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1 Equilibrium Conditions

This section describes the complete model of credit frictions.1 The �rst subsection con-

tains all the non-linear equations and objective welfare function, the second presents the

steady state, the third the log-linearized equations, and the fourth presents a detailed de-

scription of the parameter values used for the numerical exercises.

1.1 Full set of non-linear equilibrium conditions

The objective:
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The equations describing the economy are summarized below:
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1For details on the derivations please refer to Cúrdia and Woodford (2009) and its technical appendix.



Technical Appendix

0 =
�
1 + idt

�
�Et

"
(1� �)�b

�bt+1
�t+1

+ [� + (1� �) (1� �b)]
�st+1
�t+1

#
� �st (1.3)

0 = �
�
�bt ; �

s
t

�
�p (1 + !y) �

w
t
~�
�
�bt ; �

s
t

��1 �H��
t

�
Yt
Zt

�1+!y
+��Et

h
�
�(1+!y)
t+1 Kt+1

i
�Kt (1.4)

0 = �
�
�bt ; �

s
t

�
(1� � t)Yt + ��Et

�
���1t+1Ft+1

�
� Ft (1.5)

0 = �b (1� �b)B
�
�bt ; �

s
t ; Yt;�t; �t

�
� �bb

g
t (1.6)

+�
�
bt�1 (1 + !t�1) + �bb

g
t�1
� 1 + idt�1

�t
� (1 + �b!t) bt

0 = �b �C
b
t

�
�bt
���b

+ (1� �b) �C
s
t (�

s
t)
��s + ~�tb

�
t +Gt � Yt (1.7)

0 = ��t�1�
�(1+!y)
t + (1� �)

�
1� ����1t

1� �

� �(1+!y)
��1

��t (1.8)

0 =
1� ����1t

1� �
�
�
Ft
Kt

� ��1
1+!y�

(1.9)

0 = 1 + �t + �~�tb
��1
t � (1 + !t) (1.10)

Auxiliary equations and de�nitions:
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1.2 Zero in�ation steady state

We consider the solution to steady state in which we simply assume zero in�ation. We

use notation �x as denoting the steady state value of generic variable x, unless otherwise

noted.

We set, without loss of generality,
�Y = 1; (1.18)

 = 1: (1.19)

We further calibrate the following ratios

sc � �bsb + (1� �b) ss; (1.20)

�bs � �b=�s; (1.21)

�� � �bsb�b + (1� �b) ss�s; (1.22)

�� = 0; (1.23)

We calibrate  b and  s to imply equal labor for the two types in steady state, implying

that
 b
 s
= 
; (1.24)

and

 s =  
h
�b


� 1
� + (1� �b)

i�
: (1.25)

Further consider the following de�nitions

sg � �G= �Y (1.26)

sb � �cb= �Y ; (1.27)

ss � �cs= �Y ; (1.28)

s� � �
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For the interest rate we have:

1 + �rd = ��1
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(Note that if �! = 0, this reduces to 1 + �rd = ��1:) We use this steady-state relation to

calibrate �, given assumed values for �, �b, �! and �rd.

We can also write

1 +�{d = 1 + �rd: (1.31)

The steady state in�ation will determine the steady state price dispersion:
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We assume that the steady state spread is due solely to intermediation costs of the convex
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The in�ation equation implies �F = �K, and using the de�nitions of �K and �F we get,
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The resources constraint implies

1� sc � sg = s�: (1.40)

which determines sg given sc and s�.
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Given that we calibrate �b= �Y we can use this equation to determine sb � ss,
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Given our calibration of sc we can then write

ss = sc � �b (sb � ss) ; (1.43)

and

sb = sc + (1� �b) (sb � ss) : (1.44)
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1.3 Log-linear equilibrium conditions

In this section we present all the log-linear relations of the model, in which we linearize

around the zero in�ation steady state. We start by simply presenting the equilibrium con-

ditions in log-linear form without any simpli�cations, so as to exactly match the set of

non-linear equations. Then we proceed to present a simpli�ed set of equations and the exact

de�nitions of the natural rate of output and the natural interest rate used in the policy rules

considered.

Full system
The full system of log-linear equation is given by:
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The exogenous variables all follow an AR(1) process as follows:

�t = ���t�1 + "t (1.65)

In the above equations we consider the following de�nitions

{̂�t � ln ((1 + i�t ) = (1 +�{
�
t )) ; (1.66)
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Simpli�ed log-linear system of equilibrium conditions
We can write the required equations as
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B
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Natural rates
In the policy rules considered, unless otherwise noted, it is assumed that the interest rate

responds to the output gap, Ŷt � Ŷ n
t , and the natural rate of interest, r̂

n
t . It is important to

notice that in order to be transparent about the role of the response to the �nancial variables

we exclude from this de�nition any changes in the �nancial intermediation frictions, implying

that neither the natural rate of output nor the natural interest rate respond to changes in

the �nancial frictions. Similarly the natural rates do not respond to shocks to the markup,

�wt , or the tax rate, � t. Therefore we consider these two variables as solving the �exible price

equilibrium of this economy when the intermediation frictions remain at their steady state

levels. This means that the natural rate of output is given by

Ŷ n
t =

�
!y + ��

�1��1 ����1gt + ��ht + (1 + !y) zt
�
; (1.114)

and the natural interest rate is de�ned as the rate at which the Euler equation is satis�ed

when output is at its natural level,

r̂nt = ��
�1
�
EtŶ

n
t+1 � Ŷ n

t � Et�gt+1

�
: (1.115)
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2 Robustness analysis

In this section we analyze the sensitivity of the main results to di¤erent alternative pa-

rameter values. Generally speaking the parameters chosen are fairly conventional and used

throughout the literature, as discussed in the main text. Here we look at three parameters

that are particular to our model. The �rst is the degree of convexity of the �nancial inter-

mediaries technology, �. In the main text we set it to 5 but when discussing the optimal

response to the �nancial shocks we consider two additional values for this parameter: 1 and

50. Setting it to 1 implies that the technology is linear and in particular, movements in the

level of credit do not induce any changes to the spread. Setting it to 50 is interesting because

it re�ects a case with signi�cantly more convex technology.

The second set of parameters of interest are the interest rate sensitivities of the demand

of borrowers and savers, �b and �s. In the text we mention that we choose these to imply

an average sensitivity of total demand equal to that in Rotemberg and Woodford (1997),

which implies �� = 6:25; and to also imply a ratio �b=�s = 5. The reason to choose this

ratio, is simply to generate a negative response of credit to a monetary policy shock as

suggested in VAR analysis.2 However it might be argued that setting such a big ratio might

be unreasonable. Here we consider the alternative with �b=�s = 2. This implies that we get

�b = 11:456 and �s = 5:728 for this ratio.

In Figures 1 and 2 we show how the choice of � and �b=�s a¤ects the response of the

economy to a monetary policy shock. In the �rst �gure we see that for all of the values of

� we get a contraction in real level of credit, bt. Changing the value of � does not change

in any substantial way the response of output and in�ation but it does a¤ect noticeably the

response of credit and the spread. In the case of linear intermediation technology (� = 1)

the contraction in the level of credit does not induce any change in the spread, while in the

convex case (the other two levels) it does imply that the spread falls. With a more convex

technology the fall in the spread is more signi�cant, hence reducing the cost of borrowing,

which leads to a mitigated fall of credit. Because the spread falls and borrowers demand

is higher, the equilibrium level of the policy rate is somewhat higher than in the linear

technology case.

In the second �gure, with the lower ratio of interest rate sensitivity, we see that the

impact response of credit to the monetary policy shock is still slightly negative but that is

immediately reversed in the following periods, in which there is a persistent increase of the

2For example see Lown and Morgan (2002).
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Table 1: Optimal value of the spread-adjustment coe¢ cient �! in policy rule (2.3), in the
case of �nancial disturbances of either of two types, as in Table 2 of the main text, but with
�b=�s = 2.

� = 1 � = 5 � = 50

��! �t ~�t �t ~�t �t ~�t
� = 0:00 1.35 0.89 0.70 0.54 0.70 0.58
� = 0:50 1.21 1.05 0.68 0.64 0.68 0.64
� = 0:90 0.32 0.37 0.58 0.59 0.65 0.65
� = 0:99 -1.56 -1.48 0.27 0.35 0.58 0.61

level of credit. In response to the increased level of credit, the spread increases and that

gives an incentive for the borrowers to reduce borrowing, hence the degree of increase in

credit with high level of � is much more mitigated than for the linear case. As before, the

response of output and in�ation to the monetary policy shock is not changed much, actually

it is essentially the same across di¤erent ratios of interest rate sensitivity.

Next we consider the implications of the alternative parameter con�gurations for the

main results in the paper.

2.1 Spread-Adjusted Taylor Rules

We �rst consider a policy rule as in equation (2.3) of the text. We start with a discussion

for the case of the �nancial disturbances and then will consider the non-�nancial ones.

2.1.1 Responses to Financial Disturbances

In the main text we discuss the optimal response of the policy rate to the spread in the

case of �nancial shocks. In particular we show in Table 2 of the main text how the optimal

response depends on di¤erent degrees of persistency and on di¤erent values for �. In Table

1 we replicate those results but for the case with �b=�s = 2. The important conclusion to

take from this table is that this alternative ratio of interest rate sensitivities does not change

the main results of the table. The main di¤erence is that this lower degree of heterogeneity

between borrowers and savers seems to make the optimal response to the spread somewhat

less sensitive to the persistence of the shocks. However, it is still the case that the optimal

response is signi�cantly a¤ected by the persistence, especially for very persistent levels and

for lower degrees of convexity.
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Table 2: Optimal value of the spread-adjustment coe¢ cient �! in policy rule (2.3), in the
case of non-�nancial disturbances, as in Table 3 of the main text, but with � = 50 and
�b=�s = 5.

��!
�Cbt

�Cst Gt bgt Zt; �Ht �wt � t
� = 0:00 0.64 1.07 1.54 0.62 1.08 5.77* 5.43
� = 0:50 0.59 0.71 2.22 0.71 1.35 5.77* 5.77*
� = 0:90 0.15 0.16 0.29 0.74 0.20 5.77* 5.77*
� = 0:99 -1.39 -1.39 -1.37 0.64 -1.39 5.77* 5.77*
* higher number leads to indeterminacy

2.1.2 Responses to Non-Financial Disturbances

When we consider non-�nancial disturbances it is important to notice that it is pointless

to discuss the case with linear intermediation technology (� = 1) because in that case the

spread is unchanged for these shocks. Therefore, for the baseline ratio of �b=�s we can show

alternative optimized coe¢ cients for the case with very high degree of convexity, � = 50,

shown in Table 2. One interesting result is that with this degree of convexity there are no

shocks that would imply a negative �! �with � = 5 we �nd negative coe¢ cients for �Cbt ,
�Cst , Gt and Zt. In general the coe¢ cients are higher than in the baseline, except for the

two distortionary shocks, � t and �wt . For these two disturbances increasing the convexity

implies that the optimal coe¢ cients are restricted by indeterminacy considerations � the

welfare increases with the coe¢ cient up to the edge of the determinacy region. For this

level of convexity we observe that the optimal response to the spread is less sensitive to

the persistence of shocks to the level of government debt level but is more sensitive to the

persistence of shocks to private expenditure of both types.

Consider now the same analysis but for the case with lower ratio of interest rate sensitivity

of the two expenditures, with �b=�s = 2. Table 3 shows two panels replicating the same

table with the optimized coe¢ cients �! for di¤erent non-�nancial disturbances but with the

lower ratio and for two levels of convexity. (Notice that, as mentioned before it does not

make sense to consider the case of linear for non-�nancial shocks.)

Overall we can conclude that reducing the di¤erence in interest rate sensitivity reduces

to some extent the degree to which the optimal response to the spread depends on the

persistence of the shocks, except for the productivity shock, in which and intermediate level

of persistence, with � = 0:5, now implies a very strong response to the spread. However, we

still conclude that for shocks that do not a¤ect the size of the distortions in the economy

13
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Table 3: Optimal value of the spread-adjustment coe¢ cient �! in policy rule (2.3), in the
case of non-�nancial disturbances, as in Table 3 of the main text, but �b=�s = 2. We show
two panels, one with � = 5 and the other with � = 50

��! �Cbt �Cst Gt bgt Zt; �Ht �wt � t
Medium convexity (� = 5)
� = 0:00 0.39 0.64 0.64 0.53 0.46 47.39 42.90
� = 0:50 0.37 0.40 5.34 0.63 2.32 29.38 26.80
� = 0:90 0.16 0.16 0.30 0.59 0.20 25.14 25.12
� = 0:99 -0.63 -0.63 -0.62 0.35 -0.63 44.89 44.91
High convexity (� = 50)
� = 0:00 0.61 0.88 0.92 0.57 0.68 5.70 4.83
� = 0:50 0.57 0.64 2.32 0.63 1.39 5.87 5.26
� = 0:90 0.30 0.30 0.62 0.65 0.40 6.75* 6.75*
� = 0:99 -0.60 -0.60 -0.55 0.60 -0.59 6.75* 6.75*
* higher number leads to indeterminacy

(shocks to expenditure and shocks to the productivity and labor supply) the optimal response

to the spread is very sensitive to the persistence of the shocks. In the case of the supply side

distortionary disturbances (tax rate and wage markup) we get even higher response to the

spread in the case of medium level of convexity (� = 5), now well above 20, which would

imply a coe¢ cient �! far from optimal in the case of other disturbances.

2.1.3 Welfare Tradeo¤s

In the text we show in Table 4 the welfare changes from responding to the spread com-

pared to the case without any response, measured in steady state consumption equivalent for

both types of agents. In Table 4 we present the same analysis but considering two alternative

levels of convexity: linear technology, � = 1, and very convex technology, � = 50, under the

baseline ratio of interest rate sensitivity,�b=�s = 5.

The �rst result worth mentioning is that in the case of linear technology the spread

only changes in the case of �nancial shocks and for these the conclusion is that it is welfare

improving to have some response to the spread but only a mild one: in the case of baseline

persistence �! = 0:25. In particular we can see that increasing further to �! = 0:5 will

reduce the welfare in both cases, but mostly so in the case of the shock to the default rate.

If however we consider the very persistent case then even a mild response to the spread is

welfare reducing.

In the case of high convexity, shown in panel B, we get the interesting result that for the
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Table 4: Welfare consequences of increasing �!, for di¤erent disturbances, as in Table 4 of
the main text, but for di¤erent levels of convexity, with �b=�s = 5.

Panel A: Linear intermediation, � = 1
'� 105 �t ~�t
Baseline persistence (� = 0:90)
�! = 0:25 9.363 14.068
�! = 0:50 0.822 5.788
�! = 0:75 -25.621 -24.842
�! = 1:00 -69.969 -77.821
High persistence (� = 0:99)
�! = 0:25 -67.736 -70.692
�! = 0:50 -142.091 -148.506
�! = 0:75 -223.064 -233.442
�! = 1:00 -310.657 -325.499

Panel B: Convex intermediation, � = 50
'� 105 �t ~�t �Cbt �Cst Gt bgt Zt; �Ht �wt � t
Baseline persistence (� = 0:90)
�! = 0:25 14.584 13.138 0.212 0.522 0.576 13.059 0.053 17.806 17.165
�! = 0:50 24.344 21.364 -2.367 -3.295 0.286 21.189 -0.069 35.623 34.338
�! = 0:75 28.805 24.197 -7.900 -11.703 -0.924 23.910 -0.376 53.437 51.510
�! = 1:00 27.447 21.110 -16.556 -24.964 -3.105 20.694 -0.880 71.235 68.666
High persistence (� = 0:99)
�! = 0:25 14.258 13.556 -4.493 -10.061 -2.297 13.173 -0.499 8.535 8.500
�! = 0:50 22.560 21.021 -9.750 -21.832 -4.990 20.237 -1.082 17.011 16.941
�! = 0:75 24.417 21.898 -15.778 -35.325 -8.083 20.696 -1.752 25.428 25.323
�! = 1:00 19.298 15.643 -22.582 -50.555 -11.580 14.008 -2.508 33.785 33.646

baseline persistence, with � = 0:9, having a mild response to the spread, with �! = 0:25,

is always welfare improving, regardless of the shock hitting the economy, as long as all of

them share this same degree of persistence. This is no longer true in the case of very high

persistence of the shocks, in which case we get results very similar to those presented in the

main text.

Next we consider Table 5 in which we present the same analysis but considering a lower

ratio of interest rate sensitivity, �b=�s = 2. In the case of linear technology the results are

very similar to those with �b=�s = 5. In the case of baseline convexity, with � = 5, we get

again the result discussed in the previous table that with baseline persistency of � = 0:9 for

all shocks welfare is increased by having a mild response to the spread, with �! = 0:25, but
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Table 5: Welfare consequences of increasing �!, for di¤erent disturbances, as in Table 4 of
the main text, but for di¤erent levels of convexity, with �b=�s = 2.

Panel A: Linear intermediation, � = 1
'� 105 �t ~�t
Baseline persistence (� = 0:90)
�! = 0:25 24.856 41.762
�! = 0:50 18.613 41.631
�! = 0:75 -18.728 -0.393
�! = 1:00 -87.168 -84.311
High persistence (� = 0:99)
�! = 0:25 -83.733 -87.999
�! = 0:50 -179.870 -189.735
�! = 0:75 -288.411 -305.208
�! = 1:00 -409.355 -434.419

Panel B: Convex intermediation, � = 5
'� 105 �t ~�t �Cbt �Cst Gt bgt Zt; �Ht �wt � t
Baseline persistence (� = 0:90)
�! = 0:25 35.416 39.692 0.218 0.337 0.090 41.085 0.005 5.374 5.281
�! = 0:50 51.342 58.162 -1.100 -1.652 0.054 60.244 -0.007 10.718 10.533
�! = 0:75 47.590 55.202 -3.968 -5.989 -0.111 57.264 -0.034 16.031 15.755
�! = 1:00 23.968 30.605 -8.399 -12.691 -0.404 31.931 -0.078 21.313 20.946
High persistence (� = 0:99)
�! = 0:25 15.797 28.872 -2.611 -4.106 -0.342 29.479 -0.048 3.866 3.857
�! = 0:50 3.972 25.341 -6.091 -9.575 -0.800 25.561 -0.112 7.716 7.699
�! = 0:75 -35.727 -10.892 -10.440 -16.408 -1.375 -12.058 -0.192 11.552 11.526
�! = 1:00 -103.555 -80.128 -15.662 -24.610 -2.066 -83.682 -0.288 15.372 15.338

Panel C: Convex intermediation, � = 50
'� 105 �t ~�t �Cbt �Cst Gt bgt Zt; �Ht �wt � t
Baseline persistence (� = 0:90)
�! = 0:25 17.587 17.867 2.644 2.503 0.479 17.932 0.037 9.552 9.045
�! = 0:50 26.849 27.285 1.524 1.475 0.715 27.387 0.041 18.953 17.945
�! = 0:75 27.802 28.268 -3.442 -3.151 0.705 28.383 0.010 28.204 26.699
�! = 1:00 20.456 20.827 -12.346 -11.451 0.445 20.937 -0.055 37.308 35.311
High persistence (� = 0:99)
�! = 0:25 17.967 19.564 -2.933 -4.340 -0.356 19.448 -0.052 4.227 4.196
�! = 0:50 25.933 28.883 -6.885 -10.182 -0.844 28.621 -0.123 8.426 8.364
�! = 0:75 24.049 28.111 -11.858 -17.532 -1.464 27.677 -0.211 12.596 12.503
�! = 1:00 12.468 17.404 -17.858 -26.395 -2.217 16.774 -0.319 16.738 16.616
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Table 6: Optimal value of the credit level-adjustment coe¢ cient �b in policy rule (2.4), in
the case of �nancial disturbances, as in Table 5 of the main text, but with �b=�s = 2.

� = 1 � = 5 � = 50

��b �t ~�t �t ~�t �t ~�t
� = 0:00 0.012 0.013 0.157 0.156 0.894 0.831
� = 0:50 0.005 0.005 0.070 0.072 0.336 0.341
� = 0:90 0.000 0.000 0.021 0.023 0.044 0.048
� = 0:99 -0.004 -0.004 -0.001 0.001 0.001 0.003

above that response we would need to tradeo¤ the di¤erent shocks. Furthermore it is still

the case the if di¤erent shocks have di¤erent persistencies then even the mild response to

the spread might not be optimal.

Considering now the case with high convexity, � = 50, and low ratio of interest rate

sensitivity, we get the result that for the baseline persistence of � = 0:9, a medium response

to the spread of �! = 0:5 is better than no response, but depending on the shock the smaller

response with �! = 0:25 might be better. As before high persistence reduces the bene�ts

from responding to the spread.

2.2 Responding to Variations in Aggregate Credit

In the main text we consider adjusting the interest rate rule to respond to the level of

aggregate credit, bt, instead of the spread. Here we show similar results, but for the case

with a low ratio of the interest rate sensitivity of the expenditure of the two types, with

�b=�s = 2, shown in Table 6. This table shows that the results are extremely similar to

those shown in Table 5 of the main text. The optimal coe¢ cient is very small in most cases

and in some it can even be negative.

3 Taylor Rules With No Natural Rate Adjustments

The main text presents several alternative Taylor rules, all of which consider that the

interest rate responds to the natural rate of interest and to deviations of output from its

natural level, as described in the baseline rule,

idt = rnt + ���t + �y

�
Ŷt � Ŷ n

t

�
: (3.1)
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In this section we shall consider a di¤erent version of the interest rate rule, in which the

interest rate does not respond to the natural interest rate and it responds to deviations of

output from steady state,

idt = ���t + �yŶt: (3.2)

This shall be labeled as the "basic" Taylor rule, due to its simplicity.3 This rule has the

advantage of being much simpler to implement than the rule implied by (3.1), in the sense

that there is no need to evaluate what is the natural interest rate nor the natural level of

output at each period. However, this policy rule is usually farther way from optimal than

the one presented in the main text. That is true in the standard New-Keynesian model and

it is also true in the current model. The rest of this section considers adjustments to the

basic Taylor rule, (3.1), by incorporating an interest rate response to the level of spreads or

a response to the level of credit.

Let us consider generalizations of (3.1) of the form

idt = ���t + �yŶt � �!!̂t; (3.3)

for some coe¢ cient 0 � �! � 1. Like the rule (2.3) in the main text, these rules re�ect the
idea that the funds rate should be lowered when credit spreads increase, so as to prevent the

increase in spreads from "e¤ectively tightening monetary conditions" in the absence of any

justi�cation from in�ation or high output relative to potential, except that now we consider

a rule without any response to the natural interest rate or the natural rate of output.

It is important to notice that this rule is no di¤erent than the one discussed previously

for shocks that a¤ect the economy through changes in the size of the distortions, because

the de�nition of the natural rate used precisely ignores those e¤ects. This means that the

optimal response to the spread for shocks to the �nancial frictions is exactly the same, hence

we can get back to Table 2 in the main text for those shocks. The same applies to the

optimal response to the spread in the case of shocks to government debt, the tax rate, or the

wage markup, all of which a¤ect the economy by changing the degree of distortions in the

economy, hence are ignored in the de�nition of the natural variables.4 Therefore in Table 7

3The units quoted here are the ones used by Taylor, in which the in�ation rate and interest rates are
annualized rates. If instead these are quarterly rates, as in the model equations expounded here, the value
of �y is instead 0.5/4 = 0.125.

4Notice in particular that in the absence of credit frictions the level of government debt is irrelevant for
the determination of output and in�ation and the only way it matters in the current model is precisely by
in�uencing the degree of credit frictions.
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Table 7: Optimal value of the spread-adjustment coe¢ cient �!, in the case of non-�nancial
disturbances, as in Table 3 of the main text, but for policy rule 3.3.

��!
�Cbt

�Cst Gt bgt Zt; �Ht �wt � t
� = 0:00 -0.47 1.52 6.64 0.60 52.25 16.41 14.12
� = 0:50 -0.33 0.69 4.42 0.71 12.73 12.09 11.73
� = 0:90 1.70 -0.77 -2.06 0.62 13.03 13.03 13.02
� = 0:99 6.96 -3.98 -8.61 0.16 21.75 21.77 21.78

we can see that the optimal coe¢ cients for those shocks are unchanged compared to Table

3 in the text.

The �rst striking feature in Table 7, compared to Table 3 of the main text, is that the

optimal coe¢ cient �! for the productivity shock is much bigger, higher than 10 for all levels

of persistence. The reason for this di¤erence is that under a Taylor rule that does not respond

to the natural rates of output and interest, output and in�ation are weaker compared to the

optimal, while our baseline Taylor is very close to optimal for this shock, as shown in Figure 3

(shows responses to this shock for four di¤erent policies: optimal policy, baseline Taylor rule,

the basic Taylor rule described above and another version of the Taylor rule with response

to the output gap but not the natural rate of interest, to be discussed in the next section).

Furthermore, this shock leads to an increase in the spread which means that by having a

very strong negative response to the spread (�! >> 0) it is possible to mitigate partially

the ine¢ ciency of the basic Taylor rule. Even in this case it is still the case that the level

of optimal response to the spread is very sensitive to the persistency of the shock, as in our

main results.

Regarding the other three shocks for which the baseline and basic Taylor rules are not

equivalent, we still get negative coe¢ cients for the shocks to the expenditures of savers

and government, in the case of high enough persistence (� � 0:9) and positive for lower

levels of persistence but now the sensitivity of the coe¢ cient to the persistence is magni�ed.

To understand this we show in Figure 4 the response to a shock in �Cst for the baseline

speci�cation with alternative speci�cations of the Taylor rule. The basic Taylor rule implies

weaker than optimal output and in�ation. In this case spreads fall, which means that

a negative coe¢ cient will help bringing the response of output and in�ation towards the

optimal. A similar result applies for the case of the shock to government expenditures.

On the other hand, for the shock to the expenditure of borrowers, the sign of the coe¢ cient

is �ipped, compared to the results for the baseline Taylor rule. The reason for this can be

seen in Figure 5, which shows that, in response to a shock to �Cbt with persistence of � = 0:9,
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Table 8: Welfare consequences of increasing �!, for di¤erent disturbances, as in Table 4 of
the main text, but for policy rule 3.3.
'� 105 �t ~�t �Cbt

�Cst Gt bgt Zt; �Ht �wt � t
Baseline persistence (� = 0:90)
�! = 0:25 27.592 27.588 6.087 -10.857 -4.534 28.169 2.165 9.425 9.322
�! = 0:50 42.519 41.715 11.257 -24.878 -9.637 42.540 4.313 18.774 18.570
�! = 0:75 44.201 41.766 15.491 -42.120 -15.319 42.474 6.442 28.042 27.740
�! = 1:00 32.034 27.100 18.770 -62.639 -21.589 27.311 8.550 37.225 36.825
High persistence (� = 0:99)
�! = 0:25 0.252 4.155 15.824 -25.095 -12.424 2.727 5.093 7.712 7.703
�! = 0:50 -15.889 -10.151 31.115 -51.787 -25.234 -13.120 10.146 15.365 15.347
�! = 0:75 -49.053 -43.636 45.870 -80.081 -38.431 -48.254 15.159 22.955 22.929
�! = 1:00 -99.880 -97.029 60.083 -109.983 -52.016 -103.395 20.130 30.484 30.450

the basic Taylor rule implies a path for in�ation and output much lower to what would

be optimal. Because in this case, much like that of the productivity shock, borrowing and

spreads increase, then having a negative coe¢ cient on the spread helps getting closer to the

optimal policy and thus is welfare improving.

In Table 8 we show the equivalent of Table 4 in the main text but under the basic Taylor

rule discussed here. Notice that the welfare changes are exactly the same for the shocks

a¤ecting the size of the distortions in the economy, ignored in the de�nition of the natural

rate. An important di¤erence is that now all shocks imply similar size of changes in welfare in

response to the spread. The only two shocks that induce a welfare reduction in response to the

spread for the baseline persistence are the shocks to the savers and government expenditures.

Notice that in Table 3 in addition to these two we also have welfare reductions for the

productivity and borrowers expenditure shocks. Similar results apply to the case of more

persistent shocks.

We do not consider the case with response to the credit level because in the text we focus

on the �nancial shocks and for those, as discussed previously there is no di¤erence between

the basic and baseline Taylor rules.

4 Taylor Rules With Output Gap Adjustment

In this section we reevaluate the main results of the paper for the case in which we have

an interest rate rule with adjustment to the output gap but no time-varying intercept (no
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Table 9: Optimal value of the spread-adjustment coe¢ cient �!, in the case of non-�nancial
disturbances, as in Table 3 of the main text, but for policy rule 4.2.

��!
�Cbt

�Cst Gt bgt Zt; �Ht �wt � t
� = 0:00 -0.82 1.73 11.74 0.60 10.27 16.41 14.12
� = 0:50 -1.00 1.13 6.96 0.71 6.54 12.09 11.73
� = 0:90 -1.21 0.27 1.19 0.62 1.15 13.03 13.02
� = 0:99 -1.80 -1.37 -1.18 0.16 -1.18 21.77 21.78

adjustment to the natural rate of interest),

idt = ���t + �y

�
Ŷt � Ŷ n

t

�
; (4.1)

which we will be referring to as the Taylor rule with output gap. This policy rule is an

interesting case to consider because often, when the Taylor rule is discussed, movements in

the natural rate of interest are ignored or it is assumed that the natural rate of interest is

constant. Hence it is worth considering the e¤ects of such a rule for the analysis undertaken

in the main text.

Let us consider generalizations of (4.1) of the form

idt = ���t + �y

�
Ŷt � Ŷ n

t

�
� �!!̂t; (4.2)

for some coe¢ cient 0 � �! � 1. The analysis follows that of the Basic Taylor rule case:

there is no reason to reevaluate the cases of disturbances that operate through changes in

the size of distortions in the economy (�t, ~�t, � t, �
w
t and b

g
t ) because they do not a¤ect the

natural variables in any way.

Table 9 shows the equivalent to Table 3 in the main text but for the Taylor rule with

output gap, as in 4.2. In the case of the baseline persistence level, � = 0:9, we get positive

coe¢ cients for all disturbances, except the shock to the borrowers expenditure. In the case

of the productivity shock, the reason for the change in the sign of the coe¢ cient is that,

as shown in Figure 3, the Taylor rule with output gap implies lower output and in�ation

than the baseline one (even if less suboptimal than the basic Taylor) and because the spread

increases, having some positive coe¢ cient helps bringing the response of output closer to the

optimal. In the case of a shock to the expenditure of savers (and similarly for the government

expenditure) the response of output and in�ation are actually too big, as shown in Figure

4, but because the spread falls in this case, then a positive coe¢ cient �! is still helpful in
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Table 10: Welfare consequences of increasing �!, for di¤erent disturbances, as in Table 4 of
the main text, but for policy rule 4.2.
'� 105 �t ~�t �Cbt

�Cst Gt bgt Zt; �Ht �wt � t
Baseline persistence (� = 0:90)
�! = 0:25 27.592 27.588 -5.841 1.727 1.932 28.169 0.297 9.425 9.322
�! = 0:50 42.519 41.715 -12.842 0.546 3.424 42.540 0.524 18.774 18.570
�! = 0:75 44.201 41.766 -21.023 -3.603 4.469 42.474 0.680 28.042 27.740
�! = 1:00 32.034 27.100 -30.401 -10.775 5.056 27.311 0.763 37.225 36.825
High persistence (� = 0:99)
�! = 0:25 0.252 4.155 -4.738 -8.976 -1.759 2.727 -0.366 7.712 7.703
�! = 0:50 -15.889 -10.151 -10.106 -19.480 -3.862 -13.120 -0.804 15.365 15.347
�! = 0:75 -49.053 -43.636 -16.108 -31.520 -6.309 -48.254 -1.312 22.955 22.929
�! = 1:00 -99.880 -97.029 -22.747 -45.102 -9.103 -103.395 -1.893 30.484 30.450

preventing the overheating of the economy. As in the main text all of the shocks imply that

the optimal responses to the spread are very sensitive to the degree of persistency of the

shocks.

In Table 10 we show the table with the welfare impact of alternative responses to the

spread for the di¤erent disturbances, much like in Table 4 of the main text, but under the

Taylor rule with output gap. The main di¤erence, under the baseline persistence (� = 0:90),

is that in this case the only shock for which even a mild response of �! = 0:25 is welfare

reducing is the case of a shock to the borrowers expenditure, which is in accordance to the

discussion above. In the case of very high persistence the welfare impact of the responding

to the spread is similar to the one shown in Table 4 for the baseline Taylor rule.
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Figure 1: Impulse responses to a 1 percent shock to �mt , for di¤erent values of �, under the
Taylor rule, for the case with �b=�s = 5.
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Figure 2: Impulse responses to a 1 percent shock to �mt , for di¤erent values of �, under the
Taylor rule, for the case with �b=�s = 2.
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Figure 3: Impulse responses to a 1 percent shock to Zt, for alternative speci�cations of the
Taylor rule, for the case with �b=�s = 5, � = 5 and � = 0:9.
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Figure 4: Impulse responses to a 1 percent shock to �Cst , for alternative speci�cations of the
Taylor rule, for the case with �b=�s = 5, � = 5 and � = 0:9.
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Figure 5: Impulse responses to a 1 percent shock to �Cbt , for alternative speci�cations of the
Taylor rule, for the case with �b=�s = 5, � = 5 and � = 0:9.
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