curate than the forecast that could be made on the basis of objectively measurable data alone. Here

I make the more restrictive assumption that no one believes that they have additional insight into

the future evolution of any exogenous states except for believing in their personal estimates of the

permanent component Ȳ n
t .

63Kurz and Motolese (2011) say that “those who believe the economy is stationary” will necessarily

forecast using the “empirical measure” — that is, using only the information contained in the history

of objectively measurable variables, and so make forecasts such as (4.3). But in fact, the subjective

probability beliefs specified here imply that {πt, yt, Ȳt − Ȳ n
t , Y n

t − Ȳ n
t , Ȳt − Zt,∆Ȳ n

t } are jointly

stationary processes; and the same is true of the RBE beliefs specified in the applications proposed

by Kurz and Motolese (2011) and Kurz (2012). The crucial issue is actually not stationarity, but

whether variables other than objectively measurable variables are also used in forecasting.

47



It is instructive to compare this solution with the REE dynamics under policy rule

(4.5). We may assume as above that each individual observes a personal state variable

zjt (a “gut feeling,” if one likes), that is distributed as assumed above; but under the

RE hypothesis, each individual must correctly understand the joint distribution of zjt
and all other variables. This would mean correctly understanding that zjt contains no

information that is useful for predicting the future path of the natural rate of output

(given that Ȳt is independently observable), and similarly that Zt is uninformative.

RE forecasts of all variables would then correspond simply to the expectations of

those variables conditional on the observed history of the natural rate of output;

thus, for example, the common forecast of the future natural rate of output would be

given by (4.3). It is shown in the Appendix that under policy rule (4.5), the unique

stationary REE is one in which inflation and the output gap are given by equations

(4.8)–(4.9), but with γ = 0, whereas γ > 0 in the RBE discussed above. Thus the

RBE beliefs do not change the response of inflation or output to exogenous fluctua-

tions in the natural rate of output, but result in increased variability of both inflation

and the output gap for any value of ϕ, relative to the REE prediction, owing to the

existence of fluctuations unrelated to any changes in fundamentals, but due purely

to variation in the aggregate belief state.

The above simple calculation may make it appear that the RBE hypothesis makes

definite quantitative predictions about the evolution of endogenous variables under

a given policy rule, but this is actually not true; the RBE constructed above is only

one possible example of TE dynamics consistent with the RB postulate under the

assumed policy rule. First of all, there is an RBE of the kind assumed above for

any specification of the serial correlation coefficient ρ and of the innovation variance

σ2
ϵ for the process {νt}. Moreover, there is no reason why {νt} must be an AR(1)

process; this allowed us to verify the conjecture that subjective forecasts were of

the form (4.7), but we might equally well have assumed a more complex process for

{νt}, and still solved for an RBE, in which however, subjective forecasts would be

correspondingly more complex. Thus if we allow {νt} to be any process in some

larger parametric family, we can obtain a multi-parameter family of RBE associated

with the given policy (4.5). But even this understates the multiplicity of possible

RBE. For it was not necessary to have assumed that people believe that they have

an additional (personal) awareness of the decomposition of Y n
t into permanent and

transitory components, but no additional personal insight into the economy’s future
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evolution of any other sort. Allowing for other types of subjective beliefs (that need

not be correlated with actual outcomes, according to one’s model, in the way that

people believe that they are) would further expand the set of RBE solutions consistent

with a given policy rule.

Kurz and coauthors argue that the more flexible relationship between the evo-

lution of exogenous fundamentals and that of endogenous variables allowed by this

relaxation of the RE hypothesis can make sense of some of the empirical difficulties

faced by RE models. For example, Kurz and Motolese (2011) discuss RBE of an asset-

pricing model in which there is a risky asset in fixed supply and an exogenously given

riskless rate of return (independent of the quantity invested in the riskless asset).

The dividend on the risky asset is an exogenous process, about the future evolution

of which individual investors believe they have additional personal insight, beyond

the information contained in the past history of the dividend, just as in the case of

subjective forecasts of the natural rate of output in the above example. In the RBE,

variations in the aggregate belief state become an additional source of variation in

equilibrium asset prices, and in particular result in a time-varying risk premium, of

the kind that is found to be empirically important in many asset markets.

Kurz and Motolese estimate the parameters of their model using data on term

premia associated with federal funds futures and Treasury bills, and find that al-

lowance for the more flexible class of equilibria allows the data to be fit better; their

best-fitting RBE implies that more than half of the measured risk premia are due to

fluctuations in the aggregate belief state. This suggests that the kind of additional

flexibility allowed by the concept of an RBE may be of empirical relevance. At the

same time, because the predictions of the more general theory are much less specific,

it is not obvious that findings such as those of Kurz and Motolese can be regarded

as confirming a specific theoretical view of the nature of subjective beliefs.64

Relaxation of the RE hypothesis also has potential consequences for policy design;

64While the sets of possible RBE discussed in papers such as Kurz and Motolese (2011) and

Kurz (2012) involve only a few free parameters, this is not because the RB postulate alone allows

one to derive such specific conclusions — a large number of additional (theoretically unmotivated)

assumptions are made as well, in order to obtain equilibria of a particular form. Moreover, in neither

of these applied papers are all of the restrictions implied by the RB postulate imposed; the solutions

proposed as possible accounts of actual data are actually examples of an even weaker version of the

RBE concept, and the proposed restrictions on the stochastic processes characterizing the data are

mainly adopted for convenience rather than following from a conception of rationality.
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as illustrated by the above example, the degree of macroeconomic stability guaran-

teed by commitment to a given policy rule may not be as great as a mere analysis of

the REE dynamics consistent with it would suggest. This raises the possibility that

alternative rules might provide more robust approaches to stabilization, even if they

do not lead to a superior REE. While there will not be a unique RBE consistent with

a given policy rule, or even a unique RBE associated with a given restricted state

space (as in the analysis of MSV-REE above), it may be compare the data moments

associated with the entire range of possible RBE, for alternative parameterizations

of a policy rule. Kurz (2012) undertakes an illustrative analysis of this kind of the

consequences of alternative central-bank reaction functions in the context of a New

Keynesian model closely related to the one presented here. However, the compar-

isons undertaken consider only certain parametric classes of RBE, and it is unclear

why attention should be restricted to these specific types of equilibria. This seems

an important limitation of the Kurz approach for purposes of policy analysis. The

alternative approach presented next instead allows a clear delineation of the set of

equilibria consistent with a given policy rule.

4.2 “Near-Rational Expectations”

Rather than distinguishing a priori between data moments that individuals should

correctly assess and those that they may not, depending on the nature of the vari-

able in question, the assumption of “near-rational expectations” in Woodford (2010)

instead defines a set of probability beliefs that are close enough to the predictions

of one’s model to be plausibly held by decisionmakers in such a situation, on purely

statistical grounds. Essentially, an alternative probability distribution is “close” to

the predicted probabilities of outcomes in a given equilibrium if the alternative distri-

bution represents a sample distribution of outcomes that could be observed in some

finite number of repetitions of the equilibrium. This requires, for example, that “near-

rational” subjective expectations assign zero probability to all outcomes that occur

with zero probability in equilibrium.

This means that each agent’s subjective probability measure over possible paths

for all variables must be absolutely continuous with respect to the equilibrium proba-

bility measure. This in turn implies there must exist a scalar stochastic process {mt}
for each agent — the agent’s belief distortion factor — with mt ≥ 0, Etmt+1 = 1 at

50



all times, such that the agent’s subjective one-period-ahead forecast of any variable

Xt+1 is given by

ÊtXt+1 = Et[mt+1Xt+1], (4.10)

where Et[·] indicates the conditional expectation under the true (model-implied) prob-

abilities in the particular equilibrium. Thus a value mt+1 > 1 in a particular state

of the world at date t+ 1 implies that, conditional on reaching the predecessor state

at date t, the agent exaggerates the probability of reaching this state relative to the

correct equilibrium probability. Internal consistency of individual probability beliefs

then implies that longer-horizon subjective forecasts are correspondingly given by

ÊtXt+j = Et[mt+1 · · ·mt+jXt+j].

The degree of discrepancy between subjective and objective probability beliefs can

then be measured by the degree to which the distortion factor {mt} differs from a

constant factor, equal to 1 in all states. A measure of the degree of discrepancy in one-

period-ahead beliefs (looking forward from any period t) with appealing properties is

the relative entropy between the subjective and objective conditional probabilities

Rt ≡ Et[mt+1 logmt+1]. (4.11)

This is non-negative convex function of the belief distortion factor that achieves its

minimum possible value of zero if and only if mt+1 = 1 almost surely (the RE case).

Moreover, the probability of observing a sample frequency distribution for the possible

outcomes at date t + 1 that is close to any given subjective measure, in the case of

a large (but finite) number of independent draws from the equilibrium probability

measure, is (in the case of a large enough number of draws) a decreasing function of

the relative entropy of the subjective measure.65 Hence subjective beliefs under which

Rt is small (though positive) each period are ones that could plausibly be maintained

even by an agent with considerable experience of typical equilibrium outcomes.

Woodford (2010) accordingly defines an equilibrium with “near-rational expecta-

tions” (NRE) as a situation in which each agent optimizes on the basis of internally

consistent probability beliefs for which Rt is sufficiently small each period, when cal-

culated with respect to the equilibrium probability measure describing the outcomes

that result (in each possible state of the world) from their collective choices. Note

65See, for example, Cover and Thomas (2006).
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that the equilibrium measure will not generally be the REE measure, because people

act on the basis of non-REE beliefs; hence NRE equilibrium outcomes need not be

near the REE outcomes in order for beliefs to be “near-rational.”

In the context of the NK model described above, an NRE equilibrium (NREE)

corresponds to stochastic processes {v̄it} and distortion factors {mi
t} for each house-

hold, and processes {p∗jt } and distortion factors {mj
t} for each firm, such that (1.10)

and (1.15) hold each period when subjective forecasts are given by (4.10) for each

agent, and the distortion factors imply that the relative entropy for each agent re-

mains within some bound. If, for example, we assume a monetary policy rule of the

form (1.21) and restrict attention to the special case of common subjective probabil-

ity beliefs for all agents, then an NREE corresponds to a vector stochastic process

{zt} and distortion factor {mt}, such that

zt = B Et[mt+1zt+1] + bξt (4.12)

holds each period (where B and b are again the matrices in (1.22)), and the relative

entropy (4.11) implied by the distortion factor satisfies the specified bound.

4.3 Robustly Optimal Policy

For any positive upper bound on the allowable relative entropy, the set of NREE

consistent with a given policy rule will be large. How, then, can this kind of theory

provide a basis for selection of a particular policy rule? Woodford (2010) proposes

that one choose the policy that implies the highest possible lower bound for one’s

welfare objective (or lowest possible upper bound for one’s loss function), across the

entire set of NREE consistent with the rule, under some specified bound on the

allowable size of belief distortions. Such a “maximin” approach to policy choice is

in the spirit of the “robust control” approach to dealing with model uncertainty

advocated by Hansen and Sargent (2008).

This approach requires one to determine, for any candidate policy rule, the “worst-

case” belief distortion process, that implies an NREE that is the worst possible for the

policymaker’s welfare objective, subject to the bound on the size of belief distortions

that are contemplated. As an example, suppose that the objective of policy is to

minimize a discounted loss function of the form

E0

∞∑
t=0

βt[π2
t + λ(yt − y∗)2], (4.13)
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for some relative weight λ > 0 on output-gap stabilization, and some optimal output

gap y∗ > 0, as in Clarida et al. (1999). Here the expectation E0[·] used to define

the objective refers to the probability beliefs of the policymaker, which need not be

shared by others. And let us again consider policy commitments in the simple family

(3.28).

If for simplicity we restrict attention to equilibria in which belief distortions are

common to all agents, (1.11) and (1.20) imply that

πt = κyt + ut + βEt[mt+1πt+1]

each period, which is just the NRE generalization of the “New Keynesian Phillips

curve” assumed by Clarida et al. Substituting (3.28) for the path of inflation, this

implies that the output gap must satisfy

yt = −κ−1 {(1− ϕu)ut + βϕu Et[mt+1ut+1]} (4.14)

in the NREE corresponding to any distortion process {mt}.
Since the path of inflation is independent of belief distortions under a policy

commitment of the hypothesized type, the belief distortions that maximize (4.13)

involve a choice of the one-period-ahead distortion factors {mt+1} looking forward

from any date t so as to maximize (yt − y∗)2 subject to an upper bound

Rt ≤ R̄, (4.15)

where Rt is defined in (4.11), and the size of R̄ > 0 indicates the allowable degree

of departure from model-consistency. Hence the factors {mt+1} should be chosen to

maximize
1

2
(yt − y∗)2 + θtEt[mt+1 logmt+1]

subject to the constraint that Etmt+1 = 1, where yt is given by (4.14) and θt is a

Lagrange multiplier associated with the constraint(4.15).

If ut+1 is i.i.d. N (0, σ2
u), the solution to this problem is easily shown to involve a

state-contingent distortion factor

logmt+1 = α+ γut+1,

where

α = −R̄, γ = ±(2R̄)1/2

σu

.
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The positive root for γ is optimal if yt < y∗ (the most common case), while the

negative root is optimal if yt > y∗. (When yt < y∗, the policymaker’s tradeoff is

made even more painful by an increase in inflation expectations, that shift the short-

run Phillips curve in a way that increases the tension between the goals of keeping

inflation near zero and the output gap near y∗; and expected inflation is increased

if people exaggerate the likelihood of positive cost-push shocks. If yt > y∗, instead,

the worst-case belief distortions would be ones that reduce inflation expectations, by

exaggerating the likelihood of negative cost-push shocks.)

The worst-case beliefs then imply

Et[mt+1ut+1] = γσ2
u = ±(2R̄)1/2σu,

taking care to select the root that implies the largest gap between yt and y
∗. It follows

that

|yt − y∗| = |y∗ + (1− ϕu)κ
−1ut|+ ϕuβκ

−1(2R̄)1/2σu (4.16)

for all realizations of ut. Equation (4.16) shows that increasing ϕu reduces the sensi-

tivity of yt−y∗ to cost-push shocks (as in the RE analysis), but at the cost of making

it possible for the absolute value of the gap in the absence of any cost-push shock to

be larger, as a result of belief distortions.

The upper bound for (4.13) in the case of any policy in the simple family (3.28)

is then given by

(1− β)−1[Lπ + λLpess
y ],

where

Lπ ≡ E[π2
t ] = ϕ2

uσ
2
u

is the same function of ϕu as in the RE analysis, and

Lpess
y ≡ E[(yt − y∗)2]

is evaluated under the worst-case belief distortions; in both expressions the expecta-

tion is over possible realizations of ut. One observes that ∂Lπ/∂ϕu = 2ϕuσ
2
u, regardless

of the degree of concern for robustness; but one finds that allowance for belief dis-

tortions (R̄ > 0) makes the value of the derivative ∂Lpess
y /∂ϕu less negative (or more

positive) at each value of ϕu. Hence the value of ϕu at which the marginal reduction

in expected losses with respect to output-gap stabilization no longer outweighs the

marginal increase in expected losses with respect to inflation stabilization will be
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reached at a lower value of ϕu under the worst-case beliefs (when R̄ > 0) than under

the RE analysis. In fact, the upper bound for expected losses may be minimized

at ϕu = 0, whereas complete inflation stabilization is never optimal under the RE

analysis; and the optimal ϕu remains bounded away from 1, no matter how large the

weight λ on the output-gap stabilization objective may be, whereas the optimal ϕu

approaches 1 as λ→ ∞ in the RE analysis.

The “robustly optimal” policy within this simple family thus involves greater

stability of inflation in the face of cost-push shocks than would be optimal if one

could be sure that people would have model-consistent expectations. This is similar

to the conclusion obtained in section 3.3.2 when analyzing alternative policies under

the assumption of adaptive learning, and again the basic reason is that variations of

inflation in response to cost-push shocks make it too easy for people to mis-estimate

the average future rate of inflation, causing undesirable instability in the short-run

Phillips curve tradeoff.

The reasons for inflation expectations to be insufficiently well-anchored are some-

what different in the two cases: in the learning analysis, it was assumed that inflation

expectations necessarily drift in response to certain observations of inflation outcomes,

and a large value of ϕu was dangerous because it increased the frequency of occurrence

of observations that would lead to significant expectational errors; here, instead, no

precise prediction is made about what expectations must be, but a large value of ϕu

is dangerous because it allows more significant expectational errors to be consistent

with the assumed bound on relative entropy. Yet ultimately, the problematic feature

of the large-ϕu policy is the same in both cases: it makes sample paths in which av-

erage observed inflation differs significantly from the actual long-run inflation target

(in particular, paths in which the sample average is significantly higher) occur too

frequently.

Woodford (2010) extends the above analysis by considering a much more flexible

family of policies, in which the short-term inflation target π∗
t is an arbitrary linear

function of the history of cost-push shocks, and shows how the optimal commitment

of this form differs from the optimal commitment in the RE analysis of Clarida et

al. (1999). As in the simpler exercise above, the robustly optimal policy commit-

ment involves a lower amplitude of inflation surprises in response to cost-push shocks;

Woodford shows that it also involves a greater degree of commitment to subsequent
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reversal of any effects on the price level of past cost-push shocks.66 Kwon and Miao

(2012) show how a similar method can be used to characterize the robustly optimal

policy commitment for a broad class of linear-quadratic policy problems, and gener-

alize the results of Woodford (2010) to the cases of persistent cost-push shocks and of

a more general form of aggregate-supply relation that incorporates intrinsic inflation

inertia.

Adam and Woodford (2012) further extend the analysis of Woodford (2010), con-

sidering policy commitments that are not necessarily expressed in terms of inflation

targets that depend only on the history of exogenous disturbances. They find that the

conclusions mentioned above continue to hold, as a description of how inflation must

be expected to evolve in response to cost-push shocks under the worst-case beliefs,

even if a robustly optimal policy commitment (within the more general family) need

not require inflation to evolve this way regardless of the nature of belief distortions.

In the analysis of Adam and Woodford, there is not a uniquely defined policy rule

that is robustly optimal; instead, there exists a large class of policy rules that all

imply the same dynamics under the worst-case belief distortions, and hence achieve

the same minimum upper bound for the loss function, though they may be associ-

ated with different TE dynamics under other kinds of distorted beliefs that are also

consistent with the relative-entropy bound.67

Among the robustly optimal policy rules is one that involves commitment to a

target criterion: the central bank uses its policy instrument to ensure that the joint

evolution of inflation and output satisfy a linear relationship of the form

πt + ϕs(πt − Et−1πt) + ϕy(yt − yt−1) = 0 (4.17)

66This kind of robust policy problem is compared to a alternative ways of introducing robustness

to uncertainty about the correctness of model equations into an optimal monetary stabilization

policy problem, in the context of the same linear-quadratic New Keynesian framework used here, in

Hansen and Sargent (2012).
67It should be recalled that also under the RE analysis, the optimal policy commitment is not

uniquely defined. Instead, the optimal REE dynamics are uniquely defined, while there are many

different policy rules that can achieve these dynamics as a determinate equilibrium outcome; the

rules differ in the behavior that they prescribe out of equilibrium, though the policy instrument

evolves in the same way in equilibrium under each of them. Under the robust policy analysis, the

different robustly optimal rules also differ in the sets of possible equilibrium outcomes associated

with them, since a given rule does not imply a determinate equilibrium, except under a particular

specification of the belief distortions.
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each period, where ϕs, ϕy are both positive coefficients, that depend both on model

parameters and on the relative weight λ assumed in the objective (4.13),68 and Et−1πt

indicates the policymaker’s forecast of inflation a period earlier. Here the coefficient

ϕs > 0 multiplying the inflation surprise results from the concern for robustness,

and this coefficient is larger the greater the concern for robustness (as measured

by the relative-entropy bound). The presence of this term reduces the extent to

which a “cost-push shock” should be allowed to cause a surprise change in the rate

of inflation, since it requires the surprise reduction in the output gap to be (1 +

ϕs)/ϕy times as large as the surprise increase in inflation, rather than only 1/ϕy

times as large, as under the optimal commitment assuming rational expectations

(Woodford, 2003, chap. 7). Thus one again concludes, as in the analysis of robustness

to adaptive learning dynamics in section 3.3.2, that ensuring greater robustness to

potential (modest) departures from fully model-consistent expectations requires one

to adjust the relative weights on inflation and the output gap in a monetary policy

rule, in the direction of stronger relative responses to fluctuations in the rate of

inflation.

5 Conclusion

This review has been able to illustrate only a few of the possible methods of macroe-

conomic analysis that depart in one way or another from the complete requirements

of the rational expectations hypothesis. Rather than presenting all of the possible

specifications of expectations or reviewing all of the conclusions obtained using them

in particular models, I have sought only to compare broad classes of approaches, that

differ in the respects in which they maintain or depart from particular aspects of the

knowledge assumptions maintained in the RE literature. Even this brief overview

has shown that there is a considerable range of alternative approaches, leading to

different conclusions about a variety of issues.

It may be asked how macroeconomic analysis can be possible with such a wide

range of candidate assumptions. One answer would be that empirical studies should

68Adam and Woodford also show how to characterize welfare-maximizing policy, when welfare is

defined by the expected utility (under the policymaker’s expectations) of a representative household.

There is again a robustly optimal target criterion of the form (4.17), the coefficients of which now

depend purely on model parameters.
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be undertaken to determine which of these possible specifications of subjective ex-

pectations best describe observed behavior. A few studies of that kind already exist,

but the empirical literature remains at a fairly early stage. Much of the early work on

the alternatives surveyed here has been undertaken in order to clarify or criticize the

conceptual foundations of rational expectations equilibrium, rather than to provide

a positive analysis of observed phenomena; further empirical applications are much

to be desired.

Nonetheless, it is probably a mistake to suppose that empirical investigations

should identify a single model of expectations that can be judged to have been his-

torically valid, and that can then be treated as the way in which expectations must

be formed in the future, for purposes of counterfactual policy analyses. It is more

reasonable, in my view, to search for policies that should be robust to a variety of

possible specifications of expectations. Of course, it is not possible (and probably

would not be desirable, even if feasible) to demand that a policy be robust to all

possible views of the world; it is therefore important that macroeconomists continue

to seek greater certainty about which models of the economy are more accurate. But

one need not settle upon a single model specification before policy analysis is possible.

Indeed, the approaches discussed in sections 2 and 4 above seek to define classes

of reasonable specifications of expectations under a given policy regime, rather than

a single correct specification; and even in the case of the econometric learning models

discussed in section 3, the identification of a best-fitting learning rule for some histor-

ical data set would better be taken as providing evidence about the types of learning

rules that should be allowed for in a robustness analysis, rather than as identifying

a “true” learning rule that can relied upon in the future. If macroeconomic analysis

is approached in this spirit, then awareness of a variety of arguably reasonable speci-

fications should contribute to the robustness of the conclusions reached, rather than

preventing any policy recommendations from being given.
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Figure 1: ODE trajectories that approximate asymptotic learning dynamics, when

interest-rate policy is constrained by the zero lower bound. The points at which the

constraint binds are those below and to the left of the line ZLB. The steady state in

which the inflation target is achieved (corresponding to the origin) is a locally stable

rest point of the ODE dynamics, but there is also a second steady state (point e∗) at

which the ZLB constraint binds, with stable manifold SM.
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A Appendix: Details of Calculations

This appendix provides additional details of several derivations referred to in the
main text.

A.1 Derivation of the Temporary Equilibrium
Conditions

The equilibrium conditions given in the text represent linearized versions of the con-
ditions required for a temporary equilibrium in a model described more fully here.
The economy is made up of a continuum of identical infinite-lived households, in-
dexed by i ∈ [0, 1]. In the plan that each household i formulates in period t, it seeks
to maximize its estimate (based on subjective probabilities) of the discounted sum of
utilities in the remaining periods of its life,

Êi
t

∞∑
T=t

βT−t[u(Ci
T ; ξT )− v(H i

T ; ξT )]. (A.1)

Here Ci
t is a Dixit-Stiglitz (or CES) aggregate of the household’s purchases of differ-

entiated consumer goods,

Ci
t ≡

[∫ 1

j=0

cit(j)
θ−1
θ dj

] θ
θ−1

, (A.2)

where cit(j) is the quantity purchased of good j and θ > 1 is the elasticity of substi-
tution among different goods; H i

t is hours worked by the household in period t; and
ξt is a vector of exogenous disturbances that includes possible disturbances to both
the urgency of immediate consumption and the disutility of labor (that need not be
correlated, since ξt is a vector).

Given the assumption of a single financial asset, a one-period riskless nominal
bond, the household’s bond holdings evolve according to

Bi
t+1 = (1 + it)

[
Bi

t +WtHt +

∫ 1

j=0

Πt(j)dj −
∫ 1

j=0

pt(j)c
i
t(j)dj − Tt

]
, (A.3)

where Bi
t is the nominal value at maturity of the bonds carried into period t, Wt

is the nominal wage, Πj
t is nominal profits of firm j (distributed in equal shares to

the households who own the firms), pt(j) is the price of good j, and Tt is the net
nominal (lump-sum) tax obligation (assumed to be equal for all households). (Note
that here I write Ht for hours worked by the household, because of the assumption
that available hours of work are allocated equally to each household.) Each firm’s
profits are given by

Πt(j) = pt(j)yt(j)−WtHt(j),
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where yt(j) is the quantity produced and sold of good j and Ht(j) is labor hired by
firm j. Integrating this over firms and noting that∫ 1

j=0

Ht(j)dj ≡ Ht,

we see that each household’s income other than from its bond holdings must equal

WtHt +

∫ 1

j=0

Πt(j)dj =

∫ 1

j=0

pt(j)yt(j)dj.

Finally, the form of the Dixit-Stiglitz aggregator (A.2) implies that in the case
of an optimal allocation of household expenditure across differentiated goods, total
expenditure will equal ∫ 1

j=0

pt(j)c
i
t(j)dj = PtC

i
t ,

where

Pt ≡
[∫ 1

j=0

pt(j)
1−θdj

] 1
1−θ

is the Dixit-Stiglitz price index. As this holds for all purchasers of goods (including
the government, it is assumed), total sales revenues will similarly equal∫ 1

j=0

pt(j)yt(j)dj = PtYt,

where Yt is total demand for the composite good defined in (A.2). Substituting these
expressions into (A.3), the law of motion for bond holdings can be written more
simply as

Bi
t+1 = (1 + it)

[
Bi

t + PtYt − PtC
i
t − Tt

]
. (A.4)

The household’s consumption plan can then be formulated purely as a choice of a
planned state-contingent evolution for {Ci

T}∞T=t, and the household’s perceived in-
tertemporal budget constraint (i.e., the set of plans that are believed to be feasible)
depends only on the household’s initial wealth Bi

t and the expected evolution of the
variables {YT , PT , iT , TT}∞T=t.

The household’s planning problem at date t is then the choice of state-contingent
paths {Ci

T , B
i
T+1}∞T=t consistent with (A.4) at all dates T ≥ t (together with a bound

on how negative bond holdings can be asymptotically, to rule out Ponzi schemes) so
as to maximize (A.1), given the household’s initial wealth Bi

t and its expectations
regarding the evolution of the variables {YT , PT , iT , TT}∞T=t outside its control. (Note
that the evolution of {HT}∞T=t is also outside the household’s control, under the labor
market institutions assumed in the model; but the household’s consumption-planning
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problem is independent of its expectations about how much it will be working.) While
we are at present agnostic about the nature of households’ expectations about the
future evolution of the variables outside their individual control (and do not assume,
in general, that households are necessarily aware of any of the structural relations
that determine such variables), we assume that households correctly understand the
constraints (A.4) that define their own problem, and accordingly that each chooses a
plan that solves the problem just stated, under some internally consistent subjective
expectations about the evolution of the variables outside its control.

A.1.1 Subjectively Optimal Expenditure

The first-order conditions for the problem just defined are

uC(C
i
T ; ξT ) = β(1 + iT )Ê

i
T

[
Π−1

T+1uC(C
i
T+1; ξT+1)

]
(A.5)

for any state of the world that might be reached at any date T ≥ t, where ΠT+1 ≡
PT+1/PT is the gross rate of inflation. The household’s subjectively optimal plan is
then a pair of processes {Ci

T , B
i
T+1}∞T=t satisfying (A.4) and (A.5) at all dates T ≥ t,

together with bounds on the asymptotic growth of net financial wealth (a transver-
sality condition) that guarantee both consistency with the borrowing limit and no
inefficient overaccumulation of wealth. We can approximately characterize the opti-
mal plan, looking forward from any date t, by linearizing the conditions that implicitly
define the optimal plan around the steady-state values of the endogenous variables
that represent a solution in the case of no random fluctuations in the exogenous
states.

Assuming constant values ξT = ξ̄ for all of the exogenous disturbances and that
expectations about the economy’s deterministic evolution are correct (i.e., perfect
foresight), the structural relations (A.4) and (A.5) are consistent with a stationary
solution in which ΠT = 1 (a zero steady-state inflation rate), iT = β−1 − 1 > 0,
biT ≡ Bi

T/PT−1 = b̄, YT = Ȳ , Ci
T = C̄, and τT ≡ TT/PT = τ̄ with certainty for all

T ≥ t, under the assumption that (i) the household’s initial financial wealth is given
by bit = b̄;69 (ii) the value of C̄ satisfies

C̄ = (1− β)b̄+ T̄ − τ̄ ;

and (iii) these steady-state values are also consistent with the remaining model struc-
tural relations (discussed further below), and in particular with the specifications of
monetary and fiscal policy. We now with to solve for a solution to the structural
relations (A.4) and (A.5) near this steady-state solution, in the case of values for
the exogenous disturbances that remain near enough to the values ξ̄ for all T ≥ t; a
level of initial financial wealth bit near enough to b̄; and subjective expectations about

69Note that bit is defined as Bi
t/Pt−1 rather than Bi

t/Pt so that it is a predetermined state variable.

68



the future evolution of all variables that are close enough to being correct (i.e., near
enough to model-consistency).70

We obtain a local linear approximation to the perturbed solution by solving local
linear approximations to the structural equations (A.4) and (A.5). In terms of the
perturbations

b̂it ≡
bit − b̄

Ȳ
, ı̂t ≡ log(1 + it)− log(β−1), πt ≡ log Πt,

Ŷt ≡
Yt − Ȳ

Ȳ
, ĉit ≡

Ci
t − C̄

Ȳ
, τ̂ t ≡

τ t − τ̄

Ȳ
,

a linear approximation to (A.4) can be written in the form

b̂it+1 = sb(̂ıt − β−1πt) + β−1(b̂it + Ŷt − ĉit − τ̂ t), (A.6)

where sb ≡ b̄/Ȳ . A local linear approximation to the marginal utility of expenditure
can similarly be written in the form

log uC(C
i
t ; ξt) = log uC(C̄; ξ̄)− σ−1(ĉit − c̄t), (A.7)

where σ > 0 is a parameter proportional to the intertemporal elasticity of substitution
of expenditure, and c̄t is an exogenous disturbance (a shock to the urgency of private
expenditure), indicating the shift in the size of ĉit required in order to maintain a
constant marginal utility of expenditure. A local linear approximation to (A.5) then
can be written in the form

ĉit − c̄t = −σ(̂ıt − Êi
tπt+1) + Êi

t [ĉ
i
t+1 − c̄t+1]. (A.8)

One can show that there is a unique solution to equations (A.6) and (A.8) for
periods T ≥ t consistent with the transversality condition

lim
T→∞

βT−tÊi
t b̂

i
T = 0.

Rearranging the terms in (A.6), we can alternatively write

b̂it = −(Ŷt − τ̂ t)− sb(βı̂t − πt) + c̄t + (ĉit − c̄t) + βb̂it+1.

This can then be “solved forward” to obtain

b̂it = −
∞∑
T=t

Êi
t

{
(ŶT − τ̂T ) + sb(βı̂T − πT ) + c̄T + (ĉiT − c̄T )

}
(A.9)

70Because of the local approximation that is relied upon after this point, there is a sense in
which all of the analysis in the paper assumes “near-rational expectations.” Nonetheless, while
the linearized temporary-equilibrium relations are relied upon throughout the text, bounds on the
possible expectational errors are not assumed except when additional restrictions on expectations
are explicitly introduced, as for example in section 4.2 of the text.
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But (A.8) implies that for any T > t,

Êi
t [ĉ

i
T − c̄T ] = (ĉit − c̄t) + σ

T−1∑
s=t

Êi
t [̂ıs − πs+1],

so that

∞∑
T=t

βT−tÊi
t [ĉ

i
T − c̄T ] = (1− β)−1 (ĉit − c̄t) + (1− β)−1σ

∞∑
T=t

βT+1−tÊi
t [̂ıT − πT+1].

Substituting this last result into (A.9), we obtain

b̂it = −
∞∑
T=t

Êi
t

{
(ŶT − τ̂T ) + sb(βı̂T − πT ) + c̄T + (1− β)−1βσ(̂ıT − πT+1)

}
+ (1− β)−1(ĉit − c̄t)

= −
∞∑
T=t

Êi
t

{
(ŶT − τ̂T ) + sb(βı̂T − πT ) + (1− β)−1βσ(̂ıT − πT+1) + (1− β)−1β(c̄T+1 − c̄T )

}
+(1− β)−1ĉit.

This equation can be solved for the value of ĉit under the subjectively optimal plan.
This yields equation (1.1) in the text. (Note, however, that hats are omitted from all
variables in the text. That is, bit in the text refers to the perturbation variable here
denoted by b̂it, and so on.)

A.1.2 Labor Supply and Wage Determination

If we instead write the law of motion (A.3) for a household’s financial wealth in real
terms, we observe that the household’s intertemporal budget set looking forward from
any date t depends only on the value of the household’s real period t wealth

ait ≡
Bi

t +WtH
i
t

Pt

(prior to profit distributions, taxes and transfer payments) and the expected paths
of the variables {YT , iT ,

∫
j
ΠT (j)dj, τT}∞T=t and {ΠT}∞T=t+1 outside the household’s

control. Let V i
t (a

i
t) denote the household’s subjective evaluation in period t of the

maximimum attainable value of the continuation utility (A.1) given the value of ait,
where the time subscript indicates the dependence of this function on expectations at
t regarding the variables outside the household’s control. Using the envelope theorem,
we observe that the derivative of this value function will equal

V i′
t (a

i
t) = uC(C

i
t ; ξt) (A.10)
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where Ci
t is the household’s optimal period t expenditure, characterized above.

Under the assumed labor market institution, then, the union supplies Ht hours of
work from each household in period t so as to maximize the value of∫ 1

0

V i
t (b

i
t/Πt + wtHt)di− v(Ht; ξt),

in the case of any real wage wt ≡ Wt/Pt. The first-order condition for optimal aggre-
gate labor supply is then ∫ 1

0

V i′
t (a

i
t)di · wt = vH(Ht; ξt).

Using (A.10), this can alternatively be written in the form∫ 1

0

uC(C
i
t ; ξt)di · wt = vH(Ht; ξt). (A.11)

We can then log-linearize relation (A.11) around the same steady-state values as
above. Using (A.7), the local linear approximation takes the form

ŵt − σ−1

∫ 1

0

(ĉit − c̄t)di = νt, (A.12)

introducing the notation

ŵt ≡ log(wt/w̄), νt ≡ log vH(Ht; ξt)− log vH(H̄; ξ̄)

where w̄ is the steady-state real wage. Finally, letting Ct ≡
∫ 1

0
Ci

tdi denote aggregate
household expenditure and introducing the notation

ĉt ≡ log(Ct/C̄),

we observe that to a linear approximation

ĉt =

∫ 1

0

ĉt(i)di.

Substituting this into (A.12), we obtain

ŵt − σ−1(ĉt − c̄t) = νt.

This is the log-linear wage equation given in section 1.3 of the text, except that once
again hats are omitted in the notation used in the text.
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A.2 Non-uniqueness of Rationalizable Equilibrium

Here we present additional details of the calculations involved in establishing the
non-uniqueness of rationalizable equilibrium (or, failure of “eductive stability”) in
the example of Guesnerie (2008), as stated in section 2.2 of the text. Under the
assumption of a monetary policy rule of the form it = ϕππt, the TE dynamics must
satisfy

v̄it = (1− βϕπ)v̄t + βÊi
t v̄

i
t+1 (A.13)

for all i, as explained in the text.71 In a rationalizable TE, not only must this hold at
date t, but everyone must expect anyone else to expect anyone else ... to expect it to
hold at any future date. We wish to consider whether the RE equilibrium in which
v̄it = 0 for all i and all t constitutes the unique bounded process {v̄it} consistent with
common knowledge of (A.13). In the case that |ϕπ| < 1, the solution is obvious not
unique, because in this case, there is not even a unique RE equilibrium, as is well
known; and all REE are also rationalizable TE. Here we show that even when ϕπ > 1,
so that v̄it = 0 is the unique bounded REE, it is possible to have a large multiplicity
of bounded rationalizable TE.

Common knowledge that (A.13) holds for all i and all t implies that the hierarchy
of beliefs at any date t must satisfy

Êi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄int+jn
= (1− βϕπ)Ê

i1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄t+jn

+βÊi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄int+jn+1, (A.14)

Êi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄
in+1

t+jn
= (1− βϕπ)Ê

i1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄t+jn

+βÊi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

Ê
in+1

t+jn
v̄
in+1

t+jn+1, (A.15)

where t < t1 < · · · < tn+1 is any sequence of dates beginning with t, and i1 ̸= i2 ̸=
· · · ≠ in+1 is any sequence of households. At the same time, any hierarchy of beliefs
satisfying (A.14)–(A.15) will describe a rationalizable TE. The hierarchy of beliefs
regarding the future paths of inflation and the interest rate is derivable from the
hierarchy of beliefs about the {v̄iτ}, using the assumption that both equation (1.8) in
the text and the policy rule are common knowledge.

One possible solution to (A.13), (A.14) and (A.15) is given by v̄it = ϵ, and

Êi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄int+jn
= (−µ)1−nϕπϵ,

Êi1
t Ê

i2
t1 · · · Ê

in
t+jn−1

v̄
in+1

t+jn
= (−µ)−nϵ

71See equation (2.2) in the text.
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for any sequences of households and dates of the kind assumed above, where ϵ is an
arbitrary real number and

µ ≡ βϕπ − 1

(1− β)ϕπ

.

These beliefs satisfy all of the requirements for rationalizability for any real number
ϵ, as can be verified by substituting the candidate solution into equations (A.13),
(A.14) and (A.15) and verifying that each condition is satisfied.

Moreover, if 1/2 < β < 1 and ϕπ > (2β − 1)−1 > 1 is satisfied, as stated in
the text, then µ > 1, and forecasts of all orders satisfy a uniform bound. There
is then (at least) a continuum of uniformly bounded rationalizable TE. Moreover, ϵ
may represent the realization of a “sunspot” event unrelated to fundamentals, so that
there are seen to exist bounded sunspot equilibria, despite the fact that monetary
policy satisfies the Taylor Principle.

A.3 Restricted Perception Equilibrium

Here we explain further details of the example of a restricted perception equilibrium
in which Ricardian Equivalence fails. The policy regime assumed in the example of
section 3.1.2 implies that the dynamics of bt and st are given by

bt+1 = β−1(bt − st) (A.16)

st = ϕbbt + ϵst (A.17)

where {ϵst} is an i.i.d. random variable with mean zero and variance σ2. Substitution
of (A.17) into (A.16) yields the univariate law of motion

bt+1 = ρbt − β−1ϵst ,

where ρ ≡ β−1(1− ϕb). Under the assumption that

0 < 1− β < ϕb < 1, (A.18)

0 < ρ < 1 and this law of motion implies that {bt} is stationary AR(1) process with
positive serial correlation.

It follows from this law of motion that the unconditional variance of the stationary
process is given by

E[b2] =
β−1σ2

1− ρ2
. (A.19)

It then follows from (A.17) that

E[sb] = ϕbE[b
2], E[s2] = ϕ2

bE[b
2] + σ2, (A.20)
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and from (A.16) that
E[bt+1st] = (ρ− β) E[b2]. (A.21)

The linear projection is then defined as Pt[bt+1] = Λb st, where

Λb ≡
E[bt+1st]

E[s2t ]
(A.22)

is the OLS regression coefficient. It follows from (A.20), (A.21) and this definition
that

Λb =
(ρ− β)E[b2]

ϕ2
bE[b

2] + σ2
<
ρ− β

ϕ2
b

<
1− β

ϕ2
b

<
1

ϕb

, (A.23)

where the last inequality relies upon (A.18).
The linear equation (3.12) in the text, to solve for ψv, can be written in the form

A(ψv) = 0,

where the function A(ψv) is defined as the left-hand side of (3.12) minus the right-
hand side. This is a linear function of the form

A(ψv) = aψv + b,

where
a = 1− ϕbΛb > 0

as a consequence of (A.23). There will thus be a unique value of ψv for which
A(ψv) = 0. Moreover, we observe that

A(β−1 − 1) = (β−1 − 1)− (1− β)(β−1 − 1)Λb > (β−1 − 1)

(
1− 1− β

ϕb

)
> 0,

where the first inequality follows from (A.23) and the second from (A.18). Then since
A(ψv) is an increasing function, the zero of the function must occur for a value of ψv

less than this. Hence the unique solution satisfies ψv < β−1 − 1, as asserted in the
text.

A.4 Phase Dynamics Shown in Figure 1

When the zero lower bound (ZLB) constraint does not bind, the non-stochastic part
of the solution given in equation (3.19) of the text can be written explicitly as

xt ≡

 πt

yt
it

 =
1

∆

 κ (1− α)β(1 + σϕy)
1 −(1− α)βσϕπ

κϕπ + ϕy (1− α)βϕπ

 [
e1t
e2t

]
≡ Det,
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where
∆ ≡ 1 + κσϕπ + σϕy > 0,

allowing us to identify the matrix D. Using the elements of the matrix C indicated
by the coefficients of the linear equations (3.16)–(3.17) in the text, we then find that

I − A ≡ I − CD =
1

∆

[
σ

1−β
[κ(ϕπ − 1) + ϕy]

σ
1−β

(1− α)β[(ϕπ − 1)− σϕy]

− κ
(1−α)(1−αβ)

κσϕπ+(1−β)(1+σϕy)

1−αβ

]
.

This matrix defines the linear ODE system given by (3.22) in the text, for the part
of the plane where the ZLB constraint does not bind.

The two rows of the matrixM ≡ I−A give the coefficients of the linear equations
that define the loci ė1 = 0 and ė2 = 0 respectively. Let the elements of M be denoted
{mij}. Then sincem21 < 0,m22 > 0, the locus ė2 = 0 is necessarily an upward-sloping
line, as shown in the figure. Furthermore, ė2 < 0 for all points in the phase plane
above this line, while ė2 > 0 for all points below it.

Because m12 cannot be signed in general, the locus ė1 = 0 may have either a
positive or negative slope (or may be perfectly vertical). However, in the case of
response coefficients satisfying

ϕπ +
1− β

κ
ϕy > 1, (A.24)

i.e., consistent with the Taylor Principle, m11 > 0, which implies that ė1 > 0 for all
points to the left of this locus, while ė1 < 0 for all points to its right. In addition,
assumption (A.24) implies that

m22

m21

− m12

m11

= − (1− α)∆

κ(ϕπ − 1) + ϕy

[
ϕπ +

1− β

κ
ϕy − 1

]
< 0,

so that the inverse slope de1/de2 must be greater (more positive) for the ė2 = 0
locus than for the ė1 = 0 locus. Hence the relative slopes of the two loci in the
unconstrained region are necessarily as shown in Figure 1.

It also follows from the above discussion that at all points above the ė2 = 0 locus
and to the right of the ė1 = 0 locus, trajectories must all move down and to the left;
while at all point above the ė2 = 0 locus and to the left of the ė1 = 0 locus, they
must all move down and to the right; and so on. Hence the phase dynamics in the
unconstrained region (the region above the line labeled “ZLB”) must be as shown
in the figure. These sign restrictions suffice to imply that in an open set around
the zero-inflation steady state (point e = 0 in the figure), all trajectories converge
asymptotically to that steady state (i.e., the zero-inflation steady state is locally
asymptotically stable under the ODE dynamics). If there were no ZLB constraint,

75



so that equation (3.22) in the text applied globally, this steady state (which would
then be the unique rest point of the ODE system) would also be globally stable.

The equation of the locus of points at which the ZLB constraint just binds (line
ZLB in the figure) is of the form

a′e = −r̄∆ < 0,

where
a′ ≡

[
κϕπ + ϕy (1− α)βϕπ

]
.

(This follows from equation (3.23) in the text, and our explicit solution above for
the matrix D.) Since a1, a2 > 0, this equation describes a downward-sloping straight
line, located below and to the left of the point e = 0, as shown in Figure 1. The
points above and to the right of this line constitute the values of e for which the
ZLB constraint will not bind, while below and to the left of the line, the constraint
is strictly binding (and hence the ODE system given by (3.22) in the text does not
apply).

Then since the ė2 = 0 locus is upward-sloping, as established above, it must
intersect the line ZLB at a point below and to the left of the point e = 0, as shown
in the figure. The locus ė1 = 0 is not necessarily upward-sloping (as drawn in the
figure), but under assumption (A.24), one can show that

a2
a1

− m12

m11

= −
(1− α)βϕy∆

[κ(ϕπ − 1) + ϕy](κϕπ + ϕy)
> 0.

This implies that the inverse slope of the line ZLB is necessarily more negative than
that of the locus ė1 = 0, so that the two lines also must intersect, as shown. It further
follows from our conclusion above about the relative slopes of the ė1 = 0 and ė2 = 0
loci in the unconstrained region that the point at which the locus ė1 = 0 intersects
the line ZLB must lie below and to the right of the point at which the locus ė2 = 0
intersects this line, as shown in the figure. Hence the qualitative dynamics in the
unconstrained region are as shown in the figure.

In the constrained region, the dynamics are instead defined by the alternative
linear ODE system specified in equation (3.26) of the text, where the matrix D is
obtained by substituting ϕπ = ϕy = 0 into the expression given above for the matrix
D. This system can alternatively be written in the form

ė = −M(e− e∗), (A.25)

where the matrix M is obtained by substituting ϕπ = ϕy = 0 into the expression
given above for the matrix M .

The elements of the matrix M then define the coefficients of the equations corre-
sponding to the loci ė1 = 0 and ė2 = 0 in the constrained region. Since m11,m12 < 0,
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the ė1 = 0 locus must be upward-sloping; and similarly, since m21 < 0 and m22 > 0,
the ė2 = 0 locus must be downward-sloping, as shown in Figure 1. Then given the
relative positions of the points at which these loci intersect the line ZLB, discussed
above, the two loci necessarily intersect at a point e∗ in the interior of the constrained
region, as also shown in the figure. (As discussed in the text, this point represents a
second, deflationary steady state.)

The signs of the elements of M also imply that in the region above the ė1 = 0
locus but below the ė2 = 0 locus, all trajectories must move up and to the right, and
so on. In particular, they imply that all trajectories starting in the grey region of the
figure must move down and to the left. Hence all trajectories starting in this region
remain trapped in it forever.

The signs of the elements of M also imply that the determinant of the matrix is
negative, implying that the matrix must have two real eigenvalues, one positive and
one negative. It then follows from standard results regarding linear ODE systems
that the stable manifold of the system defined by equation (A.25) is one-dimensional:
it corresponds to a line (the line SM shown in Figure 1) passing through point e∗

along which trajectories converge asymptotically to point e∗ starting from any point
on this line. Instead, all trajectories starting from points off this line diverge from
the line, and hence diverge from the steady state e∗, which is thus locally unstable
under the dynamics defined by (A.25).

Moreover, at any points in the constrained region that are below the line SM but
above the ė2 = 0 locus, ė2 < 0, so that trajectories starting at any such point must
eventually enter the grey region, unless they leave the constrained region (i.e., they
cross the line ZLB, in which case equation (A.25) would no longer apply). Similarly,
trajectories starting at any point below the line SM but to the right of the ė1 = 0
locus must eventually enter the grey region, unless they leave the constrained region.
Thus all trajectories beginning in the constrained region and below the line SM must
eventually enter and be permanently trapped in the grey region, unless they leave
the constrained region before entering the grey region.

It remains to determine whether trajectories beginning in the constrained region
below the line SM can ever leave the constrained region. To answer this, we need
to examine whether trajectories point into or out of the constrained region, at points
along the line ZLB that defines the boundary of the region. The line ZLB consists
of all points e such that

a′e = −r̄∆; (A.26)

the constrained region consists of all points e for which a′e is more negative than
this. Thus at any point on the line ZLB, the trajectory points out of the constrained
region if a′ė > 0, and into the constrained region if instead a′ė < 0. At points between
the point where the ė2 = 0 locus intersects the line ZLB and the point where the
ė1 = 0 locus intersects it, both elements of ė are positive, and hence a′ė > 0. Hence
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the trajectories all point outside the constrained region along this interval, as shown
in Figure 1.

Consider instead the point where the line SM intersects the line ZLB, if such a
point exists. The line SM consists of all points e of the form

e = e∗ + αu, (A.27)

for arbitrary (positive or negative) values of the coefficient α, where u is the right
eigenvector of the matrix M corresponding to the positive eigenvalue. Thus

M(e− e∗) = λ(e− e∗) (A.28)

for some λ > 0. Then at any point on the line SM, we must have

a′ė = −a′M(e− e∗)

= −λ a′(e− e∗),

using (A.25) and (A.28). Because e∗ is in the interior of the constrained region,
a′(e − e∗) > 0 for all points on the line ZLB defined by (A.26). Hence at a point
that is both on the line SM and on the line ZLB, we must have a′ė < 0, and the
trajectory of the ODE system through this point points into the constrained region,
as shown in Figure 1.

Now suppose that the stable manifold SM intersects the line ZLB at a point
below and to the right of the point where the ė1 = 0 locus intersects ZLB, as shown
in the figure. Because a′ė = −a′M(e − e∗) is a linear function of e, the fact that
it is positive at the point of intersection with the ė1 = 0 locus but negative at the
point of intersection with SM implies that it must also take an even more negative
value at all points on the line ZLB that are below and to the right of the intersection
with SM . Hence the ODE trajectories point into the constrained region at all such
points, as shown in Figure 1, and it is not possible for a trajectory that begins in the
constrained region and below the line SM to ever leave the constrained region.

Alternatively, suppose that the stable manifold intersects the line ZLB at a point
above and to the left of the point where the ė2 = 0 locus intersects ZLB. In this case,
the fact that a′ė > 0 at the point of intersection with the ė2 = 0 locus while a′ė < 0
at the point of intersection with SM implies that we must have a′ė < 0 at all points
on the line ZLB above and to the left of the intersection with SM . Hence the ODE
trajectories again point into the constrained region at such points, and again it is not
possible for a trajectory that begins in the constrained region and below SM to ever
leave the constrained region.

Finally, suppose that the stable manifold SM is exactly parallel to the line ZLB
(the case in which a′u = 0). In this case, SM never intersects ZLB, and trajectories
that begin below SM can never approach the boundary of the constrained region.
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Thus in all possible cases, we conclude that trajectories that begin in the constrained
region and below the line SM remain forever in the constrained region, as stated
in the text (and illustrated in Figure 1). It follows that all such trajectories must
eventually enter the grey region and remain trapped there forever, as stated in the
text.

A.5 An Example of Rational Belief Equilibria

Here we provide additional details of the calculations referred to in the example
discussed in section 4.1 of the text. It follows from the definition of the subjective
variable p∗jt in section 1.3 of the text that

p∗jt =
∞∑
k=0

(αβ)k Êj
t

[
πt+k +

α

1− α
κ yt+k

]
.

(This can be obtained, for example, by “solving forward” equation (1.15) in the text,
and then using equation (1.11) in the text to substitute for the Êj

t p
∗
t+k terms in terms

of Êj
t πt+k.) This in turn implies that

Êj
t p

∗j
t+1 =

∞∑
k=0

(αβ)k Êj
t

[
πt+k+1 +

α

1− α
κ yt+k+1

]
. (A.29)

Then substituting the expressions given in the text for the subjective expectations
Êj

t πt+k and Ê
j
t yt+k, we obtain a solution for Êj

t p
∗j
t+1 of the form conjectured in equation

(4.7), with coefficients

γ1 =
1

1− α

κϕ

κ+ ϕ

λ

1− αβλ
, (A.30)

γ2 = g · γ, g ≡ (1− α)ϕ− ακ

κ+ ϕ

βρ

1− αβρ
. (A.31)

This is not, however, a complete solution, as the expression obtained for γ2 is a
function of γ, the sum γ1 + γ2.

The solutions (A.30)–(A.31) imply that

γ = γ1 + gγ, (A.32)

where γ1 and g are both explicit functions of the model parameters given above.
We further note that under our assumptions that 0 < α, β, λ < 1, 0 ≤ ρ < 1, and
κ, ϕ > 0, the coefficients of the linear equation (A.32) satisfy γ1 > 0 and g < 1. Hence
the equation has a unique solution, given by

γ =
γ1

1− g
> 0. (A.33)
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Substituting this solution into (A.30) and (A.31), we obtain unique solutions for γ1
and γ2.

We thus obtain a unique solution for the TE dynamics under beliefs of the pos-
tulated form. The complete system of equations describing these dynamics consists
of equations (4.1)–(4.2) in the text, specifying the exogenous evolution of the natural
rate of output Y n

t ; the equation

Ȳt = λȲt−1 + (1− λ)Y n
t (A.34)

for the dynamics of the central bank’s estimate of the permanent component; equation
(4.6) in the text for the evolution of the aggregate belief state νt; and equations (4.8)–
(4.9) in the text, giving the TE dynamics of inflation and the output gap, where the
value of γ in these equations is given by (A.33).

Note that this does not mean that there is a unique equilibrium in this model
consistent with the rational belief postulate. The assumption, in this derivation, that
the aggregate belief state follows dynamics of the form (4.6) is an arbitrary one — not
only our assumption that νt is an AR(1) process, but that it evolves independently of
the fundamental disturbances — chosen purely to illustrate the kind of calculations
that are involved in verifying the existence of an RBE. The assumption that each firm
j regards its subjective belief state zjt as an accurate observation of the current value
of Ȳ n

t , rather than simply a random state that provides information about Y n
t , is also

an extreme special case. By relaxing either or both of these assumptions, we could
construct a very large class of alternative RBE for this model, so that the predictions
about such matters as the serial correlation of observed fluctuations in inflation are
not nearly as sharp as the calculation above might suggest.

It may be useful to compare this example of RBE fluctuations to the REE dynam-
ics implied by the assumed policy rule. Under the RE hypothesis, equation (1.20)
implies that72

p∗t =
κ

1− α
yt + βEtp

∗
t+1,

or alternatively (using equation (1.11) in the text), that

πt = κyt + βEtπt+1

= κ(Yt − Ȳt) + κ(Ȳt − Y n
t ) + βEtπt+1. (A.35)

Then using equation (4.5) in the text to substitute for the Yt − Ȳt term, we obtain

πt =
κϕ

κ+ ϕ
(Ȳt − Y n

t ) +
βϕ

κ+ ϕ
Etπt+1

72Recall that in this discussion, we assume that the cost-push disturbance ut is equal to zero at
all times.
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as an equation that the REE dynamics of inflation must satisfy.
Since βϕ/(κ+ ϕ) < 1, this equation can be “solved forward” to yield

πt =
κϕ

κ+ ϕ

∞∑
k=0

(
βϕ

κ+ ϕ

)k

Et[Ȳt+k − Y n
t+k]. (A.36)

But since the RE forecasts of the future natural rate of output are given by equation
(4.3) in the text, one has

Et[Ȳt+k − Y n
t+k] = 0

for all k ≥ 1, so that (A.36) reduces to

pit =
κϕ

κ+ ϕ
(Ȳt − Y n

t ). (A.37)

The implied solution for the output gap is then

yt =
ϕ

κ+ ϕ
(Ȳt − Y n

t ). (A.38)

Comparing these equations with equations (4.8)–(4.9) in the text for the RBE
dynamics of inflation and the output gap, one sees that the REE dynamics are given
by the same equations, but with the value γ = 0 instead of the positive value given
in (A.33). Since the exogenous dynamics of the variables Ȳt−Y n

t and νt are the same
in either case, this allows us to directly compare the RBE dynamics with the REE
dynamics. As discussed in the text, we see that the responses of both πt and yt to
the variations in exogenous fundamentals Ȳt − Y n

t are the same in both equilibria;
the difference is that in the RBE dynamics, variations in the aggregate belief state
νt (independent of the fluctuations in fundamentals) cause additional variation in πt

and yt, causing each variable to be more volatile in the RBE than it would be under
the REE dynamics.
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