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1 Modeling Stochastic Choice

Since at least the work of Mosteller and Nogee (1951), it has been noted in experi-

mental studies of choice behavior that choices have an apparently random element.

This is true not only in the sense that less than 100 percent of the variation in choices

across trials can be accounted for by a deterministic function of a particular list of

measured characteristics, but more tellingly, in the sense that a given subject does

not always make the same choice when presented again with exactly the same set

of alternatives, sometimes only a few minutes later (Hey, 1995, 2001; Ballinger and

Wilcox, 1997; Cheremukhin et al., 2011). This raises the question of how such ran-

domness can be understood, and in particular, whether it can be reconciled with a

theory according to which people’s choices reflect well-defined and stable preferences,

which one should (at least in principle) be able to infer from those choices.

The approach proposed here views stochastic choice as representing random errors

in cognitive processing, akin to random errors in perception. A long literature in

experimental psychology and neuroscience has documented the randomness of the

responses that subjects give when asked to make perceptual judgments, in a variety

of sensory domains. The probability of the subject’s giving one response instead

of the other (when required to choose between two possible responses) is found to

vary continuously with continuous changes in the characteristics of the stimuli, rather

than jumping discontinuously as the correct answer (say, to the question which of two

tones is louder) would; and the “psychometric functions” that are plotted showing

the experimentally determined relationship1 are similar in form to plots showing

how probabilities of choice among lotteries, say, vary with variation in the promised

payoffs.2

Moreover, in economic choices just as in the case of perceptual discrimination

tasks, there is observed to be a systematic relation between the time required for

experimental subjects to make a decision and the characteristics of the alternatives;

specifically, the average response time is shorter in the case of “easier” choices, which

are also the ones for which repeated trials yield the same response a greater fraction of

the time.3 Clithero and Rangel (2013) and Krajbich et al. (2013) both find that the

relationship between response time and the frequencies with which different choices

are made is sufficiently systematic that data on a given subject’s response times

1See, e.g., Green and Swets (1966) or Gabbiani and Cox (2010), chap. 25.
2See, e.g., Figure 2 from Mosteller and Nogee (1951).
3See Figure 1 below, for an example of choice between alternative consumption goods.
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when choosing between particular pairs on goods on past information improves one’s

ability to predict the subject’s future choices (even if response times themselves are

not of intrinsic interest). The similarity in the association between response time and

the degree of predictability of the subject’s eventual choice that is observed both in

economic choices and in perceptual tasks suggests the underlying cognitive processes

involved in both kinds of judgments may be similar.

The present study takes this analogy seriously, by proposing a model of stochastic

choice between discrete alternatives in which the randomness of choice is explained

in the same way as randomness in perceptual judgments (in the literature discussed

further below) — that is, as resulting from decisions being based on random evidence

about the nature of the decision situation on a given occasion, rather than a precise

description of it. In perceptual contexts, the randomness of the available evidence is

assumed to result from randomness in the processing of the evidence received by the

senses. In the case of stochastic choice, the randomness does not generally result from

randomness in perceptual processing (for example, inaccuracy in visual estimation of

the size of a piece of cake that one is offered). But the value of the available options in

a choice situation depends not only on characteristics that can be directly observed

or that are described to the decisionmaker (the type of cake offered), but also on

associations that will have to be accessed from memory (the degree to which one

enjoys that type of cake); and one may suppose that access to these contents of

memory at the time of choice is subject to corruption by noise in a manner analogous

to the noise in observations of the world through the senses.

The content of such a theory depends, of course, on the assumed nature of the

statistical relationship between the true features of a given choice situation and the

random evidence upon which choice must be based. We discipline our assumptions

about this in two ways. On the one hand, we assume that decisions are made using a

stochastic algorithm, the general structure of which derives from studies of the neural

processing underlying certain types of perceptual judgments. At the same time, we

assume that the kind of random evidence supplied as an input to this algorithm is

optimal from the standpoint of maximizing expected utility, subject to a constraint

on the information-processing capacity of the channels that supply the information

about the current choice situation on the basis of which the decision is made. The

kind of choice algorithm that is optimal in this constrained sense involves random

errors, not because they are assumed to be inevitable but because such an algorithm
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reduces the amount of information about the variation in choice situations that must

be obtained; and it makes specific (and empirically testable) predictions about the

way in which the rate at which random errors are made should very with the choice

situation. We briefly discuss each of these aspects of the motivation for our problem

formulation.

1.1 Process Models of Perceptual Judgment and Stochastic

Choice

At least since Thurstone (1927), a standard interpretation of the “psychometric func-

tion” showing how the probability of a particular perceptual judgment varies continu-

ously with variation in stimulus characteristics has been to assume that the subject’s

responses are based on sampling from a probability distribution of possible subjec-

tive perceptions corresponding to each objective stimulus.4 A further development of

the approach, that seeks to account for measured response times as well as the fre-

quencies with which different responses are given, replaces the hypothesis of a single

sample from a distribution of possible perceptions by a model in which the subjective

perception is the realization of stochastic process, unfolding over time as the subject

observes the stimulus and contemplates the appropriate response.

The best-known of such stochastic-process models of binary perceptual discrimi-

nation tasks is the “drift-diffusion model” (DDM), a member of the broader family

of “diffusion-to-bound” models.5 In this model, a continuous-valued subjective state

variable, that one may think of as an evolving perception of the weight of sensory

evidence in favor of one response relative to the other, follows a random walk with

drift on a bounded interval; a decision is made in favor of one or the other of the

two possible responses when the bound corresponding to that decision is reached.

The instantaneous variance of the diffusion process is assumed to be independent of

the stimulus presented, while the drift of the process is assumed to depend on the

stimulus (specifically, the degree to which it possesses the property that implies that

one response rather than the other is correct). Under a particular (typically linear)

4See Green and Swets (1966) for a canonical exposition of this approach.
5Early proponents of models of this type include Stone (1960), Laming (1968), Link and Heath

(1975), and Ratcliff (1978). Reviews of the mathematical properties of models in this family can be

found in Smith (2000), Bogacz et al. (2006), and Shadlen et al. (2007).
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specification of how the drift of the process depends on stimulus characteristics, the

model has been found to give a fairly accurate quantitative account of the effects of

variation in the stimulus on both response frequencies and reaction times.

Further evidence for the realism of this account of the mental processing involved

in perceptual discriminations comes from measurement of electrical activity in parts

of the brain involved in recognizing the direction of motion of visual stimuli while

monkeys perform a motion-discrimination task. In a fascinating series of experiments

by William Newsome, Michael Shadlen, and their collaborators, beginning in the late

1980s, monkeys were trained to indicate the perceived dominant direction of motion

in “moving-dot” stimuli. In one of these experiments, the monkey is trained to focus

its attention on a screen where several hundred dots are moving; at any point in

time, a certain fraction of these are moving in a particular direction with a particular

speed, while each of the other dots is moving in a randomly selected direction with a

randomly selected speed. The fraction of dots moving coherently define the “motion

strength” in the particular direction. The monkey is rewarded (by juice) if it correctly

indicates (typically, by one of two possible eye movements) whether the dominant

direction of motion of the dots is in one direction (say, to the right) or the opposite

direction (i.e., to the left).

The DDM fits well the observed variation both in the frequency with which the

monkey indicates motion to the right and in the average time that the monkey takes

to respond, as functions of the degree of actual (net) “motion strength” to the right.6

Moreover, the neurophysiological measurements uncover signatures of processes sim-

ilar to those postulated by the model.7 For example, Britten et al. (1993) found that

the rate of firing of neurons in the middle-temporal area (MT) of the visual cortex,

an area already known to be involved in recognizing visual motion, was affected by

the motion of the dots; specifically, the average firing rate of “right-preferring” MT

neurons increased by more the greater the degree of motion strength to the right.

They further measured the random variation in the number of times that these neu-

rons would fire over a given time interval in the case of each type of stimulus, and

showed that the randomness of the monkey’s responses in the case of varying degrees

of motion strength (i.e., the “psychometric function”) could be accounted for by the

degree of random variation in the difference between the number of times that right-

6See Figure 10.1 in Shadlen et al. (2007).
7See section 10.4 of Shadlen et al. (2007) for a more detailed discussion.
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preferring and left-preferring neurons would fire (Britten et al., 1992), suggesting that

the difference between the firing rates of the two groups of neurons behaves like the

random innovations in the diffusion process postulated by the DDM.

Roitman and Shadlen (2002) further found that the rate of firing of direction-

sensitive neurons in the lateral intraparietal area (LIP) appeared to integrate the

cumulative evidence in favor of one response or the other, as is postulated to occur

in the DDM. Unlike the MT neurons, the firing rate of which fairly quickly reaches a

steady rate (around which there are only white-noise variations) that depends on the

degree of motion strength in the stimulus, the firing rates of the LIP neurons follow

path more like random walks with drift, until the decision is made; and as postulated

by the DDM, the drifts vary systematically with the motion strength of the stimulus.

Random variation in the degree to which the activation level of particular LIP neurons

drifts up on a particular trial correlates with whether a particular decision is made on

that trial, as shown by the difference in average sample paths for the cases in which the

monkey eventually chooses one response or the other. And finally, as also postulated

by the DDM, the timing of the monkey’s decision appears to be determined by the

time when the firing rate of certain LIP neurons reaches a particular threshold, that is

independent of the stimulus characteristics and the time taken to reach it. All of these

observations suggest that some form of diffusion-to-bound model is implemented by

the brain in making perceptual decisions of this kind.

Authors such as Milosavljevic et al. (2010) and Krajbich et al. (2010) have

proposed the DDM as a model of the way in which economic choices are made as

well.8 These authors show that also in this context, the DDM can successfully account

for the way in which variation in the relative value of the options presented affects

both the frequency with which one is option is chosen over the other, and the average

time required to make a choice.9 And while the neural implementation of such a

mechanism would have to be different in the case of choices among economic options

8See Fehr and Rangel (2011) for a review of this literature. Busemeyer and Townsend (1993)

had earlier proposed a variant form of accumulation-to-bound model to account for experimentally

observed choice behavior; see Busemeyer and Johnson (2004) for a survey of the earlier literature,

and Webb (2016) for a synthetic treatment of a family of accumulation-to-bound models of stochastic

choice that generalizes the DDM.
9See Figure 1 below, plotting data from Krajbich et al. (2010) for choice between pairs of food

items that the subject may eat. The figure is presented in the same format as Figure 10.1 of Shadlen

et al. (2007), showing the similarity of the phenomena to be explained in the two domains.
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— the particular areas of the cortex specialized in the perception of visual motion will

obviously not be the ones involved in judgments of the relative value of consumption

goods — one might well suppose that the underlying principles that result in this

form of neural computation being used by the brain in one area should result in

similar computations being used to make comparative judgments of other types as

well.

Here we suppose that choices in economic contexts are indeed made as a result

of computations similar to those depicted by the DDM. In particular, we take it

as given that decisions will be made by moving backward or forward through an

ordered sequence of possible internal states, in response to successive increments

of evidence about the relative value of the two possible actions, until a sufficiently

extreme internal state is reached for one decision or the other to be made. However,

rather than also taking as given the way in which the stochastic process for the

incremental evidence depends on the true values of the available options assumed by

authors such as Milosavljevic et al. (2010) and Krajbich et al. (2010), we derive the

evidence-accumulation process that would satisfy a particular constrained optimality

property. In this way, we seek to provide a functional interpretation for the evidence

accumulation process, that should be useful in suggesting the way that one might

expect the model to generalize to more complex types of decision problems. The

resulting dynamics, for the kind of binary choice problem considered here, are similar

to those implied by the DDM, but not identical. Moreover, the way in which they

differ from those of the DDM seems to allow an improvement in the empirical fit of

the model.

1.2 Optimal Evidence Accumulation

Stochastic choice has also been modeled as resulting from a process of accumulation of

noisy evidence by Natenzon (2013), Lu (2013), and Fudenberg et al. (2015). These

authors take as given the kind of noisy evidence that is obtained through further

consideration of the available options, but consider optimal choice on the basis of

such information. In Natenzon (2013) and Lu (2013), the amount of noisy evidence

that is collected is also exogenously given, but the effects of exogenous variation in the

length of time allowed for additional observation are analyzed. In Fudenberg et al.

(2015), the time at which further information ceases to be collected and a decision is
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made is also chosen optimally, given an assumed cost of further delaying the decision.

The problem treated by Fudenberg et al. generalizes a classic problem in statistical

decision theory (to which seminal contributions were made by Wald, 1947, and Arrow

et al., 1949), in which the statistical properties of an available test or experiment is

specified and the question is how long to continue testing before making a decision.

The question posed here is different. Rather than asking how many times it is

optimal to repeat the one type of test that is assumed to be possible, we ask which

type of test it is optimal to perform at each stage in the decision process, from among

a flexibly specified class of tests.10 Essentially, we allow any kind of test with a

binary outcome to be performed at each stage in the sequential decision process, and

any kind of dependence of the test upon the history of outcomes of previous tests,

subject only to a constraint on the average informativeness of the tests. Instead

it is the rule for deciding when to stop testing that is exogenously specified in our

case, rather than being chosen optimally, though we do not fix the length of time for

which evidence is collected, as in models like those of Natenzon and Lu, and instead

specify an endogenous stopping criterion like the one assumed in the DDM.11 Our

10Che and Mierendorff (2016) similarly seek to endogenize the type of test performed at each stage,

but consider a special family of potential tests, in which signals arrive as a Poisson process, with no

information other than the passing of time being received over most small intervals, while a large

“lump” of information, resulting in an immediate decision, will arrive on some discrete occasion.

We instead consider here evidence accumulation processes in which slightly informative signals are

received continually, as in psychological models like the DDM or decision field theory.
11The stopping criterion assumed in the DDM is known to be optimal (for a constant cost of

additional testing, and the particular kind of information from testing assumed in the DDM) in

the case of a problem in which only two possible states of the world (decision situations) are ex

ante possible, as shown by the normative justifications for a sequential probability ratio test derived

by Wald (1947) and Arrow et al. (1949). However, as discussed in Fudenberg et al. (2015),

even under these assumptions about the cost of testing and the information from testing, it is not

generally optimal if there are more than two possible states of the world, since the posterior after

a given history of random evidence will not generally be a function solely of a single statistic. It

also need not be optimal for the kind of evidence accumulation process derived here. Here we

treat the stopping criterion as a constraint on the class of decision algorithms considered, and leave

for future work the question whether this criterion can be justified as optimal, possibly under a

constraint on the complexity of the criterion that can be implemented. Hébert and Woodford

(2016) offer some preliminary analysis of a generalization of the problem treated here, in which

both the information sampled at each stage in the evidence accumulation process and the stopping

criterion are endogenized.
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inquiry, which endogenizes information choice at each stage while taking as given the

stopping criterion, can be viewed as complementary to that of Fudenberg et al., which

endogenizes the stopping criterion while taking as given the information available at

each stage.

In proposing that that the accuracy of the information that can be obtained

through additional evidence accumulation at each stage is limited by an information-

theoretic constraint, the model here can viewed as an application of Sims’ (2003, 2010)

theory of “rational inattention.”12 However, unlike Sims’ theory, the model proposed

here imposes additional constraints on the class of choice algorithms that are assumed

to be feasible, motivated by both behavioral and neurophysiological data.13

2 A Information-Constrained Dynamic Model of

Discrete Choice

We now present a simple example of a process model of choice that can be derived

from an optimization problem, subject to a constraint on the information-processing

capacity of the structures through which the DM becomes aware of the nature of the

choices faced at a given point in time. We then compare the properties of the optimal

choice mechanism according to this theory with the predictions of the DDM, with

empirical data, and with some other possible normative theories of stochastic choice.

2.1 Choice Algorithms

Suppose that choice among a discrete set of alternatives occurs using a mechanism

with two elements.14 First, there is a sensor that produces a signal about the nature

of the current choice situation each time it is employed; and second, there is a decoder

12Previous discussions of rational inattention as a source of randomness in discrete choices include

Woodford (2008, 2009), Pinkovskiy (2009), Cheremukhin et al. (2011), Matějka and MacKay (2013),

and Caplin and Dean (2013). See further discussion of this theory in section 3.
13Webb (2015) also seeks to discipline the specification of a model of stochastic choice on the

basis of both behavioral and neurophysiological evidence, but does not seek to provide optimizing

foundations for the specifications that he considers.
14Note that the optimizing models of Natenzon (2013) and Fudenberg et al. (2015), as well

as purely descriptive models like the DDM, are examples of decision algorithms with the general

structure assumed here.
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that receives the stream of signals from the sensor, and indicates the decision to be

taken, based only on the signals from the sensor. Suppose furthermore that the signal

each time the sensor is activated is a letter s in some finite alphabet S, and let H be

the set of all possible finite sequences of letters of this alphabet (the set of possible

finite signal histories), including an element ∅ corresponding to a situation in which

no signals have been received. The operation of the sensor can then be specified by a

function σ : X ×H → ∆(S) indicating the probability with which a given signal will

be sent by the sensor, as a function of the state of the world x ∈ X at the time that

the sensor is operated, and the history h ∈ H of signals previously sent.15

The decoder decides, after each additional signal from the sensor is received,

whether to announce a decision (an action a chosen from among a finite set of possible

actions A) or to request another signal from the sensor. The algorithm begins with

prior signal history ∅, and terminates as soon as a signal history h is reached for

which the decoder announces a decision; once it terminates, the DM receives a reward

specified by a function U : A×X → R, that depends on both the action chosen and

the state of the world at the time of decision. The operation of the decoder can then

be specified by a set C ⊂ H of “codewords” for which the decoder will announce a

decision, and a decision rule δ : C → A indicating the decision made when each of

these codewords is encountered. Since we assume that the algorithm terminates as

soon as a signal history c ∈ C is encountered, the set C must constitute a “prefix

code.”16

The decision problem, for which we wish to design a choice algorithm, can then

be defined by a prior over possible histories of states of the world (assumed to evolve

independently of both observations and actions of the DM), the action set A and the

reward function U . A specification of the sets S and C and the functions σ and δ

completely describes a choice algorithm (that may or may not reach a decision in finite

time) for this decision problem. For any specification of a sequence of states of the

world associated with a given experimental trial, the algorithm yields a probability

15The assumption that the operation of the sensor may depend on the history of previous signals,

but not the history of previous states of the world reflects an assumption that the sensor itself is

memoryless, but that it may be influenced by the current state of the decoder unit. The decoder, in

turn, has no direct access to the state of the world, and instead observes only the history of signals

generated by the sensor.
16That is, it has the property that no codeword c ∈ C is also the prefix (the initial sequence of

signals) of some longer codeword in C (Cover and Thomas, 2006, chap. 5).
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distribution of possible outcomes, where each outcome (in which a decision is reached)

is a specification both of an action a ∈ A that is chosen and a number of time steps

T that are required for the decision.17

The DDM model of binary choice is an example of an algorithm of this kind.

In this kind of decision problem, it is assumed that the action set A consists of

two possible choices, which we may call “left” (L) and “right” (R), and in typical

applications the state of the world x (i.e., the specification of the values of the two

possible actions, UL and UR) is assumed to remain constant over a given trial, until

a decision is reached. The prior over possible histories of states of the world then

reduces to a simple specification of a prior π ∈ ∆(X) over possible constant states on

a given trial. A discrete version of the DDM (which is more commonly specified as a

continuous diffusion,18 as in section 2.4) assumes that at each step of the algorithm

prior to termination (i.e., a decision), the sensor produces one of two possible signals,

that we may also denote L and R — the idea being that the signal L is additional

evidence in support of the desirability of action L, while the signal R is additional

evidence in support of action R.

In the neural implementation of the DDM proposed by Shadlen et al. (2007),

the momentary evidence that causes the decision variable to drift in one direction or

the other corresponds to the difference in firing rates between “right-preferring” and

“left-preferring” neurons in region MT, where the firing rate of each type of neuron is

a function of the state x (strength of motion to the right, in the experiments discussed

by these authors). The neurons produce discrete spikes with random timing (often

approximated as a Poisson process), rather than being continuously active at some

level, and it is this randomness of the production of spikes that results in the random

variation in the momentary evidence associated with a given state in the neural model.

If we think of the successive steps in our algorithm as the instants in time at which MT

neurons spike, then at each step the signal received will be of one of two types: either

another spike from a “right-preferring” neuron (which we shall call the signal R) or

17Below, the framework is extended to allow as well for termination of the algorithm due to

an exogenous event, “disappearance of the choice opportunity.” In this extension of the model, the

functions σ and δ continue to describe the functioning of the algorithm, conditional on an exogenous

termination not having occurred.
18See, however, Shadlen et al. (2007) for a discrete-time presentation of the model, that also

allows for the possibility that the momentary evidence is a discrete random variable, as assumed

here.
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another spike from a “left-preferring” neuron (the signal L). Thus our restriction to

a binary signal space is not necessarily unrealistic. (In addition, as discussed further

below, the Brownian motion with drift assumed in classic expositions of the DDM

can be viewed as a continuous-time limit of this binary-signal model.)

At each step, the signal R is produced with some probability 0 < λ(x) < 1 that

depends on the (constant) state x, while L is produced with probability 1 − λ(x).

The specific version of the DDM advocated by Fehr and Rangel (2011)19 as a model

of value-based choice assumes not only that these probabilities are independent of

the history of previous signals, but that the log odds of the two signals are a linear

function of the difference in value between the two options,

ln
λ(x)

1− λ(x)
=
α

N
[UR(x)− UL(x)], (2.1)

where α > 0 is a parameter indicating the sensitivity of the momentary evidence to

the degree of difference between the two available choices, and N ≥ 1 is a parameter

of the decoder discussed below.20 This specifies a function σ for the sensor, in the

terminology proposed here.

The classic DDM assumes that a decision is made as soon as the net evidence in

favor of one alternative over the other reaches a certain threshold. For any possible

signal history h ∈ H, let n(h) denote the number of occurrences of the signal R minus

the number of occurrences of the signal L. The algorithm is assumed not to decide,

and so to continue collecting evidence, in the case of any finite signal history for which

−N < n(h) < N, where N ≥ 1 defines the required evidentiary threshold; it halts,

and chooses the action R, if n(h) = N ; and it halts, but chooses the action L, if

n(h) = −N. This specifies a decision function δ for the decoder, where the codebook

C consists of all finite sequences h such that n(h) is equal to either N or −N , and

such that −N < n < N for all prefixes (truncations) of h.

19Fehr and Rangel actually discuss the continuous-time version of this process, presented in section

2.4 below, rather than the discrete version reflected in equation (2.1). They also discuss an extension

of the model, proposed by Krajbich et al. (2010), in which the rate of drift (corresponding to the

log odds here) depends not only on the relative value of the options, but also on the current visual

fixation of the subject. We abstract from the latter complication in the analysis here.
20Writing α/N rather than a simple positive coefficient in (2.1) has the advantage that the model’s

predicted choice frequencies, given by equation (3.4) below, are then a function of α, and independent

of the value assumed for N . This form also has the advantage that in this case α corresponds directly

to a parameter of the continuous-time version of the model.
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Alternatively, the operation of the decoder can be described by a finite-state

automaton, with states {−N,−N+1, . . . , N−1, N}. The automation begins in state 0

(corresponding to n(∅)). Whenever the automaton is in state n, for any −N < n < N,

it collects another signal from the sensor, and if signal s is received the state moves

to n′ = Ts(n), where the transition function is given by

TR(n) = n+ 1, TL(n) = n− 1. (2.2)

If the automaton reaches either of the states {−N,N}, it halts, and announces the

decision

a(−N) = L, a(N) = R. (2.3)

It can be shown that such an algorithm produces a decision in finite time with prob-

ability 1, for any values UL, UR for the choices.

2.2 The Optimal Sensor Problem

We are interested in evaluating choice algorithms of this kind according to their

implications for the DM’s expected reward E[U ], where U(a, x) is evaluated at the

time of choice21 and the expectation is over all possible sequences of states of the

world (using the prior) and, given a sequence of states of the world, over all possible

signal histories (using the conditional probabilities defined by σ). For simplicity, we

here consider only binary choice problems in which in each possible state of the world,

UR = V (x), UL = −V (x), for some real quantity V (x) (that may be either positive

or negative) that depends on the state.22 The prior used to evaluate the expected

reward implied by a given choice algorithm is then a prior over possible sequences of

values for V .

This prior need not be identified with the rule used by an experimenter to select the

decision situations presented to an experimental subject on successive trials; rather,

it should reflect the probability with which the DM can expect to encounter different

21We may restrict attention to algorithms that imply that a decision is reached with probability

1. In fact, below we mainly emphasize a case in which the opportunity to choose disappears in finite

time with probability 1 if the decision is delayed too long, and in this case there is no difficulty

defining the DM’s reward in the event of an algorithm that never reaches a decision: eventually the

opportunity disappears, resulting in a zero reward.
22This is without loss of generality, since the optimal algorithm remains the same if the constant

(UL + UR)/2 is subtracted from all rewards.
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situations, given the environment to which its choice procedure has been adapted;

the particular situations created by the experimenter may be quite atypical, relative

to this prior. This is true even in the case where the experimenter tells the subject

the probability distribution from which the experimental situations will be drawn.

We may suppose that the DM’s deliberations make use of two mental systems, as

in Cunningham’s (2015) refinement of the dual-systems theory of Kahneman (2011):

a “system 1” that produces a quick recommendation a about the action to take, on

the basis of fine-grained “low-level” information x about the characteristics of the

options presented on the current occasion, and a more reflective “system 2” that

can also draw inferences from “high-level” information about the way in which the

experimental situation has been designed, and that observes the recommendation a

of system 1 without having access to all of the information x used to produce it.

The model presented here is intended as a theoretical account of the automatic

processing of the choice situation by system 1; the prior for which the algorithm used

by system 1 has been optimized derives from some considerable body of previous

experience by the organism, but may not be able to take into account “high-level”

information about the experimental design, even when the DM’s system 2 is aware of

it. As long as the high-level information about the experimental design does not give

system 2 a reason to change its expectation that the action recommended by system 1

is more likely to be the correct one than the reverse, the two-system DM will continue

to take the action a recommended by system 1, even if the information processing by

system 1 has been optimized for a prior that does not correspond precisely to system

2’s probability beliefs. Note that in this respect the theory proposed here differs from

Sims’ (2003, 2010) theory of rational inattention. In order to minimize the number

of free parameters used to fit the experimental data discussed below, we shall make a

fairly simple assumption about the prior, and one under which the situations actually

presented in the experiment would not have been judged extremely unlikely ex ante.

However, we shall not assume that whatever state x is observed at a given point

in time is expected to persist indefinitely, regardless of the time that the DM may

take to decide between the two currently available options; it is reasonable to assume

that the more typical situation is one in which opportunities for action appear, but

will disappear again if a choice is not made sufficiently quickly, and that the choice

algorithm is optimized for an environment with this characteristic.

Specifically, we shall assume that some measure π over the real line describes the
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prior probability for the value of V for the options that are initially available when

a choice situation is presented and the algorithm is initiated. Then, each time that

the algorithm fails to make a choice between the two options, there is a probability

0 < ρ < 1 that the choice opportunity will continue to be available, in which case

the sensor can be used to produce another signal about the relative value of the

options, and another opportunity to choose or to defer choice will be presented. But

with probability 1− ρ, an action is forced and the algorithm necessarily terminates;

there is an equal probability of either action being selected (with no input from the

decoder) in this case, so that the expected reward is zero.23

A given choice algorithm (S,C, σ, δ) and anticipated persistence of opportunities

ρ then define probabilities {p(h|V )} of reaching each possible finite history h and

engaging the sensor, if the initially presented options are such that UR = V, UL = −V.
We can similarly let p∗(h|V ) be the probability of reaching any history (of length

greater than or equal to 1), whether the algorithm terminates at this history or not.

Let D ⊂ H be the set of histories such that neither h nor any prefix of h belongs to

the codebook C. (That is, D is the set of histories for which the algorithm will not

yet have halted.) Then these probabilities are defined recursively by the relations

p∗(hs|V ) = p(h|V )σ(s|V, h)

for any h ∈ D and s ∈ S, where hs denotes the signal history obtained by adjoining s

to the previous signal history h, and σ(s|h, V ) is the probability of observing signal s

if the sensor is activated when the value of option R is V and the prior signal history

is h; and

p(∅|V ) = 1

for all V , while

p(h|V ) = ρp∗(h|V )

for any h ∈ D̄, the set of histories in D of length greater than or equal to 1. We

define p(h|V ) = 0 for any h /∈ D and correspondingly p∗(hs|V ) = 0 for all of the

successors of any h /∈ D. Given a prior π over the possible initial values of V , the

23More generally, the expected reward would be (UL + UR)/2 in this case.
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expected reward from using the algorithm will then be24

E[U ] =
∑
V

π(V )
∑
c∈C

p∗(c|V )U(δ(c), V ), (2.4)

where we now write U(a, V ) for the reward from choosing a if V takes this value and

a decision is made before an action is forced.

In the present analysis, we shall furthermore take as given the rule used by the

decoder, and consider only the optimal design of the sensor for a given class of poten-

tial decision problems. Specifically, we shall assume that the rule used by the decoder

is given by (2.2)–(2.3), for some value of N , as in the case of the DDM, and consider

the optimal choice of the signalling function σ. Note that while the assumption that

the decoder uses the rule (2.2)–(2.3) implies something about the consequences of

sending a signal R as opposed to L at any stage of the algorithm, we make no a

priori assumptions about which signal must be sent under any particular conditions,

so that the dynamics of the decision process remain relatively unconstrained. One

advantage of focusing on the optimal sensor design problem is that, as we shall see,

it is possible to characterize the optimal signalling function σ under only a relatively

weak assumption about the prior π over possible relative values V ; the optimal design

of the decoder will instead generally be sensitive to further details of the prior, since

a single choice of the decoder must be made to apply regardless of the value of V on

a particular trial.

If we simply consider the problem of choosing a sensor function to maximize

E[U ], under no constraints beyond those already mentioned, the solution is simple:

the sensor should always indicate the value R in a state in which V > 0, and the

value L in a state in which V < 0. Such a rule implies that the correct (reward-

maximizing) choice will always be made, assuming that an action is not forced before

a choice can be made (i.e., before N observations of the signal have been completed);

and it will maximize the probability of getting to choose before an action is forced (by

always generating the shortest possible codeword among those leading to the correct

choice). Such an analysis cannot, however, explain the experimental data reported

in studies such as Krajbich et al. (2010); it implies that, in an experiment where

the choice opportunity is maintained long enough for the subject to reach a decision,

24Here we assume that the set X is countable. This allows us to write sums rather than integrals,

though the formalism is easily extended to deal with the case of a continuum of possible values V .
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there should be no random variation in the choice made between any two options

(except in the case of exactly identical values), and it implies that the time taken to

make the decision should be the same for “hard” choices as for “easy” ones.

According to the hypothesis proposed here, this does not occur because it would

require the output of the sensor to be too precisely coordinated with the current state

of the world. We shall suppose that there is a limit to the information-processing

capacity of the sensor, and model this (as in Sims, 2003, 2010) by a bound on the

mutual information between the output of the sensor and the state of the world.25

Following Shannon, we can define the rate of information transmission by the sensor

by the average amount by which receipt of a signal s reduces an observer’s uncertainty

(measured by entropy) about the conditions z that have influenced the signal (Cover

and Thomas, 2006, chap. 2). In our case, the operation of the sensor is defined

by conditional probabilities λ(z) of producing the signal R when the sensor receives

inputs z ≡ (V, h). The prior over states of the world together with the specification

of the algorithm imply a set of unconditional probabilities π(z) of being in a given

state z when the sensor is engaged, given by

π(V, h) =
π(V )p(h|V )∑

Ṽ

∑
h̃∈H π(Ṽ )p(h̃|Ṽ )

=
π(V )p(h|V )

E[T ]
,

where

E[T ] ≡
∑
V

∑
h∈H

π(V )p(h|V )

is the expected value of T, the (random) number of times the sensor is employed (and

hence the number of steps in the algorithm) before a decision is reached.

The ex ante uncertainty about the value of z, for someone who observes only that

the sensor has been engaged, is then given by the (unconditional) entropy26

H ≡ −
∑
z

π(z) ln π(z).

Observation of a signal s implies a set of posterior probabilities π(z|s) given by

π(z|R) = π(z)λ(z)/λ̄, π(z|L) = π(z)(1− λ(z))/(1− λ̄),

25See also Wolpert and Leslie (2012) for use of a similar constraint.
26The use of the natural logarithm rather than a logarithm of base 2, as in classic expositions of

information theory, is simply a change in the units in which the rate of information flow is measured:

from “bits” (binary digits) per signal to “nats” per signal.
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where

λ̄ =
∑
z

π(z)λ(z) (2.5)

is the ex ante probability of receiving signal R when the sensor is engaged. The

entropy of the posterior distribution is therefore

H(s) ≡ −
∑
z

π(z|s) ln π(z|s),

and the mutual information I is then defined as the average entropy reduction per

use of the sensor,

I ≡ H − [λ̄H(R) + (1− λ̄)H(L)]

We assume that the only feasible sensors are ones for which I ≤ Ī , where the upper

bound Ī is assumed to be considerably less than ln 2 nats (i.e., one binary digit) per

signal.27

Substitution of the above definitions allows us to alternatively write

I = λ̄
∑
z

π(z|R) ln π(z|R) + (1− λ̄)
∑
z

π(z|L) ln π(z|L)−
∑
z

π(z) ln π(z)

=
∑
z

π(z)λ(z) [lnπ(z) + lnλ(z)− ln λ̄]

+
∑
z

π(z)(1− λ(z)) [lnπ(z) + ln(1− λ(z))− ln(1− λ̄)]−
∑
z

π(z) ln π(z)

=
∑
z

π(z)D(λ(z)||λ̄)

for the average rate of information transmission per use of the sensor, where

D(λ||λ̄) ≡ λ ln(λ/λ̄) + (1− λ) ln(1− λ/1− λ̄)

is the relative entropy of a distribution that assigns probability λ to the receipt of

signal R relative to one that assigns probability λ̄ to that outcome.28 We assume that

27The bound I ≤ ln 2 is satisfied by any binary signalling mechanism, including the (deterministic)

optimal reporting rule characterized above.
28For the properties of relative entropy as a measure of the distance of one probability distribution

from another, see, e.g., Cover and Thomas (2006), chaps. 2 and 11. This formulation makes it clear

that a limit on information flow makes it difficult to arrange for the sensor to produce L and R

signals with frequencies that differ systematically with the conditions under which the sensor is

operating.
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the set of feasible choice algorithms is constrained by an upper bound on the average

cumulative information flow through the sensor per trial, summing the information

transmitted each time the sensor is used. Thus the proposed information constraint

requires that the sensor be operated in a way that satisfies the bound I · E[T ] ≤ K,

for some finite value of K, or alternatively,∑
V

π(V )
∑
h∈D

p(h|V )D(λ(V, h)||λ̄) ≤ K, (2.6)

where λ̄ is given by (2.5).

Note furthermore that if λ̄ is treated as a separate design parameter (rather than

being defined by (2.5), then for any choice algorithm (implying values for the π(z)

and λ(z)), the value of λ̄ that minimizes the left-hand side of (2.6) is given by (2.5).

We can accordingly restate our problem as the choice of signal probabilities {λ(z)} for

each of the states that can possibly be reached, and a constant λ̄, so as to maximize

E[U ] subject to constraint (2.6). Alternatively, we can state the problem as the choice

of {λ(z)} and λ̄ to maximize a Lagrangian of the form L ≡ E[U ]− θI · E[T ], or

L =
∑
V

π(V )

{∑
c∈C

p∗(c|V )U(δ(c), V )− θ
∑
h∈D

p(h|V )D(λ(V, h)||λ̄)

}
, (2.7)

where θ is a non-negative Lagrange multiplier indicating the value of relaxing the

information constraint (2.6).

2.3 Optimal Evidence Accumulation Dynamics

We now characterize the signaling function that solves problem (2.7), for a given

value of the shadow cost of processing capacity θ > 0. We note that for any V , the

final term in (2.7) can be written in the form∑
h∈D

p(h|V )D(λ(V, h)||λ̄) =
∑
h∈D

∑
s∈S

p∗(hs|V ) ln(p∗(hs|V )/p(h|V )p̄(s)

=
∑
c∈C

varφ(p∗(c|V )) +

(
1− ρ
ρ

)∑
h∈D̄

ϕ(p∗(h|V )−
∑

h∈D,s∈S

p∗(hs|V ) ln p̄(s),

where we define p̄(R) ≡ λ̄, p̄(L) ≡ 1 − λ̄, and ϕ(p) ≡ p ln p for any 0 < p < 1, with

ϕ(0) ≡ ϕ(1) ≡ 0. Thus this term is a strictly convex function of the probabilities

{p∗(h|V )} and a strictly convex function of the probabilities {p̄(s)}. It follows that
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for any θ > 0, (2.7) is a strictly concave function of the probabilities {p∗(h|V )}
(implied by the probabilities {λ(z)}) and a strictly concave function of λ̄.

If for any probabilities {p∗(h|V )} defined over signal histories that are immediate

successors of histories h ∈ D, we let {p∗†(h|V )} be the probabilities that reverse the

roles of L and R (that is, p∗†(h|V ) ≡ p∗(h†|V ), where if h = LLRL, h† = RRLR, and

so on), then (2.7) can be written in the form

L =
∑
V

π(V )L(V )

where for each value of V , L(V ) is a function of the probabilities p∗(·|V ) and of λ̄

such that

L(V, p∗(·|V ), λ̄) = L(−V, p∗†(·| − V ), 1− λ̄).

Let us now assume further that the prior π over possible values of V is symmetric:

that is, the probability of a decision situation in which UR − UL = V is the same as

the probability of one in which UR − UL = −V, for any V . (This simply means that

the assignment of which of the options will be the “right” option on a given trial is

independent of the options to be compared.) It then follows that

L(p∗, λ̄) = L(p∗†, 1− λ̄),

if the Lagrangian is evaluated for an arbitrary signalling function σ (defined for all

possible values of V ) and for an arbitrary value of λ̄.

Then for any signalling function giving rise to probabilities {p∗(h|V )} (defined for

all V and for all h ∈ D), the reversed probabilities {p∗†(h|−V )} define an alternative

feasible signalling function, and the convex combination

p̄∗(h|V ) ≡ 1

2
p∗(h|V ) +

1

2
p∗†(h| − V )

defines yet another feasible signalling function. The strict concavity of L then implies

that

L(p̄∗, 1/2) ≥ 1

2
L(p∗, λ̄) +

1

2
L(p∗†, 1− λ̄) = L(p∗, λ̄),

where the inequality is strict unless p∗ = p∗† and λ̄ = 1/2. From this we can conclude

that the optimal value of λ̄ must be 1/2, and consider the problem of maximizing

(2.7) over choices of the {λ(z)}, taking the value λ̄ = 1/2 as given.
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It is now possible to consider the problem of choosing the {λ(V, h)} for a given

value of V so as to maximize the term L(V ) in the Lagrangian, independently of

the signalling function that is to be used in any other states. In particular, the

prior π over possible values of V plays no role in this problem. Thus we can derive

predictions about the probability of choosing one action over the other and about the

probability distribution of reaction times for alternative values of V , without requiring

any assumption about the prior distribution over possible values of V , apart from the

symmetry assumption just invoked.

Let us consider this problem for a particular value of V . Suppressing the index

V , our goal is to choose transition probabilities {λ(h)} for the finite histories h ∈ D
so as to maximize ∑

c∈C

p∗(c)U(δ(c))− θ
∑
h∈D

p(h)D(λ(h)), (2.8)

where we now adopt the shorthand D(λ) ≡ D(λ||1/2). This can be solved using

the method of dynamic programming. For any history h ∈ D, let W (h) denote the

maximum achievable value of the continuation objective∑
c∈Ch

p∗(c|h)U(δ(c))− θ
∑
h̃∈Dh

p(h̃|h)D(λ(h̃)),

where Ch ⊂ C is the set of codewords for which h is a prefix, and Dh ⊂ D is the

set consisting of h and the other non-terminating histories for which h is a prefix;

p∗(c|h) is the probability of reaching codeword c, conditional on having received the

initial signal history h; and p(h̃|h) is the probability of reaching h̃ and activating the

sensor, conditional on the initial history h. In this definition, the maximization is

over possible choices of {λ(h̃)} for the h̃ ∈ Dh. This value function must satisfy a

Bellman equation of the form

W (h) = max
λ(h)
{ρ[λ(h)W (hR) + (1− λ(h))W (hL)]− θD(λ(h))} ,

where for histories c ∈ C we define W (c) ≡ U(c).

One can furthermore observe that the set of continuation plans and the payoffs

associated with them are exactly the same in the case of all histories h ∈ D for which

n(h), the number of occurrences of the signal R minus the number of occurrences of

the signal L, has the same value n. Thus we can simply write W (n) for the common

value of W (h) in the case of all such histories, and write the Bellman equation in the
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form

W (n) = max
λ(n)
{ρ[λ(n)W (n+ 1) + (1− λ(n))W (n− 1)]− θD(λ(n))} (2.9)

for any −N < n < N. The value function (for any value V of the action R) is then

given by a sequence of values {W (n)} for −N ≤ n ≤ N that satisfy (2.9) for each

−N < n < N, together with the boundary conditions

W (−N) = −V, W (N) = V. (2.10)

The solution to the optimization problem in (2.9) is easily seen to be given by the

λ(n) corresponding to the log odds

ln
λ(n)

1− λ(n)
=
ρ

θ
[W (n+ 1)−W (n− 1)]. (2.11)

One observes that for any finite values {W (n)}, the solution to (2.11) will imply that

0 < λ(n) < 1 for all −N < n < N ; thus regardless of the value of V , and regardless of

the previous signal history, there will at each point in time be positive probabilities

of receiving either L or R as the next signal, so that the value of n will fluctuate

randomly, drifting up over some time intervals and down over others, as in the DDM.

Note that this is not an assumption, but rather a conclusion about the kind of process

that economizes on information: for our model assumes that it is feasible, at finite

cost, to arrange for the transition probability λ(h) to equal either 0 or 1, though it

turns out never to be efficient for the decision process to evolve so predictably.

Substituting the solution (2.11) into (2.9) we obtain

W (n) = θ ln

[
1

2
exp

(ρ
θ
W (n− 1)

)
+

1

2
exp

(ρ
θ
W (n+ 1)

)]
(2.12)

for each −N < n < N. The value function can then be characterized as the solution

to this nonlinear difference equation consistent with boundary conditions (2.10).

As with the DDM, the present model implies that the bias of this process toward

one of the absorbing barriers or the other depends on the sign and magnitude of V

(i.e., of the difference in value of the two options). Condition (2.11) implies that

the log odds are an increasing function of the gradient of the value function, and

the boundary conditions (2.10) imply that the average value of this gradient must

be proportional to V . However, this model implies that the log odds of obtaining a
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signal R as opposed to L will also depend on the current balance of the accumulated

evidence (i.e., the value of n at a given point in the process), and not only on the

value of V . As with the DDM, the decision dynamics can be described by a Markov

chain on the set of subjective states {−N,−N + 1, . . . , N − 1, N}, but the transition

law is no longer precisely a random walk with drift.

In the special case ρ = 1 (so that opportunities are expected to persist as long

as may be necessary for a choice to be made), the difference equation (2.12) has a

closed-form solution,

W (n) = θ[a+ ln(n+ b)], where a = ln
eV/θ − e−V/θ

2N
,

b

N
=
eV/θ + e−V/θ

eV/θ − e−V/θ
> 1,

if V > 0, or

W (n) = θ[a+ln(−b−n)], where a = ln
e−V/θ − eV/θ

2N
,

b

N
=
eV/θ + e−V/θ

eV/θ − e−V/θ
< −1,

if V < 0. (In the case that V = 0, the solution is simply W (n) = 0 for all n.) It then

follows from (2.11) that

λ(n) =
1

2
+

1

2(n+ b)
. (2.13)

It follows that for any value of n, λ(n) is a monotonically increasing function of

V/θ (approaching 0 as V/θ → −∞ and approaching 1 as V/θ → +∞). However,

the probability of receiving a signal R (and hence the average rate of drift of the

accumulated evidence) depends on the current value of n: for any V 6= 0, λ(n) is a

monotonically decreasing function of n.

Under the more realistic assumption that ρ < 1, a closed-form solution is unavail-

able, but the difference equation (2.12) can be solved numerically for each possible

specification of the boundary conditions. One finds in general that λ is a function of

the values of V/θ and n.

2.4 The Continuous-Time Limit

Suppose that we let the value of N become large, but shrink the length of time ∆

required for each additional use of the sensor in proportion to N−2, so that N2∆

is held constant as N is increased. Then if we let τ ≡ t∆ be the amount of clock

time that has passed after t uses of the sensor, the model approximates one in which

the rescaled state variable z ≡ ∆1/2n evolves with a continuous sample path as τ
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increases, The range over which this variable varies will be the interval [−B,B],

where the decision threshold B ≡ (N2∆)1/2 is independent of N .

Furthermore, over any time interval that is sufficiently small for z (and hence

the probability λ(z) of receiving a signal R on each use of the sensor) to change

little over the interval, the cumulative change in the value of z over the interval is

approximately the sum of a large number of independent draws of a bounded random

variable, so that the distribution approaches a Gaussian as N is made large. If for

any −B < z < B, the log odds ln(λ(z)/1−λ(z)) become small at the rate N−1 as N

is made large (as specified for example in (2.1)), then

µ(z) ≡ N

2B
ln

λ(z)

1− λ(z)
(2.14)

has a well-defined limit as N is made large, and the mean increment in z over a small

time interval will equal µ(z) times the length of the time interval, neglecting an error

of order N−1 in the estimate of the drift. Under the same assumption, the variance

of the increment in z will equal the length of the time interval,29 where we again

neglect an error of order N−1 in this estimate of the variance per unit time. Hence

in the limit of large enough N , the process approximates the trajectories of a Wiener

process

dzτ = µ(zτ )dτ + dWτ , (2.15)

where Wτ is a standard Brownian motion (with zero drift and a unit instantaneous

variance).

The continuous-time version of the DDM is then given by equation (2.15), in

which µ is a constant (i.e., a number independent of z) given by

µ =
α

2B
(UR − UL),

as a consequence of (2.1) and (2.14). This is the version of the DDM presented, for

example, in Fehr and Rangel, 2011. Note that the testable predictions of the model

about a given choice situation are entirely functions of two parameters, the value of

B (that is the same for all choice situations) and the value of α(UR − UL) for the

particular options available on this occasion.

29The normalization used in the definition of z has been chosen to imply this unit instantaneous

variance.
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In the case of the optimal information-constrained model (OICM), instead, the

drift will depend on the current value of z. Let us suppose that the arrival rate of

the event that forces an action is fixed per unit of time (rather than per use of the

sensor) as the time required for each use of the sensor shrinks, so that

δ ≡ (− ln ρ)/∆ > 0

is held constant as N increases. Then (2.11) implies that

µ(z) =
w′(z)

θ
(2.16)

for all −B < z < B, where w(z) ≡ W (∆−1/2z) expresses the value function in terms

of the rescaled state variable.

In this continuous-time limit, the Bellman equation (2.9) becomes

δw(z) = max
µ

{
w′(z)µ+

1

2
w′′(z)− θ

2
µ2

}
for all −B < z < B. The first-order condition for the inner problem is easily seen to

be (2.16), and substitution of this for µ(z) yields the differential equation

δw(z) =
1

2θ
w′(z)2 +

1

2
w′′(z)

as the continuous analog of (2.12) above. If we alternatively define the normalized

value function v(z) ≡ w(z)/θ, we can characterize it by the differential equation

2δv(z) = v′(z)2 + v′′(z) (2.17)

for all −B < z < B, together with the boundary conditions

v(−B) = −ν, v(B) = ν, (2.18)

where ν ≡ V/θ. We observe from (2.16) that

µ(z) = v′(z),

so that computation of the normalized value function suffices to determine the drift

of the process (2.15).

We observe from the form of the equations (2.17) and (2.18) that the solution

for the normalized value function (and hence for the optimal drift µ(z) at all points

24



in the interval −B < z < B) for any given decision problem depends only on the

values of the parameters B, δ, and ν. Accordingly, the predictions of the OICM with

regard to both the probability of choosing each of the two options and the probability

distribution of response times depend only on these three parameters. It follows

that in the large-N limit, it is only these parameters that can be identified from

observations of choice and reaction time; we should not expect to be able to identify

numerical values for N , ρ or ∆. Alternatively (as in the discussion of parameter

estimates below), we can arbitrarily fix a large value of N , and use the data to

identify the implied values of ρ,∆, and θ; but it should be understood that the

numerical values of ρ and ∆ obtained in this way are only meaningful in terms of the

values that they imply for δ and B. It should also be noted that arbitrarily fixing

an assumed value for N does not imply that one is making an assumption about the

distance between the decision thresholds, rather than determining this empirically;

for the value of B (which determines the distance between the thresholds, in units

of the instantaneous standard deviation of the Brownian motion) is not implied by a

given choice of N .

3 Comparison with Experimental Evidence

We turn now to a discussion of the degree to which the OICM succeeds as an expla-

nation of observed behavior.

3.1 Explaining Logistic Choice

The model can be used to predict the probability of choosing each of the two options,

as functions of the relative value of the two options to the DM. In using the model

to predict the outcomes that should be observed in experimental settings where the

experimenter allows the subject to take as much time as desired to decide between the

options, we must now consider the probability distribution of outcomes predicted by

the choice algorithm derived above, for a given value of V and under the assumption

that the opportunity to choose persists indefinitely, rather than a decision being

forced with probability 1− ρ after each additional use of the sensor.30

30This does not require that we solve the equations of the previous section under the assumption

ρ = 1. The value of ρ indicates the degree of persistence that has been typical of the environment to
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Suppose that the value of the opportunity presented on a particular occasion is

V (that is, that UR = V, UL = −V ), and that the opportunity persists until a choice

is made. Under this assumption, the probability that the algorithm will eventually

terminate in a choice of R, conditional upon the signal history received thus far, will

depend only on the quantity n by which the number of R signals exceeds the number

of L signals. Furthermore, this probability Λ(n) must satisfy

Λ(n) = λ(n)Λ(n+ 1) + (1− λ(n))Λ(n− 1) (3.1)

for all −N < n < N, together with the boundary conditions

Λ(−N) = 0, Λ(N) = 1, (3.2)

where {λ(n)} is the sequence determined in the way discussed above. (Here the

dependence of both λ(n) and Λ(n) on the value of V/θ is not made explicit.)

3.1.1 The Undiscounted Case

In the special case ρ = 1, the sequence {λ(n)} is given by (2.13), and (3.1) has a

closed-form solution,

Λ(n) =
b+N

2N

n+N

n+ b
,

so that the initial probability of an eventual choice of R is equal to

Λ(0) =
b+N

2b
=

e2V/θ

1 + e2V/θ
.

Thus in this case the model predicts a logistic relation between the difference in value

of the two options and the frequency with which they will each be chosen,

Prob(R) =
e(UR−UL)/θ

1 + e(UR−UL)/θ
. (3.3)

This kind of logistic relationship is very commonly fit to data on binary choices

(both from laboratory experiments and the field); if the difference in the values of

the two alternatives is assumed to be a linear function of some vector of measured

which the subject’s cognitive system has adapted, but this may differ from the degree of persistence

for the particular set of experiments for which we now wish to derive a probability distribution of

predicted outcomes.

26



characteristics, one obtains the familiar logistic regression model.31 The standard in-

terpretation given to this statistical specification is in terms of a random-utility model

(RUM), in which R is chosen over L if and only if UR + εR > UL + εL, where εL, εR

are two independent draws from an extreme value distribution of type I (McFad-

den, 1974). But while the RUM provides a possible justification for the econometric

practice, there is no obvious reason to expect that the additive random terms in

people’s valuations (even supposing that they vary randomly from each occasion of

choice to the next) should be drawn from this particular type of distribution, so that

there is little reason to expect logistic regressions to be correctly specified, under this

interpretation.

3.1.2 Comparison with the DDM

The DDM provides an alternative interpretation of logistic choice. Substitution of

(2.1) into (3.1) yields a difference equation with the solution

Λ(n) =
eα(UR−UL) − e−α(UR−UL)n/N

eα(UR−UL) − e−α(UR−UL)
,

so that

Λ(0) =
eα(UR−UL)

1 + eα(UR−UL)
, (3.4)

again a logistic function of UR − UL.32 This makes the logistic outcome depend on

assumptions that seem less arbitrary; but it still depends on the particular functional

form (2.1) for the relation between the relative value of the two options and the drift

of the diffusion process, which is not motivated by any considerations deeper than

analytical convenience.

The OICM instead provides an explanation for the empirical fit of a logistic rela-

tionship (or something close to it) that does not depend on the a priori assumption of

either a special probability distribution or any special functional forms (apart from

the information-theoretic measure of the information required by different sensors).

The exact logistic form (3.3) is predicted only in the case that ρ = 1; however, even in

31For a variety of applications, see Cramer (2003).
32Thus we observe that the parameter θ of the OICM has the same consequences for the predicted

relationship between relative value and choice probabilities as the parameter α−1 in the DDM.

Note however that the decision dynamics implied by the two models are not equivalent under this

identification: for example, the predicted values of Λ(n) are not the same, except when n = 0.
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the case of a value of ρ slightly less than 1 (argued below to be the empirically realistic

case), the predicted relationship is quite similar to a logistic curve, as illustrated by

Figure 1(a) below.

Comparison of (3.4) with (3.3) shows that the parameter θ of the OICM has the

same consequences for the predicted relationship between relative value and choice

probabilities as the parameter α−1 in the DDM. Nonetheless, the decision dynamics

implied by the two models are not equivalent under this identification; for example,

the predicted values of Λ(n) are not the same, except when n = 0. The differences

between the implications of the two models are particularly evident when we consider

what they imply about the time that should be required to make a decision.

3.2 Explaining Variation in Response Times

A key argument in favor of the DDM (or related evidence-accumulation models of

decisionmaking) is the fact that it can explain not only the way choice probability

varies with the alternatives presented, but also the way that the average time required

for subjects to announce their decision varies with these alternatives. We now consider

the predictions of the OICM in this regard as well.

At any stage of the decision procedure, the expected number of additional opera-

tions of the sensor that will be required in order for a decision to be made will depend

only on the current value of n. Let this expected value be denoted T (n), where we

suppress the dependence on the value of V . It is easy to see that the quantity T (n)

must satisfy a recursion of the form

T (n) = λ(n)T (n+ 1) + (1− λ(n))T (n− 1) (3.5)

for all −N < n < N, together with the boundary conditions

T (−N) = T (N) = 0, (3.6)

where {λ(n)} is the sequence indicating the probability of a signal R (conditional

on the given value of V ) conditional on being in decoder state n. This recursive

formulation implies in the case of both the DDM and the OICM; only the sequences

{λ(n)} are different for the two models, as explained above.

In the case of the DDM, λ(n) = λ for all n, where the value of λ depends on V

through (2.1). In this case, (3.5) becomes a difference equation with a closed-form
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solution,

T (n) =
(N + n)(1− λ)2N + (N − n)λ2N − 2N(1− λ)N+nλN−n

[λ− (1− λ)][λ2N − (1− λ)2N ]
.

The expected number of uses of the sensor required for a decision, when the problem

is initially presented (and thus before any evidence has been accumulated), is thus

given by

T (0) =
N [λN − (1− λ)N ]

[λ− (1− λ)] [λN + (1− λ)N ]
. (3.7)

One observes that T (0) is an increasing function of λ for all 0 < λ < 1/2, and

decreasing for all 1/2 < λ < 1. (The function is also symmetric, in the sense that it

takes the same value for λ and for 1 − λ, for any λ. Since (2.1) implies that λ is an

increasing function of V , with λ(−V ) = 1−λ(V ) for all V and λ = 1/2 when V = 0,

it follows that T (0) is a monotonically decreasing function of |V |, so that the mean

response time is shorter the greater the difference in value of the two alternatives.

This prediction agrees with what is observed experimentally, as illustrated by panel

(b) of Figure 1 below.

3.2.1 The OICM in the Undiscounted Case

In the special case ρ = 1, the sequence {λ(n)} for the OICM is instead given by (2.13).

Substituting this into (3.5), we obtain a difference equation that has a closed-form

solution,

T (n) =
b+ n

3

b+ n
(N2 − n2). (3.8)

The expected number of uses of the sensor required for a decision when the problem

is initially presented is then predicted to be

T (0) = N2.

The way in which this scales with the distance of the thresholds ±N required

for decision is the same as in the DDM.33 However, the result is independent of the

value of b, and hence of the value of V for a given decision problem. Thus this model

predicts (contrary to the experimental evidence shown in Figure 1(b) below) that the

33Note that (3.7) implies that the mean response time when V = 0 is also equal to N2 in the

DDM, though decisions are faster if V 6= 0.
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mean decision time should be the same for all values of V . The undiscounted version

of the OICM is much less successful than the DDM in explaining this aspect of the

experimental data.

Allowing for values ρ < 1 makes a considerable difference for this prediction of

the model, though, while affecting the predictions about how choice probabilities vary

with the relative value of the two options to a much smaller extent. As analytical

results are unavailable in the more general case, we provide a numerical illustration

of the effects of allowing ρ < 1. We consider the degree to which the model can fit a

particular set of experimental data, from one of the leading studies finding support for

the DDM as an account of the mental processing underlying observed choice behavior,

namely that of Krajbich et al. (2010).

3.2.2 Relative Value and Response Times in Krajbich et al. (2010)

Krajbich et al. ask subjects to rate how much they would like to eat each of 70

possible food items at the end of the experiment, on an integer scale between -10 and

10. (These rankings provide a measure of the value of each of the possible outcomes

to the individual subject, independent of any comparison between the goods and any

particular alternative.) In a second stage of the experiment, a subject is then asked

to choose between pairs of food items that have previously been ranked between 0

and 10; the experimenters record both the subject’s choice in the case of each pair

and the time taken to decide. After making 100 such decisions, the subject is allowed

to actually eat the item chosen in one of the binary choices, selected at random.

Figure 1 plots certain summary statistics of the choices of 39 subjects, each of

whom made 100 binary choices. In each panel, trials are grouped according to the

extent to which the right option was ranked higher than the left option by that

particular subject; thus a “relative value of R” equal to 3 might mean that the right

option was ranked 8 by that subject while the left option was ranked 5, or that the

right option was ranked 3 while the left option was ranked 0. Panel (a) shows the

fraction of trials on which the option R was chosen, as a function of the relative rank

of option R; panel (b) shows the average time taken to decide (in milliseconds), again

as a function of the relative value. (In each panel, the height of the bar indicates the

value of the statistic for a given bin, while the width of the bar is proportional to the
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Figure 1: Experimental data and fitted theoretical predictions for (a) probability of

choosing R and (b) mean time required to make a decision, each plotted as a function

of the amount by which the subject’s reported valuation of option R exceeds that

of option L. Bars plot the experimental data of Krajbich et al. (2010), circles the

predictions of the DDM, and triangles the predictions of the present model.

number of trials assigned to that bin.34)

In the same figure, the open circles indicate the predictions of the DDM for these

two statistics, if the relative reward UR − UL is assumed to be proportional to the

subject’s reported relative ranking of the two options, with the same constant of

proportionality for all subjects, and if the other parameters of the model are assumed

to be identical for all subjects as well. The assumption that UR−UL is proportional to

the relative rank amounts to an assumption that each subject’s utility from consuming

34There are also a small number of trials for which the relative rank has an absolute value greater

than five. But because the number of trials in these bins are small, and the estimated statistics are

correspondingly inaccurate, these bins have not been shown in the figures, though all data are used

in the model evaluation exercise below. The truncation of the figures follows Krajbich et al. (2010).
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the various food items is a roughly linear function of the rank assigned to them on

the scale from -10 to 10. Let the slope of this relationship be called the subject’s

“marginal utility of rank,” mur. Since the model predictions depend only on the

ratio (UR − UL)/θ for each pair of goods (or α(UR − UL) in the notation used above

for the DDM), a crucial additional assumption of this test of the model is that the

ratio mur/θ (or α ·mur) is the same (or sufficiently similar) for all subjects.35

In the case of the DDM, it follows from our discussion above of the large-N limit

that there are two parameters that should be identifiable from data on choice and

response times, the parameter α introduced in equation (2.1) — or more precisely,

the value of αmur36 — and the parameter B ≡ ∆1/2N introduced in section 2.4.

Alternatively, since N is not identified (any sufficiently large value should lead to

an equivalent value), we may arbitrarily fix a value for N (set equal to 100 in the

numerical work reported here37) and then identify the values of α and ∆ that best fit

the data. In the fit shown in Figure 1(b), we also introduce a third free parameter, a

constant intercept A in the prediction

Response Time = A+ T∆

for measured response time, where T is the random number of times that the sen-

sor is employed in making the decision. The allowance for an intercept reflects an

assumption that the observed response time may include an additional time interval

(required to engage the choice mechanism and/or to communicate the choice once it

has been made) that is independent of the choice options presented on a given trial,

in addition to the time required to execute the choice algorithm modeled above.38) In

35In the case of the OICM, it is a prediction of the model (assuming that each subject’s classifica-

tion system has been adapted to the same frequency distribution of choice situations, and that each

subject’s system is subject to the same information constraint Ī in nats per millisecond) that the

Lagrange multiplier θ for each subject will be proportional to that subject’s mur. In the case of the

DDM, there is no underlying theory of the determinants of the parameter α, so that it would be a

coincidence for this to be true, unless we assume that both mur and α are the same across subjects.
36We call this parameter α, measuring utility in units of the numerical rank supplied by the

subjects, so that mur is assumed to equal 1. This is without loss of generality, since only α ·mur
is identified.

37We verify numerically that choosing N = 50 or 200 instead makes only a negligible difference

for the reported results.
38This is standard in empirical tests of the DDM; see, for example, the curve-fitting exercise shown

in Figure 1 of Shadlen et al. (2007), in which a 3-parameter version of the DDM is fit to two curves
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the figure, these parameters have been chosen to minimize a weighted sum of squared

prediction errors.39

The solid triangles instead indicate the predictions of the OICM, if the parameters

of the model are chosen to minimize the same weighted-least-squares criterion. In

this case, there are again three parameters that are adjusted to fit the data. It follows

from our discussion above that in the large-N limit, the only identified parameters of

this model are θ (actually, θ/mur), δ and B. Alternatively, we can fix an arbitrary

large value for N (again, N = 100 in the results reported here), and then determine

the best-fitting values for θ, ρ and ∆.40 One observes that with the same (fairly small)

number of free parameters, the OICM does a reasonably similar job of accounting for

these statistics; in panel (a), the weighted sum of squared errors is slightly smaller for

the OICM than for the DDM, though the errors are somewhat larger for the OICM

than for the DDM in panel (b).

The predictions of the two models are not identical, and one of the more note-

worthy differences is shown in panel (a) of Figure 2. Here the mean response time is

plotted not as a function of the relative value assigned to the R option, but rather as

a function of the relative value of whichever option was actually chosen by the subject

in that particular trial. The predictions of the DDM are the same in Figure 2(a) as

in Figure 1(b): the model predicts that in the case of two options that differ in value

by a given amount, the mean response time is the same in those cases in which the

lower-valued option is chosen as in those in which the higher-valued option is cho-

sen. The data, instead, show that “correct” choices (cases in which the higher-valued

option is chosen) are on average made more quickly than “incorrect” choices, for a

given degree of difficulty of the choice (based on the absolute difference in rankings).

This is in fact a common feature of experimental data on response times in binary

perceptual classification tasks as well, and is a famous empirical failing of the DDM

of the kind shown in panels (a) and (b) of Figure 1.
39See the appendix for a precise statement of the criterion that is minimized, and the best-fitting

parameter values.
40No intercept A is allowed in the linear relationship between T and the measured response time in

this case. In fact, allowing for a positive intercept would not reduce the sum of squared prediction

errors in this case; allowing for a negative intercept would, but would have no interpretation in

terms of the theoretical model. The best-fitting values of these parameters are again indicated in

the appendix.
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Figure 2: Empirical data and fitted theoretical predictions for (a) mean response

time and (b) standard deviation of response times across trials, each now plotted as a

function of the amount by which the subject’s reported valuation of the option chosen

exceeds that of the option not chosen. Experimental data are again from Krajbich et

al. (2010).

(Luce, 1986).41 The OICM instead correctly predicts that correct choices should be

41According to Shadlen and Kiani (2013, Box 2), this “apparent refutation” led many mathemat-

ical psychologists to abandon the DDM as an explanation of stochastic choice and reaction times,

until the more recent discovery of neurophysiological evidence for a mechanism of a similar form.

A number of variations on the basic DDM presented here have been proposed in the literature that

can allow for shorter average response time in the case of correct responses (see, e.g., Link and

Heath, 1975; Ratcliff and Rouder, 1998; or Ditterich, 2006), though often no motivation is given for

these more general (purely descriptive) hypotheses. Drugowitsch et al. (2012) and Fudenberg et al.

(2015) show that “correct” choices are also made more quickly on average under optimal Bayesian

decisionmaking, when the random evidence at each stage is the kind assumed in the DDM but the

stopping criterion is optimal, if a large number of different relative values for the two options are

possible ex ante. The latter models can also be viewed as generalizations of the classic DDM, as

they differ only in proposing a more sophisticated stopping criterion.
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made more quickly, and by roughly the amount by which the mean response times are

different in the data.42 This prediction results from the way in which the probability

of receiving an R signal varies with the net accumulated evidence in favor of the R

choice in the OICM; a departure of this sort from the assumption of a constant-drift

diffusion process thus has some empirical plausibility.

4 Comparison with the Basic Rational Inattention

Model

The explanation given by the OICM for the stochasticity of discrete choice, and even

for logistic choice (or at least a nearly-logistic functional relationship) could also be

obtained more simply from the theory of “rational inattention” (RI) as formulated by

Sims (2003, 2010), without any need to discuss the specific class of dynamic decision

processes proposed here.43 Sims postulates that decisions must be based, as in the

model proposed here, on a signal s that is a stochastic function of the true state

x (that determines the reward U(a, x) from alternative possible actions a); but he

supposes that the set S of possible signals, the function σ : X → ∆(S) describing

the conditional probability of different signals being received in any given state, and

the decision rule δ : S → A are all chosen so as to maximize E[U ], subject only to an

upper bound on the mutual information between x and s.44

One can easily show that the maximum achievable value of E[U ] is attained in the

case of a signal that simply indicates which action to take. In this case, the informa-

tion structure is specified by a function λ : X → [0, 1] indicating the probability of

42The model prediction differs substantially from the same mean response time in the data only

in the case when the relative value of the chosen option equals -5. There are, however, only a few

trials in this bin (as shown by the narrowness of the bar), since subjects seldom chose the less-valued

option in the case of such an extreme difference, and the response times were quite variable across

the trials in this bin (as shown in panel (b)), so that the mean response time for this case should be

assigned a wide confidence interval.
43See Woodford (2008), Cheremukhin et al. (2011), and Matějka and McKay (2015) for previous

discussions of this implication of RI. Ortega and Braun (2013) also derive logistic choice from a

theory that is essentially equivalent to RI.
44Here we use the notation s to refer to the complete set of signals on the basis of which the

decision must be made, rather than to the signal obtained from a single use of the “sensor,” as in

the exposition above.
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choosing R in any state, and the Lagrangian for the optimal information structure

problem is

L =
∑
x

π(x)
{

(1− λ(x))UL(x) + λ(x)UR(x)− θD(λ(x)||λ̄)
}
,

where λ̄ ≡
∑

x π(x)λ(x) is the average frequency of occurrence of the signal that

results in the choice of R. This in turn is maximized by a function λ(x) given by the

right-hand side of (3.3).

This might seem a simpler explanation for the empirical success of the logistic

specification. However, it fails to provide an explanation of the data on response

times, to which we turn next. One might think that RI simply makes no prediction

about response times, and so is neither confirmed nor disconfirmed by such evidence,

but this is not true. If an algorithm obtains no information about the state x other

than a coarse signal s, then however the algorithm operates, then joint distribution

of both action choices a and stopping times T must depend only on the information

revealed by s. Hence to the extent that response time is informative about the

decision problem faced on a given occasion, the algorithm that produces the decision

in that period of time must have access to (at least) the information about the state

that can be inferred from the time taken for the algorithm to stop.

If we treat the pair (a, T ) as the output of the choice algorithm, and ask what

stochastic algorithm will maximize E[U ] subject to an upper bound on the mutual

information between the vector (a, T ) and the state x, under the assumption that

the reward depends only on the initial state x and the action chosen, we obtain a

simple prediction: (i) the probability of choosing option R in any state x should be

given by (3.3), for some Lagrange multiplier θ ≥ 0 on the information constraint; and

(ii) conditional on the action a that is chosen, the response time T should convey no

additional information about the state x. This requires that the probability distribu-

tion of response times on those trials in which R is chosen should be independent of

x, and similarly for the distribution of response times when L is chosen. Hence the

average response time would have to be an affine transformation of λ(x),

E[T ](x) = (1− λ(x))TL + λ(x)TR,

where Ta is the mean response time conditional on action a.45 But this is clearly

45The RI hypothesis would provide no reason for TL to differ from TR, but it would not preclude

such an asymmetry, either.
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not consistent with a comparison between the two panels of Figure 1. If we add the

additional postulate (roughly consistent with the data shown in Figure 1(b)) that the

average response time for a given choice is independent of which option is presented

as the left option as opposed to the right option, then TL would have to equal TR,

and RI would require average response time to be completely independent of x.

Even without this last assumption, if the frequency distribution of value differences

UR−UL is symmetric around zero, the bins in Figure 2 should each contain as many

cases in which R is chosen as cases in which L is chosen, and so the distribution of

response times for trials in each bin should be the same (an equally weighted mixture

of the distribution for trials in which R is chosen and the distribution for trials in

which L is chosen). It follows that in Figure 2(a), the mean response time should be

the same for each relative value. But again, this is clearly not the case.

These predictions of RI are obtained under the assumption that response time

has no consequences for reward. If instead we assume, as in our derivation of the

OICM, that the choice algorithm is optimized for a prior under which choice may be

forced with a certain probability if the decision is delayed, delay influences expected

reward. In this case, however, in the absence of any constraints other than the

information constraint, it would be optimal to always decide immediately (or in the

minimum feasible time). Then average response time should be independent of the

values of both of the options presented; but this is again inconsistent with both

Figures 1(b) and 2(a). Hence an additional constraint on possible algorithms, beyond

the information constraint alone, is necessary in order to account simultaneously for

choice behavior and response times. The OICM represents a relatively simple example

of such an additional constraint.

This does not mean, however, that our (still very simple) model successfully ex-

plains all aspects of observed response times with only three parameters. For example,

as shown in panel (b) of Figure 2, when the parameters of the model are chosen to

fit the data on choice frequencies and mean response times, it generally over-predicts

the variability of response times. On the other hand, this is also a problem for the

classic DDM as well.46 Quite possibly it results from the fact that the version of

46Figure 2(b) is even more problematic for the RI theory. As explained above, RI would imply

that the probability distribution of response times should be the same for each of the bins in Figure

2, so that along with the mean response time (discussed above), the variance of the response time

should be the same in each bin; but this is not at all what Figure 2(b) shows.
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the OICM analyzed here, like the DDM, assumes that the choice algorithm takes no

account of the passage of time, but only the net accumulation of evidence in favor of

one option over the other.

This feature of the OICM results from our adoption of the simple form of “de-

coder” assumed by the DDM, rather than any intrinsic consequence of the hypothesis

of optimal information-constrained classification. Drugowitsch et al. (2012) and Fu-

denberg et al. (2015) consider instead algorithms in which the threshold for a decision

decreases with the passage of time, making very long response times less likely than

in the models analyzed here, and show that this is a property of an optimal stop-

ping criterion if, as in the DDM, one assumes an evidence flow given a Brownian

motion with a constant drift that is exogenously specified as a linear function of the

value difference UR −UL. Even in a model with optimal endogenous variation in the

nature of the evidence sampled over the course of the decision process, as allowed

for here, such time-dependence in the stopping criterion may well be optimal.47 It

will be interesting to consider, in future work, whether a more sophisticated form of

decoder might be both more fully in conformity with the hypothesis of economizing

on information-processing capacity and more consistent with empirical evidence.

47In a model of endogenous information sampling related to the one proposed here, Hébert and

Woodford (2016) show that the optimal stopping criterion should depend on the posterior reached

after the history of signals received to that point; but this posterior will generally not be a function

of a single real-valued summary statistic, such as the cumulative excess of R signals over L signals, so

that there is no reason to expect the optimal stopping criterion to be a function of a single summary

statistic.
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A Appendix: Numerical Parameter Values

Here we provide additional details of the parameters that are used in the numerical
predictions shown in Figures 1 and 2. In the case of both the DDM and the OICM,
parameters are chosen to minimize a weighted sum of prediction errors,

N−1
tot

∑
j

Nj(aj − âj)2 +
1

2
N−1
tot

∑
j

Nj(bj − b̂j)2 1

2
N−1
tot

∑
j

Ñj(cj − ĉj)2, (A.1)

taking into account the model predictions for the quantities plotted in Figures 1(a),
1(b), and 2(a). (In focusing on the model predictions for choice frequencies and mean
reaction times, we follow much of the literature on the empirical support for the
DDM; see for example the plots in Shadlen et al. (2007) and Krajbich et al. (2010),
focusing on the same statistics as in Figures 1(a) and 1(b) here.)

In this expression, for each integer 10 ≤ j ≤ 10, Nj is the number of trials on
which the subject’s ranking of the R option exceeds the ranking of the L option by
j, and Ñj is the number of trials on which the ranking of the option that is chosen
exceeds the ranking of the other option by j. Ntot is the total number of trials
(
∑

j Nj =
∑

j Ñj = Ntot). Note that in computing (A.1), we sum over all of the bins
−10 ≤ j ≤ 10 for each of the two ways of classifying the data, and not just the bins
−5 ≤ j ≤ 5 shown in Figures 1 and 2. (Most of the data fall in the bins −5 ≤ j ≤ 5,
however, and given the weights in the goodness-of-fit criterion, these bins are largely
responsible for the conclusions about the best-fitting parameter values. This is why
only the central bins are shown in the figures.)

The quantities aj, bj and cj are the quantities plotted in Figures 1(a), 1(b) and
2(a), respectively, while the corresponding hatted variables are the predictions of the
model for these same quantities. Thus the model parameters are chosen to minimize
a weighted sum of squared prediction errors, where the weights applied to the squared
prediction errors for each bin are proportional to the number of trials in that bin. The
factors (1, 1/2, 1/2) that pre-multiply the three terms are chosen so as to put equal
weight on fitting the average frequency of R choices and on fitting average response
times; and then, with regard to the goal of fitting the evidence on average response
times, putting equal weight on fitting the evidence in Figure 1(b) and fitting the
evidence in Figure 2(a).

The quantity aj is the fraction of the trials on which the relative rank is j in which
the subject chose R; it varies over a theoretical range from 0 to 1. The quantities bj
and cj are instead mean response times in milliseconds, divided by 1600, so that the
range of variation in these variables is of a similar order of magnitude to the range of
variation in the variable aj.

In the case of both models, the value N = 100 is fixed arbitrarily, as discussed
in the text. In the case of the DDM, the parameters α,∆, and A are then chosen to
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Table 1: Parameter values used to fit the experimental data, for each of the two
models.

θ (α−1) ρ ∆ (msec) A (msec)
DDM 0.76 — 0.19 578
OICM 1.04 0.9996 0.25 0

Table 2: Goodness-of-fit statistics, for each of the two models.

〈(a− â)2〉 1
2
〈(b− b̂)2〉 1

2
〈(c− ĉ)2〉 Loss

DDM 0.0019369 0.0033134 0.0092264 0.014477
OICM 0.0015782 0.0048181 0.0059117 0.012308

minimize the criterion (A.1); in the case of the OICM, the parameters θ, ρ, and ∆
are chosen to minimize the same criterion, fixing A = 0 in this case. The best-fitting
parameter values for each model are reported in Table 1.

The minimized values of the criterion (A.1) in each case are reported in the final
column of Table 2. Table 2 also reports the values of each of the three terms in (A.1)
separately, in the first three columns of the table, evaluated at the parameter values
reported in Table 1. (Thus the final column in Table 2 is the sum of the other three
columns.) On this criterion, the OICM fits somewhat better overall; but admittedly,
such a conclusion is sensitive to the relative weights chosen for the different parts of
the goodness-of-fit criterion.

The best-fitting parameterizations of the two models imply fairly similar dynam-
ics. Apart from the similarity of the predictions for the the statistics plotted in the
two panels of Figure 1, one observes from Table 1 that the parameter indicating the
average sensitivity of the sensor log odds to variations in the value gradient (θ in
the case of the OICM, or α−1 in the case of the DDM) is of similar magnitude in
the two cases. The best-fitting value of ∆ is similar in magnitude in both cases as
well; this means that the implied value of B (the distance to one of the decision
barriers, in units of the instantaneous standard deviation of the diffusion process in
the continuous-time limiting model) is similar for the two models.

The modest differences in the best-fitting numerical parameter values do point to
some differences in the dynamics implied by the two models, however. The fact that
the best-fitting θ for the OICM is larger than α−1 for the DDM accounts for the fact
that the predicted curve in Figure 1(a) is slightly steeper for the DDM. In fact (as
shown by the first column of Table 2), the fit of the OICM to Figure 1(a) is slightly

40



better than that of the DDM. This indicates that in the case of the DDM, there is
more tension between the value of the sensitivity parameter α needed to fit the choice
frequency data and the value that allows the model to better fit the data on average
response times.

The best-fitting value of ∆ is also about 25 percent shorter in the case of the DDM
than that used to fit the OICM. This means that the DDM is only able to account
as well as the OICM for the average response time by assuming a substantial fixed
time requirement A (a value that accounts for more than a quarter of the average
response time), in addition to the time required for the stochastic algorithm to reach
a decision threshold. Thus in the case of the DDM, there is a tension between the
value of ∆ needed to account for the average response time and the value needed
to account for the difference in response times between “easy” and “hard” choices,
that is minimized through the introduction of an additional free parameter, A, while
this is not needed in the case of the OICM. (On the other hand, the OICM has a
free parameter, ρ, with no analog in the case of the DDM, and this parameter is also
crucial for allowing the model to match the observed difference in average response
times between “easy” and “hard” choices.)
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