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Abstract
This paper considers the appropriate stabilization objectives for monetary

policy in a microfounded model with staggered price-setting. Rotemberg and
Woodford (1997) and Woodford (2002) have shown that under certain con-
ditions, a local approximation to the expected utility of the representative
household in a model of this kind is related inversely to the expected dis-
counted value of a conventional quadratic loss function, in which each period’s
loss is a weighted average of squared deviations of inflation and an output gap
measure from their optimal values (zero). However, those derivations rely on
an assumption of the existence of an output or employment subsidy that off-
sets the distortion due to the market power of monopolistically-competitive
price-setters, so that the steady state under a zero-inflation policy involves an
efficient level of output. Here we show how to dispense with this unappealing
assumption, so that a valid linear-quadratic approximation to the optimal pol-
icy problem is possible even when the steady state is distorted to an arbitrary
extent (allowing for tax distortions as well as market power), and when, as a
consequence, it is necessary to take account of the effects of stabilization policy
on the average level of output.

We again obtain a welfare-theoretic loss function that involves both inflation
and an appropriately defined output gap, though the degree of distortion of the
steady state affects both the weights on the two stabilization objectives and
the definition of the welfare-relevant output gap. In the light of these results,
we reconsider the conditions under which complete price stability is optimal,
and find that they are more restrictive in the case of a distorted steady state.
We also consider the conditions under which pure randomization of monetary
policy can be welfare-improving, and find that this is possible in the case of
a sufficiently distorted steady state, though the parameter values required are
probably not empirically realistic.
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and the National Science Foundation for research support through a grant to the NBER.



According to a common conception of the goals of monetary stabilization policy,

it is appropriate for the monetary authority to aim to stabilize both some measure

of inflation and some measure of real activity relative to potential. This is often

represented by supposing that the authority should seek to minimize the expected

discounted value of a quadratic loss function, in which each period’s loss consists of

a weighted average of the square of the inflation rate and the square of the “output

gap.” It is furthermore typically argued that the two stabilization goals are not fully

compatible with one another, owing to the occurrence of “cost-push shocks,” which

prevent a zero output gap from being consistent with zero inflation. The problem of

finding an optimal tradeoff between the two goals is then non-trivial.1

This familiar framework raises a number of questions, however. Most obvious is

the question of how to define the “output gap” that policy should seek to stabilize.

Should this be understood to mean output relative to some smooth trend, or should

the target output level vary in response to real disturbances of various sorts? A

closely related question is the definition of the “cost-push shocks”: how should these

be identified in practice, and how often do disturbances of this kind actually occur?

And even supposing that we know how to identify the output gap and the cost-push

disturbances, what relative weight should be placed on output-gap stabilization as

opposed to inflation stabilization?

Here we propose to answer such questions on welfare-theoretic grounds. The

ultimate aim of monetary policy, in our view, should be the maximization of the

expected utility of households. We show, however (following a method introduced by

Rotemberg and Woodford, 1997, and further expounded in Woodford, 2002; 2003b,

chap. 6), that it is possible to derive a quadratic approximation to the expected

utility of the representative household that takes the form of a discounted quadratic

loss function of the kind assumed in the traditional literature on monetary policy

evaluation. In the case that the exogenous disturbances are sufficiently small in

amplitude, the best policy (in terms of expected utility) will also be the one that

minimizes the discounted quadratic loss function. We thus obtain precise answers to

the question of what terms should appear in a quadratic loss function, and with which

relative weights, that depend on the specification of one’s model of the monetary

transmission mechanism.2

1See, e.g., Clarida et al. (1999) and Walsh (2003, chaps. 8, 11) for a number of analyses in this
vein.

2For examples of the way in which alternative model specifications lead to alternative welfare-
theoretic loss functions, see Woodford (2003b, chap. 6) and Giannoni and Woodford (2005).
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An important limitation of the method introduced by Rotemberg and Woodford

(1997) is that it requires that the zero-inflation steady state of one’s model involve an

efficient level of output.3 (They imagine a model in which this is true by assuming the

existence of an output subsidy that offsets the distortion resulting from the market

power of monopolistically competitive suppliers, though this is obviously not liter-

ally true in actual economies.) For if one were instead to consider the more realistic

case of an economy in which steady-state output is inefficiently low, one would find

that expected utility would depend on the expected level of output. An estimate of

expected utility that is accurate to second order would then require a solution for

output (or at any rate, for the expected discounted level of output) that is accurate

to second order in the amplitude of the exogenous disturbances. A log-linear approx-

imation to the structural equations of one’s model will then not suffice to allow one to

determine the evolution of output under one policy or another to a sufficient degree

of accuracy. As a consequence, a linear-quadratic methodology — in which a linear

policy rule is derived so as to minimize a quadratic approximation to the true welfare

objective subject to linear constraints that are first-order approximations to the true

structural equations — will not generally yield a correct linear approximation to the

optimal policy rule.4

Here we show how the method of Rotemberg and Woodford can be extended

to deal with the case in which the steady-state level of output is inefficient (owing

to the existence of distorting taxes on sales revenues or labor income, in addition

to the distortions created by market power). Our approach involves computation

of a second-order approximation to the model structural relations (specifically, to

the aggregate-supply relation in the present application), and using this to solve for

the expected discounted value of output as a function of purely quadratic terms.

This solution can then be used to substitute for the terms proportional to expected

discounted output in the quadratic approximation to expected utility. In this way,

we obtain an approximation to expected utility — that holds regardless of the policy

contemplated (as long as it involves inflation that is not too extreme) — and that is

3Strictly speaking, it is not essential to the method that zero be the inflation rate that leads to
the efficient level of output; it is only necessary that there be some such steady state, and that the
policies that one intends to compare all be close enough to being consistent with that steady state.

4See Woodford (2003b, chap. 6) and Benigno and Woodford (2005) for discussion of the condi-
tions required for validity of an LQ approach.
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purely quadratic, in the sense of lacking any linear terms. This alternative quadratic

loss function can then be evaluated to second order using an approximate solution

for the endogenous variables of one’s model that is accurate only to first order. One

is then able to compute a linear approximation to optimal policy using a simple

linear-quadratic methodology.

Our proposal to substitute purely quadratic terms for the discounted linear terms

in the Taylor approximation to expected utility builds upon an idea of Sutherland

(2002), who showed how it was possible to take account of the effects of macroeco-

nomic volatility on the average levels of variables in welfare calculations for a model

with Calvo pricing like the baseline model considered here. Sutherland’s crucial in-

sight was that it is not necessary to compute a complete second-order solution for

the evolution of the endogenous variables under each of the policies that one wishes

to consider in order to evaluate the discounted linear terms needed for the welfare

calculation. Sutherland’s approach, however, still requires that one restrict attention

to a particular parametric family of policy rules before computing the second-order

approximations that are used to substitute for the discounted linear terms in the

welfare criterion. Instead, we show that one can substitute out the linear terms using

only a second-order approximation to the structural equations; one thus obtains a

welfare criterion that applies to arbitrary policies.5

An alternative way of attaining a welfare measure that is accurate to second or-

der even in the case of a distorted steady state, that has recently become popular, is

to solve for a second-order approximation to the complete evolution of the endoge-

nous variables under any given policy rule, and then use this solution to evaluate a

quadratic approximation to expected utility (e.g., Kim et al., 2002). However, the

requirement that a system of quadratic expectational difference equations be solved

for each policy rule that is contemplated is much more computationally demanding

than the implementation of our LQ methodology. For we are required to consider the

second-order approximation to our structural equations only once — when deriving

the appropriate quadratic loss function, a calculation undertaken in this paper —

after which the evaluation of individual policies requires only that one solve a system

of linear equations. In addition, the method illustrated by Kim et al. requires that

5It might seem fortuitous that we are able to do this in the present case, but Benigno and
Woodford (2005) shows that substitutions of this kind can be used quite generally to obtain a
purely quadratic loss function.
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one restrict one’s attention to a particular parametric family of policy rules, since

the system of equations that is solved to second order must include a specification of

the policy rule. Our method, by contrast, allows us to determine what variables it is

desirable for policy to depend on without having to prejudge that issue.

Yet another approach that allows a correct calculation of a linear approximation

to the optimal policy rule even in the case of a distorted steady state is to compute

first-order conditions that characterize optimal policy in the exact model (i.e., with-

out approximating either the welfare measure or the structural equations), and then

log-linearize these optimality conditions in order to obtain an approximate charac-

terization of optimal policy (e.g., King and Wolman, 1999; Khan et al., 2003). A

disadvantage of this approach is that it is only suitable for computing the optimal

policy; as we discuss in section 4, our quadratic approximate welfare measure also

yields a correct ranking of alternative sub-optimal policy rules, as long as distur-

bances are small enough, and the policies under comparison all involve low inflation.

Furthermore, our LQ approach makes it straightforward to consider whether the

second-order conditions for a policy to be a local optimum are satisfied, and not just

the first-order conditions that are typically considered in the literature on “Ramsey

policy”, as we show in section 3.1 below. Under conditions where the second-order

conditions are satisfied, our approach and the one used by Khan et al. yield iden-

tical approximate linear characterizations of optimal policy; but we believe that the

LQ approach provides useful insight into the aspects of the policy problem that are

responsible for the conclusions obtained. We illustrate this in sections 3.2 and 3.3 by

providing an analytical derivation of results with the same qualitative features as the

numerical results reported by Khan et al. for a related model.

1 Monetary Stabilization Policy: Welfare-Theoretic

Foundations

Here we describe our assumptions about the economic environment and pose the

optimization problem that a monetary stabilization policy is intended to solve. The

approximation method that we use to characterize the solution to this problem is then

presented in the following section. Further details of the derivation of the structural

equations of our model of nominal price rigidity can be found in Woodford (2003b,
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chapter 3).

1.1 Objective and Constraints

The goal of policy is assumed to be the maximization of the level of expected utility

of a representative household. In our model, each household seeks to maximize

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj

]
, (1.1)

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum of

differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
θ−1

θ di

] θ
θ−1

, (1.2)

with an elasticity of substitution equal to θ > 1, and Ht(j) is the quantity supplied

of labor of type j. Each differentiated good is supplied by a single monopolistically

competitive producer. There are assumed to be many goods in each of an infinite

number of “industries”; the goods in each industry j are produced using a type of

labor that is specific to that industry, and suppliers in the same industry also change

their prices at the same time. The representative household supplies all types of labor

as well as consuming all types of goods.6 To simplify the algebraic form of our results,

in our main exposition we shall restrict attention to the case of isoelastic functional

forms,

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 , (1.3)

ṽ(Ht; ξt) ≡
λ

1 + ν
H1+ν

t H̄−ν
t , (1.4)

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes. (We use

the notation ξt to refer to the complete vector of exogenous disturbances, including

C̄t and H̄t.)
7

6We might alternatively assume specialization across households in the type of labor supplied; in
the presence of perfect sharing of labor income risk across households, household decisions regarding
consumption and labor supply would all be as assumed here.

7The extension of our results to the case of more general preferences is taken up in a longer
version of this paper (Benigno and Woodford, 2004a).
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We assume a common technology for the production of all goods, in which (industry-

specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ,

where At is an exogenously varying technology factor, and φ > 1.8 Inverting the

production function to write the demand for each type of labor as a function of the

quantities produced of the various differentiated goods, and using the identity

Yt = Ct + Gt

to substitute for Ct, where Gt is exogenous government demand for the composite

good, we can write the utility of the representative household as a function of the

expected production plan {yt(i)}.9
The utility of the representative household (our welfare measure) can be expressed

as a function of equilibrium production,

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(yj
t ; ξt)dj

]
, (1.5)

where

u(Yt; ξt) ≡ ũ(Yt −Gt; ξt),

v(yj
t ; ξt) ≡ ṽ(f−1(yj

t /At); ξt).

In this last expression we make use of the fact that the quantity produced of each

good in industry j will be the same, and hence can be denoted yj
t ; and that the

quantity of labor hired by each of these firms will also be the same, so that the total

demand for labor of type j is proportional to the demand of any one of these firms.

We can furthermore express the relative quantities demanded of the differentiated

goods each period as a function of their relative prices. This allows us to write the

utility flow to the representative household in the form U(Yt, ∆t; ξt), where

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−θ(1+ω)

di ≥ 1 (1.6)

8Again, more general production functions are considered in Benigno and Woodford (2004a).
9The government is assumed to need to obtain an exogenously given quantity of the Dixit-Stiglitz

aggregate each period, and to obtain this in a cost-minimizing fashion. Hence the government
allocates its purchases across the suppliers of differentiated goods in the same proportion as do
households, and the index of aggregate demand Yt is the same function of the individual quantities
{yt(i)} as Ct is of the individual quantities consumed {ct(i)}, defined in (1.2).
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is a measure of price dispersion at date t, in which ω ≡ φ(1 + ν)− 1 > 0,10 Pt is the

Dixit-Stiglitz price index

Pt ≡
[∫ 1

0

pt(i)
1−θdi

] 1
1−θ

, (1.7)

and the vector ξt now includes the exogenous disturbances Gt and At as well as the

preference shocks. Hence we can write our objective (1.5) as

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt). (1.8)

The producers in each industry fix the prices of their goods in monetary units for

a random interval of time, as in the model of staggered pricing introduced by Calvo

(1983). We let 0 ≤ α < 1 be the fraction of prices that remain unchanged in any

period. A supplier that changes its price in period t chooses its new price pt(i) to

maximize

Et

{ ∞∑
T=t

αT−tQt,T Π(pt(i), p
j
T , PT ; YT , ξT )

}
, (1.9)

where Qt,T is the stochastic discount factor by which financial markets discount ran-

dom nominal income in period T to determine the nominal value of a claim to such

income in period t, and αT−t is the probability that a price chosen in period t will

not have been revised by period T . In equilibrium, this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

. (1.10)

The function

Π(p, pj, P ; Y, ξ) ≡ (1−τ)pY (p/P )−θ−µw ṽh(f
−1(Y (pj/P )−θ/A); ξ)

ũc(Y −G; ξ)
P ·f−1(Y (p/P )−θ/A)

(1.11)

indicates the after-tax nominal profits of a supplier with price p, in an industry

with common price pj, when the aggregate price index is equal to P and aggregate

demand is equal to Y . Here τ t is the proportional tax on sales revenues in period t;

we treat {τ t} as an exogenous disturbance process, taken as given by the monetary

10Under this definition, ω corresponds to the elasticity of real marginal cost with respect to a
firm’s own output.
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policymaker.11 We assume that τ t fluctuates over a small interval around a non-

zero steady-state level τ̄ ; this is another of the possible reasons for inefficiency of the

steady-state level of output that we consider.12 Profits are equal to after-tax sales

revenues net of the wage bill, and the real wage demanded for labor of type j is

assumed to be given by

wt(j) = µw
t

ṽh(Ht(j); ξ)

ũc(Ct; ξt)
, (1.12)

where µw
t ≥ 1 is an exogenous markup factor in the labor market (allowed to vary

over time, but assumed common to all labor markets),13 and firms are assumed to

be wage-takers. We allow for exogenous variations in both the tax rate and the wage

markup in order to include the possibility of “pure cost-push shocks” that affect

equilibrium pricing behavior while implying no change in the efficient allocation of

resources.14 The disturbances τ t and µw
t are also included as elements of the vector

ξt.

Each of the suppliers that revise their prices in period t choose the same new price

p∗t , that maximizes (1.9). Note that supplier i’s profits are a concave function of the

quantity sold yt(i), since revenues are proportional to yt(i)
θ−1

θ and hence concave in

yt(i), while costs are convex in yt(i). Moreover, since yt(i) is proportional to pt(i)
−θ,

the profit function is also concave in pt(i)
−θ. The first-order condition for the optimal

choice of the price pt(i) is the same as the one with respect to pt(i)
−θ; hence the first-

order condition with respect to pt(i),

Et

{ ∞∑
T=t

αT−tQt,T Π1(pt(i), p
j
T , PT ; YT , ξT )

}
= 0,

is both necessary and sufficient for an optimum. The equilibrium choice p∗t (which

is the same for each firm in industry j) is the solution to the equation obtained by

11The extension to the case in which the tax rate is also chosen optimally in response to other
shocks is treated in Benigno and Woodford (2003).

12Other types of distorting taxes would have similar consequences, since it is the overall size of
the steady-state inefficiency wedge that is of greatest importance for our analysis, as we show below.
To economize on notation, we assume that the only distorting tax is of this particular kind.

13In the case that we assume that µw
t = 1 at all times, our model is one in which both households

and firms are wage-takers, or there is efficient contracting between them.
14We show below, however, that these two disturbances are not, in general, the only reasons for

the existence of a “cost-push” term in our aggregate-supply relation, in the sense of a term that
creates a tension between the goals of inflation stabilization and output-gap stabilization.
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substituting pt(i) = pj
t = p∗t into the above.

Under our assumed isoelastic functional forms, the optimal choice has a closed-

form solution
p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

, (1.13)

where Ft and Kt are functions of current aggregate output Yt, the current exogenous

state ξt, and the expected future evolution of inflation, output, and disturbances,

defined by

Ft ≡ Et

∞∑
T=t

(αβ)T−t(1− τT )f(YT ; ξT )

(
PT

Pt

)θ−1

, (1.14)

Kt ≡ Et

∞∑
T=t

(αβ)T−tk(YT ; ξT )

(
PT

Pt

)θ(1+ω)

, (1.15)

in which expressions

f(Y ; ξ) ≡ uy(Y ; ξ)Y, (1.16)

k(Y ; ξ) ≡ θ

θ − 1
µwvy(Y ; ξ)Y. (1.17)

The price index then evolves according to a law of motion

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ , (1.18)

as a consequence of (1.7). Substitution of (1.13) into (1.18) implies that equilibrium

inflation in any period is given by

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (1.19)

where Πt ≡ Pt/Pt−1. This defines a short-run aggregate supply relation between

inflation and output, given the current disturbances ξt, and expectations regarding

future inflation, output, and disturbances.15 This is the only relevant constraint on

15Note that Kt is an increasing function of Yt, given expectations and the exogenous state, while
Ft is a decreasing function of Yt, given expectations and the state; so the right-hand side of (1.19) is
a decreasing function of Yt (given expectations and the state), while the left-hand side is a decreasing
function of Πt. Hence the short-run AS relation defined by (1.19) is upward-sloping. As discussed
below, a log-linear approximation to (1.19) takes the form of the familiar “new-Keynesian Phillips
curve.”
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the monetary authority’s ability to simultaneously stabilize inflation and output in

our model.

Because the relative prices of the industries that do not change their prices in

period t remain the same, we can also use (1.18) to derive a law of motion of the form

∆t = h(∆t−1, Πt) (1.20)

for the dispersion measure defined in (1.6), where

h(∆, Π) ≡ α∆Πθ(1+ω) + (1− α)

(
1− αΠθ−1

1− α

) θ(1+ω)
θ−1

.

This is the source in our model of welfare losses from inflation or deflation.

We assume the existence of a lump-sum source of government revenue (in addition

to the fixed tax rate τ), and assume that the fiscal authority ensures intertemporal

government solvency regardless of what monetary policy may be chosen by the mone-

tary authority.16 This allows us to abstract from the fiscal consequences of alternative

monetary policies in our consideration of optimal monetary stabilization policy, as is

common in the literature on monetary policy rules. An extension of our analysis to

the case in which only distorting taxes exist is presented in Benigno and Woodford

(2003).

Finally, we abstract here from any monetary frictions that would account for

a demand for central-bank liabilities that earn a substandard rate of return; we

nonetheless assume that the central bank can control the riskless short-term nominal

interest rate it,
17 which is in turn related to other financial asset prices through the

arbitrage relation

1 + it = [EtQt,t+1]
−1.

We shall assume that the zero lower bound on nominal interest rates never binds

under the optimal policies considered below,18 so that we need not introduce any

16Thus we here assume that fiscal policy is “Ricardian,” in the terminology of Woodford (2001).
A non-Ricardian fiscal policy would imply the existence of an additional constraint on the set of
equilibria that could be achieved through monetary policy. The consequences of such a constraint
for the character of optimal monetary policy will be considered elsewhere.

17For discussion of how this is possible even in a “cashless” economy of the kind assumed here,
see Woodford (2003b, chapter 2).

18This can be shown to be true in the case of small enough disturbances, given that the nominal
interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the absence of disturbances.
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additional constraint on the possible paths of output and prices associated with a

need for the chosen evolution of prices to be consistent with a non-negative nomi-

nal interest rate. We also note that the ability of the central bank to control it in

each period gives it one degree of freedom each period (in each possible state of the

world) with which to determine equilibrium outcomes. Because of the existence of

the aggregate-supply relation (1.19) as a necessary constraint on the joint evolution

of inflation and output, there is exactly one degree of freedom to be determined each

period, in order to determine particular stochastic processes {Πt, Yt} from among

the set of possible rational-expectations equilibria.19 Hence we shall suppose that

the monetary authority can choose from among the possible processes {Πt, Yt} that

constitute rational-expectations equilibria, and consider which equilibrium it is opti-

mal to bring about; the detail that policy is implemented through the control of a

short-term nominal interest rate will not actually matter to our calculations.

1.2 Optimal Policy from a “Timeless Perspective”

Under the standard (Ramsey) approach to the characterization of an optimal policy

commitment, one chooses among state-contingent paths {Πt, Yt, ∆t} from some initial

date t0 onward that satisfy (1.19) and (1.20) for each t ≥ t0,
20 given initial price dis-

persion ∆t0−1, so as to maximize (1.8). Such a t0−optimal plan requires commitment,

insofar as the corresponding t−optimal plan for some later date t, given the condi-

tion ∆t−1 obtaining at that date, will not involve a continuation of the t0−optimal

plan. This failure of time consistency occurs because the constraints on what can be

achieved at date t0, consistent with the existence of a rational-expectations equilib-

rium, depend on the expected paths of inflation and output at later dates; but in the

absence of a prior commitment, a planner would have no motive at those later dates

to choose a policy consistent with the anticipations that it was desirable to create at

date t0.

19At least, this is the case if one restricts attention to those equilibrium in which inflation and
output remain forever within certain neighborhoods of the steady-state values defined below. We
are here concerned solely with the choice of an optimal policy from among those policies consistent
with a nearby equilibrium of this kind, as this is the problem to which our approximation technique
may be applied.

20Here the definitions (1.14) – (1.15) are understood to have been substituted for Ft and Kt in
equation (1.19).
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However, the degree of advance commitment that is necessary to bring about an

optimal equilibrium is of only a limited sort. Let xt ≡ (Πt, Yt, ∆t), Xt ≡ (Ft, Kt), and

let F(ξt) be the set of values for (∆t−1, Xt) such that there exist paths {xT} for dates

T ≥ t that satisfy (1.19) and (1.20) for each T , that are consistent with the specified

values for the elements of Xt, and that imply a well-defined value for the objective

Ut defined in (1.8).21 Furthermore, for any (∆t−1, Xt) ∈ F(ξt), let V (∆t−1, Xt; ξt)

denote the maximum attainable value of Ut among the state-contingent paths that

satisfy the constraints just mentioned. Then the t0−optimal plan can be obtained as

the solution to the following two-stage optimization problem.

In the first stage, values of the endogenous variables xt0 and state-contingent

commitments Xt0+1(ξt0+1) for the following period, are chosen so as to maximize an

objective defined below. Then in the second stage, the equilibrium evolution from

period t0+1 onward is chosen to solve the maximization problem that defines the value

function V (∆t0 , Xt0+1; ξt0+1), given the state of the world ξt0+1 and the precommitted

values for Xt0+1 associated with that state.

In defining the objective for the first stage of this equivalent formulation of the

Ramsey problem, it is useful to let Π(F,K) denote the value of Πt that solves (1.19)

for given values of Ft and Kt. We also define the functional relationships

Ĵ [xt, Xt+1(·)](ξt) ≡ U(Yt, ∆t; ξt) + βEtV (∆t, Xt+1; ξt+1),

F̂ [xt, Xt+1(·)](ξt) ≡ (1− τ t)f(Yt; ξt) + αβEt{Π(Ft+1, Kt+1)
θ−1Ft+1},

K̂[xt, Xt+1(·)](ξt) ≡ k(Yt; ξt) + αβEt{Π(Ft+1, Kt+1)
θ(1+ω)Kt+1},

where f(Y ; ξ) and k(Y ; ξ) are defined in (1.16) and (1.17).

Then in the first stage, xt0 and Xt0+1(·) are chosen so as to maximize Ĵ [xt0 , Xt0+1(·)](ξt0)

over values of xt0 and Xt0+1(·) such that

(i) Πt0 and ∆t0 satisfy (1.20);

(ii) the values

Ft0 = F̂ [xt0 , Xt0+1(·)](ξt0), (1.21)

21In the notation F(ξt), ξt refers to the state of the world at date t, i.e., to a complete specification
of all information that is available at that date about both the current exogenous disturbances
and the joint probability distribution of all future disturbances. Under the assumption that the
state vector ξt is Markovian, we can use the same notation ξt for a summary of all exogenous
disturbances in period t and the state of the world in period t. The argument ξt of the value
function V (∆t−1, Xt; ξt) has the same interpretation.
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Kt0 = K̂[xt0 , Xt0+1(·)](ξt0) (1.22)

satisfy

Πt0 = Π(Ft0 , Kt0); (1.23)

and

(iii) the choices (∆t0 , Xt0+1) ∈ F for each possible state of the world ξt0+1.

The following result can then be established, as shown in Appendix A.

Proposition 1. Given ∆t0−1, let the process {xt} be determined by (i) choosing

xt0 and state-contingent commitments Xt0+1(ξt0+1) to solve the first-stage problem

just stated, and (ii) for each possible state of the world ξt0+1, choosing the evolution

of xt for t ≥ t0 + 1 so as to maximize Ut0+1, among all of the paths consistent with

(1.19) and (1.20) for each t ≥ t0 + 1, given ∆t0 , and that are also consistent with the

value of Xt0+1(ξt0+1) determined in the first stage. Then the process {xt} represents

a Ramsey policy; that is, it maximizes Ut0 among all of the paths consistent with

(1.19) and (1.20) for each t ≥ t0, given ∆t0−1.

The optimization problem in stage two of this reformulation of the Ramsey prob-

lem is of the same form as the Ramsey problem itself, except that there are additional

constraints associated with the precommitted values for the elements of Xt0+1(ξt0+1).

Let us consider a problem like the Ramsey problem just defined, looking forward from

some period t0, except under the constraints that the quantities Xt0 must take certain

given values, where (∆t0−1, Xt0) ∈ F(ξt0). This constrained problem can similarly be

expressed as a two-stage problem of the same form as above, with an identical stage

two problem to the one described above. Stage two of this constrained problem is

thus of exactly the same form as the problem itself. Hence the constrained problem

has a recursive form, even though the original Ramsey problem did not. This is

shown by the following proposition, also proved in Appendix A.

Proposition 2. Given some (∆t0−1, Xt0) ∈ F(ξt0), consider the sequential de-

cision problem in which in each period t ≥ t0, (xt, Xt+1(·)) are chosen to maximize

Ĵ [xt, Xt+1(·)](ξt), subject to constraints (i) – (iii) of the “first stage” problem stated

above, given the predetermined state variable ∆t−1 and the precommitted values Xt.

Then the process {xt} that is chosen in this way is the process that maximizes Ut0
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among all of the paths consistent with (1.19) and (1.20) for each t ≥ t0, given ∆t0−1,

and also consistent with the specified values Xt0 .

Our aim here is to characterize policy that solves the constrained optimization

problem with which Proposition 2 is concerned i.e., policy that is optimal from some

date t onward given precommitted values for Xt.
22 Because of the recursive form of

this problem, it is possible for a commitment to a time-invariant policy rule from date

t onward to implement an equilibrium that solves the problem, for some specification

of the initial commitments Xt. A time-invariant policy rule with this property is said

by Woodford (2003b, chap. 7) to be “optimal from a timeless perspective.”23 Such

a rule is one that a policymaker that solves a traditional Ramsey problem would be

willing to commit to eventually follow, though the solution to the Ramsey problem

involves different behavior initially, as there is no need to internalize the effects of

prior anticipation of the policy adopted for period t0.
24 One might also argue that it

is desirable to commit to follow such a rule immediately, even though such a policy

would not solve the (unconstrained) Ramsey problem, as a way of demonstrating

one’s willingness to accept constraints that one wishes the public to believe that one

will accept in the future.

2 A Linear-Quadratic Approximate Problem

In fact, we shall here characterize the solution to this problem (and similarly, derive

optimal time-invariant policy rules) only for initial conditions near certain steady-

22The problem considered in Khan et al. (2003) also differs from the standard (unconstrained)
Ramsey policy problem, in their case by modifying the assumed policy objective to include additional
terms similar to those in (4.1) below; again, the modification results in a policy problem with a
recursive form. In fact, their recursive policy problem is equivalent to the one characterized in
Proposition 2, as their additional terms in the modified objective are essentially the terms in a
Lagrangian corresponding our initial commitments.

23See also Woodford (1999) and Giannoni and Woodford (2002).
24In the present model, Ramsey policy involves an initial positive rate of inflation, even in the

absence of any shocks, even though in the long run it involves a commitment to maintain a zero
inflation rate on average. This is because welfare is increased by exploiting the Phillips curve to
increase output through an inflationary policy initially; but it is not optimal to create the anticipation
that one will behave in this way later, owing to the adverse effects of the anticipated inflation on
earlier periods’ inflation/output tradeoffs. See Woodford (2003b, chap. 7) for further discussion.

14



state values, allowing us to use local approximations in characterizing optimal pol-

icy.25 We establish that these steady-state values have the property that if one starts

from initial conditions close enough to the steady state, and exogenous disturbances

thereafter are small enough, the optimal policy subject to the initial commitments

remains forever near the steady state. Hence our local characterization describes the

long run character of Ramsey policy, in the event that disturbances are small enough.

Of greater interest here, it describes policy that is optimal from a timeless perspective

in the event of small disturbances.

We first must show the existence of a steady state, i.e., of an optimal policy (under

appropriate initial conditions) that involves constant values of all variables. To this

end we consider the purely deterministic case, in which the exogenous disturbances

C̄t,Gt,H̄t,At,µ
w
t ,τ t each take constant values C̄, H̄, Ā, µ̄w, τ̄ > 0, Ḡ ≥ 0 for all t ≥ t0.

We wish to find an initial degree of price dispersion ∆t0−1 and initial commitments

Xt0 = X̄ such that the solution to the problem defined in Proposition 2 involves a

constant policy xt = x̄, Xt+1 = X̄ each period, in which ∆̄ is equal to the initial

price dispersion. We show in Appendix B.2 that the first-order conditions for this

problem admit a steady-state solution of this form, and we verify below that (when our

parameters satisfy certain bounds) the second-order conditions for a local optimum

are also satisfied.

We show that Π̄ = 1(zero inflation), and correspondingly that ∆̄ = 1(zero price

dispersion).26 We may furthermore assume without loss of generality that the con-

stant values of C̄ and H̄ are chosen so that in the optimal steady state, Ct = C̄ and

Ht = H̄ each period.27

25Local approximations of the same sort are often used in the literature in numerical character-
izations of Ramsey policy. Strictly speaking, however, such approximations are valid only in the
case of initial commitments Xt0 near enough to the steady-state values of these variables, and the
t0− optimal (Ramsey) policy need not involve values of Xt0 near the steady-state values, even in
the absence of random disturbances. Khan et al. (2003) are able to rigorously employ a local ap-
proximation to the first-order conditions that characterize Ramsey policy because they modify the
policy objective, assigning initial multipliers of precisely the size needed to make the optimal policy
in the absence of disturbances a steady state.

26Our conclusion that the optimal steady-state inflation rate is zero can be generalized to other
price-setting mechanisms and a more general preference specification, as shown in Benigno and
Woodford (2004a), and to the case in which only distorting taxes are available as in Benigno and
Woodford (2003).

27Note that we may assign arbitrary positive values to C̄, H̄ without changing the nature of the
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We next wish to characterize the optimal responses to small perturbations of the

initial conditions and small fluctuations in the disturbance processes around the above

values. To do this, we compute a linear-quadratic approximate problem, the solution

to which represents a linear approximation to the solution to the policy problem

defined in Proposition 2. An important advantage of this approach is that it allows

direct comparison of our results with those obtained in other analyses of optimal

monetary stabilization policy. Other advantages are that it makes it straightforward

to verify whether the second-order conditions hold that are required in order for

a solution to our first-order conditions to be at least a local optimum (see section

3.1), and that it provides us with a welfare measure with which to rank alternative

sub-optimal policies, in addition to allowing computation of the optimal policy.

We begin by computing a Taylor-series approximation to our welfare measure

(1.8), expanding around the steady-state allocation defined above, in which yt(i) = Ȳ

for each good at all times and ξt = 0 at all times.28 As a second-order (logarithmic)

approximation to this measure, we obtain29

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt − u∆∆̂t]

+ t.i.p. +O(||ξ||3), (2.1)

where Ŷt ≡ log(Yt/Ȳ ) and ∆̂t ≡ log ∆t measure deviations of aggregate output and

the price dispersion measure from their steady-state levels, the term “t.i.p.” collects

terms that are independent of policy (constants and functions of exogenous distur-

bances) and hence irrelevant for ranking alternative policies, and ||ξ|| is a bound on

implied preferences, as long as the value of λ is appropriately adjusted.
28Here the elements of ξt are assumed to be c̄t ≡ log(C̄t/C̄), h̄t ≡ log(H̄t/H̄), at ≡ log(At/Ā), µ̂w

t ≡
log(µw

t /µ̄w), Ĝt ≡ (Gt−Ḡ)/Ȳ , and τ̂ t ≡ (τ t− τ̄)/τ̄ , so that a value of zero for this vector corresponds
to the steady-state values of all disturbances. The perturbation Ĝt is not defined to be logarithmic
so that we do not have to assume positive steady-state value for this variable.

29See Appendix B.3 for details. Our calculations here follow closely those of Woodford (2003b,
chap. 6).
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the amplitude of our perturbations of the steady state.30 Here the coefficient

Φ ≡ 1− θ − 1

θ

1− τ̄

µ̄w
< 1

measures the steady-state wedge between the marginal rate of substitution between

consumption and leisure and the marginal product of labor, and hence the inefficiency

of the steady-state output level Ȳ . The coefficients uyy, uyξ and u∆ are defined in

Appendix B.3.

In addition, we can take a second-order approximation to equation (1.20) and

integrate it to obtain

∞∑
t=t0

βt−t0 ∆̂t =
α

(1− α)(1− αβ)
θ(1+ω)(1+ωθ)

∞∑
t=t0

βt−t0
π2

t

2
+t.i.p.+O(||ξ||3). (2.2)

Substituting (2.2) into (2.1), we can then approximate our welfare measure by

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt −

1

2
uππ2

t ]

+t.i.p. +O(||ξ||3), (2.3)

for a certain coefficient uπ > 0 defined in Appendix B.3. Note that we can now write

our stabilization objective purely in terms of the evolution of the aggregate variables

{Ŷt, πt} and the exogenous disturbances.

We note that when Φ > 0, there is a non-zero linear term in (2.3), which means

that we cannot expect to evaluate this expression to second order using only an

approximate solution for the path of aggregate output that is accurate only to first

order. Thus we cannot determine optimal policy, even up to first order, using this

approximate objective together with approximations to the structural equations that

are accurate only to first order. Rotemberg and Woodford (1997) avoid this problem

by assuming an output subsidy (i.e., a value τ̄ < 0) of the size needed to ensure that

30Specifically, we use the notation O(||ξ||k) as shorthand for O(||ξ, ∆̂1/2
t0−1, X̂t0 ||k), where in each

case hats refer to log deviations from the steady-state values of the various parameters of the policy
problem. We treat ∆̂1/2

t0 as an expansion parameter, rather than ∆̂t0 because (1.20) implies that
deviations of the inflation rate from zero of order ε only result in deviations in the dispersion measure
∆t from one of order ε2. We are thus entitled to treat the fluctuations in ∆t as being only of second
order in our bound on the amplitude of disturbances, since if this is true at some initial date it will
remain true thereafter. (See Appendix B.3 for further discussion.)
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Φ = 0. Here we wish to relax this assumption. We show here that an alternative way

of dealing with this problem is to use a second-order approximation to the aggregate-

supply relation to eliminate the linear terms in the quadratic welfare measure. We

show in Appendix B.4 that to second order, equation (1.19) can be written in the

form

Vt = κ(Ŷt + cξξt +
1

2
cyyŶ

2
t − Ŷtcyξξt +

1

2
cππ2

t ) + βEtVt+1

+s.o.t.i.p. +O(||ξ||3), (2.4)

for certain coefficients defined in the appendix. Here the notation “s.o.t.i.p.” indicates

terms independent of policy that are entirely of second or higher order, and we have

defined

Vt ≡ πt +
1

2
vππ2

t + vzπtZt, (2.5)

where

Zt ≡ Et

∞∑
T=t

(αβ)T−t[zyŶT + zππT + zξξT ]; (2.6)

again the coefficients are defined in Appendix B.4. Note that to first order (2.4)

reduces simply to

πt = κ[Ŷt + cξξt] + βEtπt+1, (2.7)

for a certain coefficient κ > 0. This is the familiar “New Keynesian Phillips curve”

relation.

Integrating forward equation (2.4), we obtain a relation of the form

Vt0 = Et0

∞∑
t=t0

βt−t0κ[Ŷt +
1

2
cyyŶ

2
t − Ŷtcyξξt +

1

2
cππ2

t ] + t.i.p. +O(||ξ||3). (2.8)

We can then use (2.8) to write the discounted sum of output terms in (2.3) as a

function of purely quadratic terms, up to a residual of third order. As shown in

Appendix B.5, we can rewrite (2.3) as

Ut0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
(Ŷt − Ŷ ∗

t )2
}

+ Tt0 + t.i.p. +O(||ξ||3), (2.9)

where 31

31In what follows, the following definitions have been used: σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Ȳ ;

ωqt ≡ νh̄t + φ(1 + ν)at; gt ≡ Ĝt + sC c̄t; ωτ ≡ τ̄ /(1− τ̄); κ ≡ (1− αβ)(1− α)(ω + σ−1)/[α(1 + θω)].
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Ω ≡ Ȳ uc > 0,

qπ ≡ θ

κ
[(ω + σ−1) + Φ(1− σ−1)], (2.10)

qy ≡ ω + σ−1 + Φ(1− σ−1)− Φσ−1(s−1
C − 1)

ω + σ−1
, (2.11)

Ŷ ∗
t = ω1Ŷ

n
t − ω2Ĝt + ω3µ̂

w
t + ω4τ̂ t, (2.12)

and

Ŷ n
t ≡ −cξξt =

σ−1gt + ωqt − µ̂w
t − ωτ τ̂ t

(ω + σ−1)
,

in which expressions

ω1 = q−1
y [(ω + σ−1) + Φ(1− σ−1)],

ω2 =
Φs−1

C σ−1

(ω + σ−1)2 + Φ[(1− σ−1)(ω + σ−1)− (s−1
C − 1)σ−1]

,

ω3 ≡ 1− Φ

(ω + σ−1) + Φ[(1− σ−1)− (s−1
C − 1)σ−1(ω + σ−1)−1]

,

ω4 ≡ ωτ

(ω + σ−1) + Φ[(1− σ−1)− (s−1
C − 1)σ−1(ω + σ−1)−1]

.

Here Ŷ n
t represents a log-linear approximation to the “natural rate of output,” i.e.,

the flexible-price equilibrium level of output (Woodford, 2003b, chap. 3); in terms of

this notation, the log-linear aggregate supply relation (2.7) can be written as

πt = κ[Ŷt − Ŷ n
t ] + βEtπt+1. (2.13)

The term Tt0 ≡ ΦȲ ūcκ
−1Vt0 is a transitory component defined in Appendix B.5.

Once again, we are interested in characterizing optimal policy from a timeless

perspective. We observe from the form of the structural relations (2.4) and the

definition of Vt that the aspects of the expected future evolution of the endogenous

variables that affect the feasible set of values for inflation, output in any period t

can be summarized (in our second-order approximation to the structural relations)

by the expected values of Vt+1, Zt+1. Hence the only commitments regarding future

outcomes that can be of value in improving stabilization outcomes in period t can be

summarized by commitments at t regarding the state-contingent values of those two

variables in the following period. It follows that we are interested in characterizing
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optimal policy from any date t0 onward subject to the constraint that given values

for Vt0 , Zt0 be satisfied,32 in addition to the constraints represented by the structural

equations.

But given predetermined values for Vt0 the value of the transitory component Tt0

is predetermined. Hence, over the set of admissible policies, higher values of (2.9)

correspond to lower values of

Lt0 ≡ Et0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
(Ŷt − Ŷ ∗

t )2
}

. (2.14)

It follows that we may rank policies in terms of the implied value of the discounted

quadratic loss function Lt0 . Because this loss function is purely quadratic (i.e., lacking

linear terms), it is possible to evaluate it to second order using only a first-order

approximation to the equilibrium evolution of inflation and output under a given

policy. Hence the log-linear approximate structural relation (2.7) (or equivalently,

(2.13)) is sufficiently accurate for our purposes. Similarly, it suffices that we use

log-linear approximations to the variable Vt0 in describing the initial commitments,

which are given by V̂t0 = πt0 . Then an optimal policy from a timeless perspective is a

policy from date t0 onward that minimizes the quadratic loss function Lt0 subject to

the constraints implied by the linear structural relation (2.13) holding in each period

t ≥ t0 and subject also to the constraints that a certain predetermined value for V̂t0

be achieved.33 This last constraint may equivalently be expressed as a constraint on

the initial inflation rate,

πt0 = π̄t0 . (2.15)

(The definition of the constraint value π̄t0 under a policy that is optimal from a

timeless perspective is discussed further in Woodford, 2003b, chap. 7, sec. 2.1.)

The policy objective Lt0 now depends only on the evolution of the inflation rate

and the welfare-relevant output gap

yt ≡ Ŷt − Ŷ ∗
t .

32Note that a specification of initial values for these two variables corresponds, in our quadratic
approximation to the structural equations, to a specification of initial values for the variables Ft0 ,Kt0

in section 1. The local quadratic approximation to the constraints implied by the initial commitments
discussed in section 1 is treated in Appendix B.6.

33The constraint associated with a predetermined value for Zt0 can be neglected, in a first-order
characterization of optimal policy, because the variable Zt does not appear in the first-order approx-
imation to the aggregate-supply relation.
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It is useful to write the linear constraints implied by our model’s structural equations

in terms of the welfare-relevant output gap as well. The aggregate-supply relation

(2.13) can be alternatively expressed as

πt = κyt + βEtπt+1 + ut, (2.16)

where ut is a composite “cost-push” term, indicating the degree to which the exoge-

nous disturbances preclude simultaneous stabilization of inflation and the welfare-

relevant output gap. In terms of our previous notation for the exogenous disturbances

in the model, this is given by

ut ≡ κ(Ŷ ∗
t − Ŷ n

t )

= κ(ω1 − 1)Ŷ n
t − κω2Ĝt + κω3µ̂

w
t + κω4τ̂ t.

It is important for the discussion below to note that pure markup shocks are not the

only source of movements in the cost-push term ut.

We have thus shown that an objective for policy of the form (2.14), as discussed in

the introduction, can indeed be justified on welfare-theoretic grounds. This requires

that the “output gap” in such an objective be interpreted in the way defined here,

i.e., as the percentage deviation of output from a variable target level of output that

depends on the evolution of exogenous disturbances of many sorts. (There is thus no

reason, in general, for the welfare-theoretic target level of output to correspond to a

smooth trend.) We have also seen that exogenous disturbances may indeed preclude

simultaneous stabilization of inflation and the welfare-relevant output gap; the extent

to which this is true depends on the degree of variability of the disturbance term ut

defined above. We now turn to the consequences of this characterization for the

nature of optimal policy.

3 Optimal Inflation Stabilization

We now use our linear-quadratic approximate policy problem to characterize optimal

policy in the event of small enough disturbances. We begin by establishing conditions

under which the second-order conditions for loss minimization are satisfied, so that

the first-order conditions determine a loss-minimizing policy, and hence approximate

at least a local welfare maximum. These are also conditions under which welfare
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cannot be increased (at least locally) by arbitrary randomization of policy. We then

use the first-order conditions to characterize the optimal responses of inflation and

output to exogenous disturbances, and discuss the conditions under which optimal

policy corresponds to complete price stability.

3.1 Conditions for the Desirability of Policy Randomization

We have shown in the previous section that our approximate policy problem consists

of choosing processes {πt, Ŷt} for dates t ≥ t0 to minimize the loss function Lt0

defined in (2.14), subject to the constraint that the log-linear approximate aggregate

supply relation (2.16) hold each period, and that the initial inflation rate satisfy a

constraint of the form (2.15). We first consider whether a solution to the first-order

conditions associated with this problem necessarily represents a loss minimum. This

is necessarily true if the loss function is convex, as it will be if qπ, qy > 0; but as we

shall see, our approximate loss function is not necessarily (globally) convex, yet our

LQ approximation may nonetheless suffice to characterize (locally) optimal policy.

Here we examine the somewhat weaker conditions under which this will still be true.

As a closely related question, we consider the issue of whether purely random

policy — randomization of policy by the monetary authority, uncorrelated with any

random variation in economic “fundamentals” — can be welfare-improving. Again,

in the case of a convex loss function, of the kind conventionally assumed in analyses of

monetary stabilization policy with ad hoc objectives, it can be shown that arbitrary

randomization is never optimal. But if our approximate loss function need not be

convex, the answer is not obvious, and Dupor (2003) exhibits a general-equilibrium

model with sticky prices in which randomization of monetary policy can be welfare-

improving. Here we use our LQ approximation method to establish general conditions

under which a result like Dupor’s will obtain in a model with Calvo-style staggered

pricing.

Both questions turn on the positive definiteness of a certain quadratic form defined

by the coefficients of the LQ problem. Suppose that {πt, Ŷt} are stochastic processes

consistent with both the equilibrium relation (2.16) at all dates t ≥ t0 and the initial

constraint (2.15), and let us then consider the perturbed processes

π̃t ≡ πt + ψπ
t , Ỹt ≡ Ŷt + ψy

t , (3.1)

for some stochastic processes {ψπ
t , ψy

t }. Each of these stochastic processes {xt} is
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assumed to be such that

Et0

∑
t=t0

βt−t0x2
t < ∞, (3.2)

so that the loss function Lt0 is well-defined for both the original and the perturbed

processes. The perturbed processes will also represent a possible rational-expectations

equilibrium consistent with (2.15) if the processes {ψπ
t , ψy

t } satisfy

ψπ
t = κψy

t + βEtψ
π
t+1 (3.3)

for all t ≥ t0, and

ψπ
t0

= 0. (3.4)

Now consider the Hilbert space H of stochastic processes ψ ≡ {ψπ
t , ψy

t } for dates

t ≥ t0 satisfying the bounds (3.2) for x = ψπ, ψy.34 Then the quadratic form

L(ψ) ≡ Et0

∞∑
t=t0

βt−t0
[qπ

2
ψπ2

t +
qy

2
ψy2

t

]
(3.5)

is well defined for any processes ψ ∈ H. Furthermore, let the linear subspace H1

be the set of processes ψ ∈ H that satisfy (3.4) in addition to satisfying (3.3) for

each t ≥ t0. Then the quadratic form (3.5) is positive definite on the subspace H1 if

L(ψ) > 0 for any processes ψ ∈ H1 that are not identically zero (i.e., equal to zero

almost surely at all dates). This is the critical condition for both of the issues with

which we are concerned, as indicated in the following proposition.

Proposition 3. Randomization of monetary policy increases the expected losses

Lt0 — and hence is locally welfare-reducing in the exact problem as well — if and

only if the quadratic form (3.5) is positive definite on the subspace H1. Furthermore,

if and only if this is true, processes {πt, Ŷt} that satisfy the first-order conditions

for the LQ optimization problem [discussed further in section 3.3] represent a loss

minimum, and hence an approximation to (at least a local) welfare maximum in the

exact problem.

Furthermore, the necessary and sufficient conditions for (3.5) to be positive defi-

nite on H1 reduce to the following: qπ and qy are not both equal to zero; and either

34This can be shown to be a Hilbert space if the inner product of two processes ψ1, ψ2 is defined
as Et0

∑∞
t=t0

βt−t0 [ψ1,π
t ψ2,π

t + ψ1,y
t ψ2,y

t ].
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(i) qy ≥ 0 and

qπ + (1− β1/2)2κ−2qy > 0, (3.6)

holds, or (ii) qy ≤ 0 and

qπ + (1 + β1/2)2κ−2qy > 0, (3.7)

holds.

The proof is given in Appendix A.

Note that in the case that both qy, qπ ≥ 0, (3.6) is satisfied as long as at least one

coefficient is strictly positive; thus the case of a convex loss function is one in which

the second-order conditions are necessarily satisfied and randomization of policy is

necessarily welfare-reducing. However, Proposition 3 shows that the requirement of

convexity of the loss function can be weakened while retaining these results.

In fact, in the case of isoelastic functional forms, convexity is likely to obtain for

quantitatively reasonable parameter values, even if it is not a necessary consequence

of the general assumptions made above. In the isoelastic case, qy and qπ are given

by (2.11) and (2.10) respectively. It follows from this expression and our general

assumptions that qπ > 0, though it remains possible in the isoelastic case for qy to be

negative. Furthermore, one observes that a necessary condition for qy to be negative

is that sC < 1/2, or alternatively that sG > 1/2, which is larger share of government

purchases in total demand than is typical of industrial economies.

Even if qy < 0, Proposition 3 shows that randomization of policy will still be

welfare-reducing, as long as

qy ≥ − κ2qπ

(1 + β1/2)2
. (3.8)

Violation of this bound requires an even more extreme role of the government in

the economy, though it remains a technical possibility, consistent with our general

neoclassical assumptions.35 We show elsewhere (Benigno and Woodford, 2004a) that

it is possible for randomization to be welfare-improving without such an extremely

large share of government purchases in total demand, in the case of more general

35For given values 0 < β < 1, ω ≥ 0, σ−1 > 0, Φ > 0, κ > 0, and θ > 1, choice of a value of sG

close enough to 1 — and hence a value of sC close enough to zero — will make qy an arbitrarily
large negative quantity, while qπ and the other expressions on the right-hand side of (3.8) remain
finite. Hence it is possible to find parameter values for which (3.8) is violated.
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functional forms. Nonetheless, this possibility seems to be of more theoretical than

practical interest.

3.2 The Case for Price Stability

Under certain circumstances, our characterization of the approximate loss function

yields immediate conclusions regarding the nature of optimal policy. These are the

conditions under which optimal policy involves complete stabilization of the inflation

rate at zero, i.e., complete price stability. While the conditions under which this

is exactly true are fairly special, they are nonetheless of interest, insofar as price

stability may be a good approximation to optimal policy as long as the conditions

are not too grossly violated.

The quadratic loss function Lt0 defined in (2.14) is clearly minimized by a policy

under which inflation is zero at all times if two conditions are met: (i) the coefficients

of the loss function satisfy qy, qπ > 0; and (ii) the exogenous terms Ŷ n
t and Ŷ ∗

t coincide

at all times. Condition (ii) implies that a policy under which inflation is zero at all

times will also involve Ŷt = Ŷ ∗
t at all times, as a consequence of (2.16).36 Condition

(i) then implies that such an equilibrium necessarily achieves the lowest possible value

for expected losses, since expected losses are zero and the loss function is necessarily

non-negative.

In fact, condition (i) can be weakened; it suffices that qy and qπ satisfy the condi-

tions stated in Proposition 3. In Appendix A we establish the following result.

Proposition 4. Suppose that Ŷ n
t = Ŷ ∗

t at all times, and that the conditions

stated in Proposition 3 are satisfied. Then the policy that uniquely minimizes Lt0 is

the one under which πt = 0 at all times, regardless of the realizations of the exogenous

disturbances [as long as these are small enough to make such an equilibrium possible].

This means that in the exact model as well, a policy under which inflation is zero at

all times is optimal from a timeless perspective. That is, under the initial constraint

that πt0 = 0, expected utility is maximized by a policy under which πt = 0 for all

36Here we assume that a policy under which inflation is zero at all times is feasible. In the model
proposed here, this is necessarily the case as long as disturbances are small enough, so that the
nominal interest rate required for an equilibrium with zero inflation is non-negative at all times.
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t ≥ t0.

The condition that Ŷ n
t = Ŷ ∗

t at all times, assumed in Proposition 4, is not quite

so special a situation as might be imagined. It is consistent with the existence of

a number of distinct types of independent disturbances, as long as certain model

parameters take special values. Comparing the definitions of Ŷ n
t and Ŷ ∗

t above, one

sees that [for the isoelastic case considered in section 2] both expressions will be

affected to exactly the same extent by technology shocks, by shocks to household

impatience to consume, and by shocks to the disutility of labor supply, in the case

that ω1 = 1. This condition in turn holds if Φ(s−1
C − 1) = 0, which holds if either

Φ = 0 or sG = 0. Furthermore, both expressions are affected to exactly the same

extent by variations in government purchases as well, if in addition ω2 = 0, which

holds if Φ = 0. However, variations in the wage markup or in the level of distorting

taxes necessarily affect the two expressions differently, except in a special case that

would imply that they are no longer affected in the same way by any disturbances to

tastes or technology. We thus obtain the following result.

Proposition 5. Consider a model with the isoelastic functional forms (1.3) –

(1.4), and parameter values ω ≥ 0, σ−1 > 0, and suppose that there are random

fluctuations in the composite disturbance term ωqt + σ−1c̄t. [This is generally true

if either preferences or technology are random.] Then Ŷ n
t = Ŷ ∗

t at all times — so

that the “cost-push” term in the aggregate-supply relation (2.16) is zero at all times

— if and only if (i) there are no random variations in the wage markup or the tax

rate (µ̂w
t = τ̂ t = 0 at all times); and (ii) either (a) the steady-state level of output is

efficient (Φ = 0) or (b) there are no government purchases (Gt = 0 at all times).

The result that there is no “cost-push” term in the aggregate-supply relation in

the case that Φ = 0, as long as there are no markup fluctuations or variations in the

level of distorting taxes, has already been obtained in Woodford (2003b, chap. 6),

following Rotemberg and Woodford (1997). Here there is also a simple intuition for

the fact that price stability is optimal, first stated by Goodfriend and King (1997):

the model is one in which, if prices were perfectly flexible, the equilibrium allocation

of resources would be optimal. Even with staggered price adjustment, a policy that

achieves zero inflation at all times leads to an equilibrium allocation of resources that

is the same as if prices were flexible; hence the policy is optimal.
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More interesting is the conclusion that even when the steady-state is inefficient

(Φ > 0), a policy of complete price stability is still optimal (from a timeless perspec-

tive37) in the isoelastic case, as long as there are no government purchases. (The

absence of government purchases is actually necessary in order for this case to be

isoelastic in the relevant sense; for it is only if Gt = 0 that (1.3) implies that the

marginal utility of income will be an isoelastic function of the level of output Yt, and

not simply of the level of consumption Ct.)

This result provides an analytical explanation of certain numerical results obtained

by Khan et al. (2003) in a closely related model.38 Khan et al. assume isoelastic

functional forms, as we have, and also calibrate their model so that in the steady state

there are no government purchases (sG = 0), even though they consider the effects

of small departures of Gt from the steady-state value of zero. When they consider

the optimal policy response to a technology shock, and use a linearization method39

to compute a linear approximation to the optimal response — i.e., to compute the

derivative of the optimal paths with respect to the amplitude of the technology shock,

evaluated at the case of a zero disturbance (the steady state) — they are in effect

computing a linear approximation to optimal policy in a model in which there are no

government purchases, since they compute a perturbation which involves no change

in the level of government purchases to a steady state with no government purchases.

37That is, it is optimal among policies that satisfy an initial commitment (2.15) with π̄t0 = 0,
though it is not optimal in the absence of such a constraint, except when Φ = 0. See the comparison
of Ramsey policy to timelessly optimal policy in the low-Φ case treated in Woodford, 2003b, chap. 7,
sec. 1.1. We are not able to give a similar analysis here of the initial dynamics under (unconstrained)
Ramsey policy when Φ is large using our linear-quadratic approach, for the initial inflation rate under
Ramsey policy is (in the low-Φ approximation) proportional to Φ, and so no longer small enough
for our local analysis to be accurate unless Φ = O(||ξ||).

38The model considered by Khan et al., in the variant that abstracts from monetary frictions, is
essentially the same as ours, except for a different form of staggering of pricing decisions: in their
model, the probability that a price is revised each period depends on the number of periods since
the last revision of that price, rather than being a constant as in the Calvo model. We discuss the
consequences of this more general form of staggering in Benigno and Woodford (2004a).

39The method that they use to compute a linear approximation to optimal policy involves first
writing the exact (nonlinear) first-order conditions that characterize optimal policy, then linearizing
these first-order conditions, and solving the linearized equations. This method yields an identical
linear approximation to optimal policy as the solution to our LQ problem though, as we have
explained in section 2, we believe there are advantages to proceeding from an LQ approximate
policy problem.
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In fact, Khan et al. find that the optimal response to a technology shock involves no

change in the inflation rate (which continues to equal zero, the optimal steady-state

inflation rate in their model as in ours40), and a response of output that is the same

as would occur in a model with flexible prices (i.e., Ŷt = Ŷ n
t ).41 This is just what

Propositions 4 and 5 would imply for our model.

Instead, they find that the optimal response to a variation in government pur-

chases involves some change in the inflation rate, and an output response that differs

slightly from the flexible-price equilibrium response. This too is what our analysis

would predict, in the case that Φ > 0. Thus our results provide analytical insight into

the reason for the numerical results obtained by Khan et al. for a particular numerical

calibration, which allows us to better understand their degree of generality. On the

one hand, we find that their conclusion with regard to technology shocks does not

depend on their precise parameter values, except the choice to assume that sG = 0.

However, our analysis also indicates that they would not have obtained the same

result under a more realistic calibration in which sG > 0; so this simplification was

not innocuous. Our further analysis in Benigno and Woodford (2004a) also shows

that their result would not obtain, in general, in the case of non-isoelastic functional

forms, even under the assumption that sG = 0.

3.3 Optimal Responses to “Cost-Push” Disturbances

While in the previous section we have described cases in which complete price stability

is optimal, we have also found that this is exactly true only in fairly special cases,

when we allow (realistically) for a distorted steady state. In general, the “cost-push”

term ut will be non-zero. This is obviously true if there is time variation in the size of

tax distortions or in wage markups, since disturbances of this kind affect the flexible-

price equilibrium level of output while they are irrelevant for the efficient allocation

of resources. But our results above show that even if there are no disturbances of

those types, shocks to tastes or technology, or variations in government purchases,

also generally give rise to fluctuations in the cost-push term. In any such case, it is

not possible simultaneously to fully stabilize both inflation and the welfare-relevant

40Here we mean the version of their model that abstracts from monetary frictions, as we do here.
In their full model, the optimal steady-state inflation rate is slightly negative.

41King and Wolman (1999) obtain a similar conclusion in a model where government purchases
are not considered at all.
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output gap; the optimal trade-off between the two stabilization objectives generally

involves some degree of variation in both variables in response to disturbances.

In order to consider optimal policy in this more general case, it suffices that we

specify the stochastic process for fluctuations in the composite cost-push term {ut};
the underlying source of those fluctuations does not matter, at least as far as the

optimal fluctuations in inflation and in the welfare-relevant output gap are concerned.

(The optimal responses of other variables, such as output, employment, or private

consumption, will instead generally depend on what kind of real disturbances have

occurred.) It follows from the approximation introduced in section 2 that a log-linear

approximation to the optimal evolution of inflation and the output gap are given by

the processes {πt, yt} that minimize Lt0 , subject to the constraints that the aggregate-

supply relation (2.16) be satisfied each period, and that the initial inflation rate satisfy

a constraint of the form (2.15). The solution to this problem plainly depends only on

the stochastic evolution of the composite cost-push term. Thus from this point we

make treat the specification of the transitory fluctuations {ut} as a primitive.

The form of the optimization problem just stated is the same as in a model where

the steady state is assumed to be efficient (Φ = 0); the only differences made by

allowing Φ to be positive have to do with the expressions that we have derived for

qπ and qy as functions of underlying model parameters, the expression for ut as a

function of underlying disturbances, and the definition of the welfare-relevant output

gap yt. The solution to the problem is therefore the same (in the case of a given

{ut} process and given values of qπ and qy) as in the Φ = 0 case treated in Woodford

(2003b, chap. 7).42 We recall here some of the main results presented there, which

directly apply to the present case as well.

The first-order conditions for the optimization problem just stated are of the form

qππt + ϕt − ϕt−1 = 0, (3.9)

qyyt − κϕt = 0, (3.10)

for each t ≥ t0, where ϕt is the Lagrange multiplier associated with the constraint

(2.16) in period t. Bounded processes {πt, yt, ϕt} that satisfy (2.16) and (3.9) –

(3.10) for each t ≥ t0 and are consistent with the initial condition (2.15) represent an

optimum. Using (3.9) to eliminate πt and (3.10) to eliminate yt,
43 (2.16) becomes an

42See also Clarida, Gali and Gertler (1999) for analysis of an LQ problem of this form.
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equation for the evolution of the multiplier

βqyEtϕt+1 − [(1 + β)qy + κ2qπ]ϕt + qyϕt−1 = qπqyut. (3.11)

The initial condition (2.15) can similarly be expressed as a constraint on the path of

the multipliers

ϕt0 − ϕt0−1 = −qππ̄t0 . (3.12)

An optimum can then be described by a bounded process {ϕt} for all dates t ≥ t0−1

that satisfies (3.11) for each t ≥ t0 and is also consistent with (3.12).

Equation (3.11) has a unique bounded solution consistent with (3.12) if and only

if the characteristic equation

βqyµ
2 − [

(1 + β)qy + κ2qπ

]
µ + qy = 0 (3.13)

has exactly one root such that |µ| < 1. This requires that the characteristic equation

have real roots, exactly one of which lies in the interval between -1 and 1; this in turn

is true if and only if44 qπ 6= 0 and

qy

qπ

> − κ2

2(1 + β)
. (3.14)

Note that in the case that Φ = 0 (treated in Woodford, 2003b, chap. 7), this condition

is necessarily satisfied, since in that case qπ, qy > 0. We then obtain the following

result.

Proposition 6. Suppose that qπ 6= 0, and that (3.14) is satisfied in addition to

the conditions listed in Proposition 3. Then in the case of any small enough value

of π̄t0 , and any sufficiently tightly bounded fluctuations in the cost-push disturbance

process {ut}, the solution to the optimization problem stated in Proposition 2 involves

fluctuations {πt, yt} that remain forever within any given neighborhood of the steady-

state values (0, 0). These optimal dynamics are furthermore approximated (arbitrarily

well, in the case of tight enough bounds on π̄t0 and on the amplitude of the cost-push

43Here we assume that both qπ, qy 6= 0. Note that if either qπ or qy happens to equal zero, optimal
policy is easily characterized: it consists simply of the complete stabilization of the variable with
the non-zero weight in the loss function.

44Note that while we have assumed qy 6= 0 in the above derivation, (3.11), (3.12) and (3.13) are
also correct even when qy = 0.
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terms) by the log-linear dynamics corresponding to the unique bounded solution to

equations (2.16), (3.9) and (3.10) consistent with initial condition (2.15).

This solution is obtained by solving (3.9) and (3.10) for πt and yt respectively,

where the multiplier process {ϕt} is specified recursively by the relation

ϕt = µϕt−1 − qπ

∞∑
j=0

βjµj+1Etut+j. (3.15)

Here µ is the root of (3.13) that satisfies −1 < µ < 1, and the initial value ϕt0−1 is

chosen so that that the solution is consistent with (2.15).

The proof follows exactly the same lines as in the case with Φ = 0 treated in Woodford

(2003b, chap. 7). Further details are given there of how one may compute the value

of ϕt0−1 corresponding to a given initial commitment (2.15), and examples are given

there of self-consistent initial commitments associated with policy that is optimal

“from a timeless perspective.”

In the isoelastic case, as discussed above, qπ > 0. One can then show further-

more that condition (3.14) implies condition (3.8), though the former condition is

stronger.45 Hence it suffices that (3.14) hold in order for Proposition 6 to apply.

Since this is necessarily satisfied if qy ≥ 0, it also follows from our discussion above

that if sG ≤ 1/2, the condition is necessarily satisfied. Thus in the isoelastic case,

Proposition 6 necessarily applies, unless government purchases are a large share of

total output. (But once again, it remains possible for the condition not to hold;

indeed, it is possible for (3.14) to fail even though (3.8) is satisfied.)

As an example of the implications of Proposition 6, consider the case of exogenous

fluctuations in the level of government purchases, according to a first-order autore-

gressive process of the form

Ĝt = ρGĜt−1 + εG
t , (3.16)

45Whenever (3.8) is satisfied, so that a bounded solution to the first-order conditions would
correspond to an optimum, there is necessarily no more than one bounded solution. However, there
might be no bounded solution, as the optimal policy might involve mildly explosive dynamics. This
is the case in which (3.8) is satisfied though (3.14) is not. We do not wish to consider such cases
here, as our local LQ approximation to the policy problem could not be guaranteed to remain an
accurate approximation in such a case. Hence we shall require that the stronger condition (3.14)
be satisfied. In the case of an exact LQ problem, this condition would not be required in order for
(3.11) to determine a well-defined optimal policy.
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where 0 ≤ ρG < 1 and {εG
t } is an i.i.d., bounded, mean-zero exogenous shock process.

It follows from the definition of the cost-push term in section 2 that in this case,

ut = γGĜt, with a coefficient

γG ≡ −κΦ
σ−1

(ω + σ−1)qy

.

In this case, (3.15) reduces to

ϕt = µϕt−1 + φGĜt,

where

φG ≡ − qπµγG

1− βµρG

.

It then follows that an innovation εG
t to the level of government purchases affects

the current level and expected future path of the Lagrange multiplier by an amount

Etϕt+j − Et−1ϕt+j =
µj+1 − ρj+1

G

µ− ρG

φGεG
t

for each j ≥ 0. Given this impulse response for the multiplier, (3.9) – (3.10) can be

used to derive corresponding impulse responses for prices and the output gap,

Etpt+j − Et−1pt+j = − 1

qπ

µj+1 − ρj+1
G

µ− ρG

φGεG
t , (3.17)

Etyt+j − Et−1yt+j =
κ

qy

µj+1 − ρj+1
G

µ− ρG

φGεG
t , (3.18)

where in (3.17) we use the notation pt ≡ log Pt.

If we further specialize to the case in which Ḡ = 0, so that sC = 1 (as in the

calibration of Khan et al., 2003), then in the case of any Φ > 0 we have

qy = ω + Φ + σ−1(1− Φ) > 0,

qπ =
θ

κ
qy > 0,

as a consequence of which one can show that 0 < µ < 1. We also observe in this case

that γG < 0, as a result of which φG > 0. It then follows that each of the coefficients

of the impulse response function (3.17) is negative, while each of the coefficients of

the impulse response function (3.18) is positive. That is, an unexpected increase in
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government purchases results in a decrease in prices and an increase in the (welfare-

relevant) output gap; both impulse responses return asymptotically to zero, without

ever overshooting their long-run levels.

This provides us with an analytical explanation of the results of Khan et al. (2003)

in a closely related model. They also find that the optimal response to an increase

in government purchases involves a temporary reduction in prices, together with a

greater contraction of private consumption (and a smaller increase in output) than

would occur in the flexible-price equilibrium, or than would result from a monetary

policy that completely stabilized inflation. Our analytical results here yield the same

conclusion. Because γG < 0, an increase in government purchases causes a negative

“cost-push shock,” meaning that it is not possible to maintain Ŷt equal to Ŷ ∗
t without

deflation (as Ŷ ∗
t rises less than does the natural rate Ŷ n

t ). The optimal tradeoff

between the objectives of inflation stabilization and output-gap stabilization requires

one to accept some deflation, though not as much as would be required to maintain

Ŷt equal to Ŷ ∗
t .

This involves an increase in the welfare-relevant output gap, and since Ŷ ∗
t = ψGĜt,

where

ψG =
σ−1

ω + σ−1

ω + σ−1(1− Φ)

ω + Φ + σ−1(1− Φ)
> 0,

the target level of output also increases; hence output increases relative to trend in

response to such a shock. Nonetheless, optimal policy involves output temporarily

lower than the flexible-price equilibrium level Ŷ n
t , as found by Khan et al. The price-

level response (3.17) implies that Etpt+1 falls by an amount that is µ + ρG < 2 times

as large as the decline in pt; hence Etπt+1 does not decline by as much as does πt

(if it falls at all). It then follows from (2.13) that Ŷt − Ŷ n
t must fall in response to

a positive innovation εG
t . Thus output rises less (at least in the period of the shock)

under optimal policy than it would in a flexible-price equilibrium; or alternatively,

consumption falls by more than it would in a flexible-price equilibrium, as reported

by Khan et al. Our results for a model with Calvo pricing are thus qualitatively

similar to theirs for a model with an alternative form of staggering of price changes,

and we are also able to obtain precise analytical expressions for the size of the effects

in question.
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4 Evaluation of Sub-Optimal Policy Rules

We have noted in the introduction that an advantage of our linear-quadratic approach

over the method used by authors such as Khan et al. (2003) to obtain a local log-linear

characterization of optimal policy is that our approach also allows us to evaluate the

welfare consequences of alternative policy rules, as long as these rules imply paths

for the endogenous variables that remain forever close enough to the optimal steady

state in the event of small enough stochastic disturbances.46 For example, one may

wish to determine which rule is best from among some class of “simple” policy rules,

all of which are sub-optimal. Here we illustrate how this can be done, taking as our

application the computation of the optimal policy from among the class of policies

that are “purely forward-looking” in the sense of Woodford (2003b, chap. 7).

4.1 A Generalized Quadratic Loss Function

It might seem natural to evaluate alternative rules in terms of the implied value of

the ex ante expected utility of the representative household (1.8), in the equilibrium

determined by the policy together with the constraints (1.14), (1.15), (1.19) and (1.20)

for each t ≥ t0, given the initial price dispersion ∆t0−1. However, it might happen

that rules other than the optimal policy from a “timeless perspective” characterized

above would do better than that policy under this criterion. For optimal policy from a

timeless perspective does not achieve the unconstrained maximum of criterion (1.8); it

only maximizes (1.8) among those policies consistent with certain initial commitments

regarding the values of Ft0 and Kt0 . Nor would it be appealing to define the optimal

rule among some suboptimal family as the rule that maximizes (1.8) among those

policies in the family that result in the specified values for Ft0 and Kt0 . For there

might be no rules within the simple family consistent with that commitment; or —

because of the stationarity of the simple policies, as in the example considered here —

a constraint of that kind on initial behavior might also amount to a severe constraint

on policy forever, contrary to the spirit of our introduction of the initial commitments.

46The linear-quadratic approach developed here cannot, for example, be correctly used to charac-
terize equilibrium inflation under discretionary policy, for in the case of large steady-state distortions,
discretionary policy results in a high rate of inflation even in the absence of shocks. This problem
is avoided in the analysis of discretionary policy in Woodford (2003b, chap. 7) by the assumption
there that Φ = O(||ξ||).
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We note, however, that the constrained optimization problem characterized in

Proposition 2 can alternatively be described as the choice of a process {xt} for t ≥ t0

to maximize the alternative objective

Ût0 ≡ Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt)− φ∗2,t0−1α(Π
(θ−1)
t0 Ft0 − Π∗

t0
(θ−1)F ∗

t0
) +

−φ∗3,t0−1α(Π
θ(1+ω)
t0 Kt0 − (Π∗

t0
)θ(1+ω)K∗

t0
), (4.1)

among all of the paths consistent with (1.19) and (1.20) for each t ≥ t0, given ∆t0−1.
47

Here F ∗
t0

is the initial commitment regarding the value of Ft0 in the problem char-

acterized in Proposition 2, K∗
t0

is the initial commitment regarding the value of Kt0 ,

and Π∗
t0

is the initial inflation rate

Π∗
t0
≡ Π(F ∗

t0
, K∗

t0
)

implied by these commitments. The initial commitments in the problem characterized

in Proposition 2 can alternatively be written in the form

Πθ−1
t0

Ft0 = Π
∗(θ−1)
t0 F ∗

t0
,

Π
θ(1+ω)
t0 Kt0 = Π

∗θ(1+ω)
t0 K∗

t0
,

as discussed in Appendix B.1. The constants φ∗2,t0−1, φ
∗
3,t0−1 are Lagrange multipliers

associated with these two constraints on the problem characterized in Proposition 2,

and their values depend on the values of the initial commitments, along with other

parameters defining the problem. An advantage of writing the modified objective in

this particular form is that the problem of maximizing (4.1) subject to the constraints

(1.19) and (1.20) results in exactly the same Lagrangian as the one given in Appendix

B.1 for the problem characterized in Proposition 2.

The objective (4.1) can be evaluated in the case of any policy that results in paths

for the endogenous variables that satisfy certain bounds, and the optimal policy con-

sistent with the particular initial commitments X∗
t0

maximizes this objective among

all such policies. Hence we propose to also use the criterion (4.1) to rank alternative

suboptimal policies, where the multipliers φ∗j,t0−1 are the ones associated with the

optimal policy problem.

47This alternative way of posing the policy problem can be the basis for an alternative recursive
formulation, as discussed by Khan et al. (2003).
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Once again, in the case of rules that imply paths for the endogenous variables that

remain always near the optimal steady state in the event of small enough shocks, it

suffices to compute the value of a second-order Taylor series approximation to (4.1) to

compare alternative policies. Similar calculations as have been used above to derive

the quadratic loss function for the optimal policy problem now yield

Ût0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
(Ŷt − Ŷ ∗

t )2
}

+ Tt0 + φ̄
∗
2

(1− αβ)(ω + σ−1)

κ
F̄Vt0

+φ̂
∗′
t0−1QX̂t0 + t.i.p. +O(||ξ||3), (4.2)

where the definitions of qπ, qy, Y
∗
t , Tt0 , and Vt0 are the same as in (2.9); F̄ is the steady-

state value of Ft; φ̄
∗
2 is the steady-state value of the Lagrange multiplier associated

with the initial commitments (i.e., the value of the multiplier in the case that the

initial commitments are consistent with the optimal steady state);48

φ̂
∗
t0−1 ≡

[
φ̂
∗
2,t0−1

φ̂
∗
3,t0−1

]

is the vector of log deviations of the multipliers φ∗j,t0−1 from their steady-state values;

X̂t0 is the vector of log deviations of the elements of Xt0 from their steady-state

values under the policy under consideration, and Q is a matrix of coefficients defined

in Appendix B.6.

Note that all terms in (4.2) are the same as in (2.9), except the last term on the

first line and the first term on the second line; these latter terms represent a quadratic

approximation to the additional terms in Ût0 relative to Ut0 . But in fact one can show

that the last two terms on the first line cancel, so that (4.2) can be written more

simply as

Ût0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
(Ŷt − Ŷ ∗

t )2
}

+ φ̂
∗′
t0−1QX̂t0

+t.i.p. +O(||ξ||3). (4.3)

We thus have a criterion to evaluate that is purely quadratic; because there are no

linear terms, we can evaluate Ût0 to second-order accuracy using only a log-linear

48See Appendix B.2 for further discussion of the steady-state values of both endogenous variables
and Lagrange multipliers.
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approximation to the equilibrium dynamics under a given policy.49 Hence a linear-

quadratic approximation also yields a correct ranking of alternative “simple” policy

rules. The correct quadratic criterion to use in ranking alternative policies is actually

(4.3) rather than (2.9); but this criterion reduces to the earlier one in the case of

policies that satisfy the initial commitments, since the vector X̂t0 takes the same

value (the precommitted value) in the case of all such policies.

Because the criterion (4.3) involves the multipliers φ̂
∗
t0−1, it depends on the par-

ticular values that are assumed for the initial commitments X∗
t0
. In the spirit of our

proposal to analyze optimal policy from a “timeless perspective,” we propose to rank

alternative policy rules according to the unconditional expected value of Ût0 , averag-

ing over all the initial states that the economy might be in at date t0, and assuming

in each case initial commitments of the kind that would exist in that state in the case

that an optimal policy had already been followed for a sufficiently long period of time.

More specifically, we find a function X(ξt, ξt−1, . . .) that is self-consistent, in the sense

that for any initial history (ξt0 , ξt0−1, . . .), if the economy begins with that history and

the initial commitments are given by X∗
t0

= X(ξt0 , ξt0−1, . . .), then the optimal recur-

sive commitment characterized in Proposition 2 involves Xt = X(ξt, ξt−1, . . .) in each

period t ≥ t0. Associated with the optimization problem defined by these initial

commitments will be Lagrange multipliers

φt0−1 = φ(ξt0−1, ξt0−2, . . .), (4.4)

that depend only on the history through period t0 − 1.50 Our proposal is to evaluate

(4.3) for a given policy rule using the multipliers φt0−1 given by (4.4). We furthermore

propose to rank alternative rules according to the implied value of E[Ût0 ], where the

unconditional expectation operator integrates over alternative possible initial histories

(ξt0 , ξt0−1, . . .).

49Some authors prefer to rank alternative simple policy rules according to the associated value of
E[Ut0 ] rather than E[Ût0 ]. In this case, a correct ranking of alternative rules is not possible on the
basis of a solution of the log-linearized structural equations under the candidate rules, because of
the presence of the term Tt0 in (2.9), which can only be evaluated to second-order accuracy using a
second-order accurate solution for the evolution of the endogenous variables.

50The fact that they depend only on the history through period t0 − 1 depends on the initial
commitments having been chosen in a self-consistent manner, so that the Lagrange multipliers
φt0−1 coincide with the multipliers associated with an optimal policy problem looking forward from
date t0 − 1.
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In the case that the initial commitments are chosen in this way, we show in

Appendix B.6 that our quadratic criterion can alternatively be expressed as

Ût0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
y2

t

}
+ Ωϕ∗t0−1(πt0 − π∗t0)

+t.i.p. +O(||ξ||3), (4.5)

where ϕ∗t0−1 = −Φκ−1φ̂
∗
2,t0−1, and π∗t0 is the value of log Π∗

t0
implied by the self-

consistent commitments X∗
t0
. We can accordingly rank alternative sub-optimal rules

according to the loss function

Lr
t0

= Et0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
y2

t

}
− ϕ∗t0−1(πt0 − π∗t0), (4.6)

generalizing (2.14). (Once again, the final term is zero in the case of all policies

consistent with the self-consistent commitments, so that policies of that kind are

correctly ranked by the previous loss function (2.14).)

Note that this is exactly the same criterion that we would use to rank alternative

policies from a timeless perspective if we were to assume an exact linear-quadratic

problem defined by loss function (2.14) and structural equation (2.16). Because of

the role of expected inflation in the constraint, we would in that case have concluded

that an optimal policy from a timeless perspective does not minimize (2.14) subject to

(2.16) being satisfied for each t ≥ t0; instead, we would need to impose an additional

constraint (2.15), as in the discussion in section 2. Alternatively, the optimal policy

would minimize a modified loss function of the form (4.6), where ϕ∗t0−1 would represent

a Lagrange multiplier associated with the constraint (2.15) on the initial inflation

rate. This would suggest ranking alternative suboptimal policies according the value

of (4.6); in fact, we have shown that this is correct, to second order in the amplitude

of the exogenous disturbances.

One can also show that, to first order, ϕ∗t0−1 is just the time t0− 1 Lagrange mul-

tiplier associated with the aggregate-supply constraint in the LQ problem discussed

in section 3. In particular, we have shown that in the solution to this problem, {ϕt}
satisfies (3.15). We can thus obtain a solution for ϕ∗t0 as a function of the initial

history (ξt0 , ξt0−1, . . .) by integrating (3.15).
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4.2 The Optimal Non-Inertial Plan

As an application of the proposed criterion for ranking alternative suboptimal policies,

we give a local characterization of the optimal non-inertial policy in our model, in

the case of small enough shocks. By a non-inertial policy we mean one in which

the central bank’s behavior is a function only of the economy’s current state (more

precisely, only of those aspects of the current state that matter for the determination

of current and/or future values of the endogenous variables {xt} that matter for

welfare.51 If policy results in a determinate equilibrium, this must also be one in

which the endogenous variables xt are functions only of the current state.

If we assume that the process for ut is Markovian, with a law of motion of the

form

ut = ρuut−1 + εt, (4.7)

where |ρu| < 1 and {εt} is a mean-zero i.i.d. random sequence, then the current

state of the economy is summarized by the two variables (ut, ∆t−1). It follows that

under any non-inertial (purely forward-looking) policy, the variables πt, Yt, and ∆t

will all be time-invariant functions of (ut, ∆t−1). It furthermore follows from the form

of the approximate criterion (4.6) that in order to evaluate this criterion to second

order, it suffices that we characterize the evolution of the two variables {πt, Yt} to

first order. Since any dependence of these variables on ∆t−1 would represent at most

a second-order term,52 a completely general description of the possible equilibrium

dynamics, accurate to first order, can be written in the form

πt = π̄ + fπut, (4.8)

yt = ȳ + fyut, (4.9)

where the coefficients π̄, ȳ, fπ, fy remain to be determined.

It further follows from (2.16) that the coefficients must satisfy the restrictions

(1− β)π̄ = κȳ (4.10)

51The proposed restriction is analogous to the common restriction to “Markovian strategies” in
the literature on policy games. Our definition follows Woodford (2003a; 2003b, chap. 7).

52Here we assume, as earlier, that the initial price dispersion ∆t0−1 = O(||ξ||2). In the case of
a larger initial dispersion of prices, the optimal dynamics of inflation and the output gap would
depend on the degree of price dispersion in the way discussed by Yun (2005).
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(1− βρu)fπ = 1 + κfy (4.11)

in any possible equilibrium. There is thus only a two-parameter family of possible

non-inertial policies, to the order of accuracy that matters for our calculations.53

The assumptions required for the validity of our local expansions are satisfied by all

policies in this simple family, as long as π̄ and ȳ are small (i.e., of order O(||ξ||)).
Evaluation of (4.6) requires that we compute ϕ∗t0−1 for each possible initial history

of the exogenous disturbances. We can do this using (3.15) and (4.7) to obtain

ϕ∗t = µϕ∗t−1 − qπ
µ

1− ρuβµ
ut

= −qπ
µ

1− ρuβµ

∞∑
j=0

µjut−j. (4.12)

Moreover, using expressions (4.8) – (4.9) for the evolution of the endogenous variables,

together with (4.7), we can compute the values of the inflation and output gap terms

in (4.6) as functions of ut0 . In this way we obtain

E[Lr
t0
] =

(qyȳ
2 + qππ̄2)

2(1− β)
+

qyf
2
y + qπf 2

π

2

σ2
u

(1− β)
+ qπfπ

ρuµ

(1− ρuβµ)(1− ρuµ)
σ2

u, (4.13)

through calculations that are further explained in Appendix B.6.

The optimal non-inertial plan is then described by coefficients π̄, ȳ, fπ, fy that

minimize (4.13) under the restrictions (4.10) – (4.11).54 The solution to this problem

is given by

π̄ = x̄ = 0,

fy = − κqπ

[(1− βρu)
2qy + κ2qπ]

[
1 +

ρuµ(1− β)(1− βρu)

(1− βρuµ)(1− ρuµ)

]
,

fπ =

[
(1− βρu)κ

−2qy − (1− β)(1− βρuµ)−1(1− ρuµ)−1ρuµqπ

[(1− βρu)
2κ−2qy + qπ]

]
.

53These two parameters correspond to the choice of the average inflation target and a parameter
that indexes the point that one chooses on the tradeoff between inflation stabilization and output-gap
stabilization in response to cost-push shocks.

54This differs from the definition given in Woodford (2003b, chap. 7, sec. 3.1), though the present
definition, like the one given there, implies that π̄ = ȳ = 0. The definition proposed here seems to us
conceptually superior, as a single criterion (4.6) is used to determine both the optimal deterministic
component of policy and the optimal responses to shocks.
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Here we have characterized the best possible equilibrium outcome that can be

achieved by any purely forward-looking policy rule. A variety of types of policy rules

might be adopted in order to achieve this outcome. For example, the central bank

might commit itself to a “flexible inflation targeting rule” of the form

πt + φyt = 0,

where the optimal weight on the output gap in the target criterion is given by

φ = −fπ

fy

.

Alternatively (in the case that fluctuations in the natural rate of interest are also

Markovian), it might commit itself to a Taylor-type interest-rate feedback rule. The

method that can be used to compute the coefficients of a Taylor rule consistent with

the above equilibrium outcome are discussed in Woodford (2003b, chap. 7, sec. 3.2).

5 Extensions

We have provided rigorous welfare-theoretic foundations for the form of linear-quadratic

policy problem postulated in Clarida et al. (1999), among many other recent studies,

in terms of the maximization of the expected utility of the representative household

in a canonical “new Keynesian” model with monopolistic competition and staggered

price-setting of the kind introduced by Calvo (1983). We have furthermore shown

that this is possible even without the special assumption relied upon by Rotemberg

and Woodford (1997) and Woodford (2002), according to which an output subsidy

offsets the steady-state distortions that would otherwise result from the existence of

market power on the part of the suppliers of differentiated goods. We find that a

linear-quadratic policy problem of the same form is obtained even in the case of a

distorted steady, indeed, one that may be substantially distorted, as a result of the

tax system as well as market power. With a few caveats (such as the theoretical pos-

sibility of a failure of the coefficient qy to be positive), we find that the conclusions

of studies such as Clarida et al. (1999) regarding optimal monetary policy continue

to apply in this case.

In Benigno and Woodford (2004a), we show that these conclusions can be gener-

alized still further. In particular, we show that the special isoelastic functional forms
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for preferences and technology assumed here are not necessary, except to simplify

our calculations. In the case of completely general differentiable functions, we show

that it is possible to derive a quadratic approximation to expected utility of the form

(2.14); the only difference is that in the general case the expressions for the coeffi-

cients qπ, qy, and the definition of the exogenous target level of output Ŷ ∗
t are more

complicated. Proposition 3 continues to state the correct second-order conditions for

the linear-quadratic optimization problem; but in the general case, it is theoretically

possible for qπ as well as qy to be negative, and there are additional theoretically pos-

sible cases in which the second-order conditions fail to hold. (We nonetheless continue

to regard the cases in which the SOCs fail to hold as being of little practical interest.)

In the general case there are also additional ways in which exogenous disturbances

can give rise to “cost-push” terms in the aggregate-supply relation; for example, it is

no longer true, in general, that a technology shock gives rise to no cost-push term,

even in the case that Ḡ = 0. Thus the case in which price stability is exactly optimal

appears an even more special case; yet it remains true that for empirically realistic

parameterizations, an optimal policy will involve only very small departures from a

zero inflation rate.

We also show that a similar linear-quadratic policy problem can be defined in the

case of staggering schemes other than Calvo’s, i.e., when the probability of revision

of a given price is not independent of the length of time that it has been in effect;

we discuss a more general framework that can deal with cases such as the fixed-

length price commitments considered in Chari et al. (2000) and the more complex

parameterization assumed by Khan et al. (2003). In this case, the welfare-theoretic

loss function is no longer as simple as (2.14). However, it can still be expressed

as a sum of squared price-differential terms (that all equal zero if and only if the

aggregate price index never varies) and a squared output-gap term, so that once again

price stability is optimal if and only if there are no “cost-push” disturbances to the

aggregate-supply relation, and the sources of cost-push disturbances are essentially

the same as in the case of Calvo pricing.

In Benigno and Woodford (2004b), we extend the present framework by allowing

for sticky wages as well as prices. This allows us to generalize the welfare analysis of

Erceg et al. (2000), again without relying upon the output and employment subsidies

assumed by those authors, following the lead of Rotemberg and Woodford (1997).

Again we find that even in the case of a distorted steady state, we can derive a
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purely quadratic loss function, though this now includes a term proportional to the

squared rate of nominal wage growth, in addition to the terms present in (2.14). As

emphasized by Erceg et al., this implies that in general complete stabilization of the

inflation rate is not optimal. We find furthermore that in the case of a distorted steady

state, the tensions among the three alternative stabilization objectives represented

by the three terms in the welfare-theoretic loss function are greater than is indicated

by the numerical results of Erceg et al. under the assumption of an efficient steady

state.

The method used here has also proven fruitful for the analysis of monetary sta-

bilization policy in open economies. In Benigno and Benigno (2004), the present

analysis is extended to the case of a two-country model. In the case of an open

economy, the device used by Rotemberg and Woodford (1997) is unavailable even

in the presence of subsidies that offset the distortions due to market power, since it

is no longer possible to express the consumption of the representative household by

an exact function of domestic production and express utility in terms of the level

of production only. The linear terms in the Taylor series expansion for the utility

of the representative household of each country can nonetheless be eliminated using

the method illustrated here, allowing derivation of a purely quadratic objective for

each country that approximates the expected utility of its representative household.

De Paoli (2004) similarly derives a utility-based loss function for a small open econ-

omy integrated with the rest of the world through complete financial markets. She

shows that the objective function includes a target for the real exchange rate, and

characterizes the optimal policy in this context.

Finally, in Benigno and Woodford (2003), we extend the present analysis to con-

sider the jointly optimal determination of monetary and fiscal policy. The tax-rate

process {τ t} is considered to be freely chosen by a fiscal authority, rather than treated

as exogenous as in this paper, and lump-sum taxes are assumed not to exist, so that

an intertemporal solvency condition for the government becomes an additional con-

straint on possible state-contingent paths for the economy. The welfare-theoretic

stabilization objective is again shown to be of the form (2.14), though the coefficients

qπ, qy and the target output process {Ŷ ∗
t } are defined somewhat differently, owing to

the existence of the additional constraint.

The nature of the tensions between inflation stabilization and output-gap stabi-

lization are also somewhat different when fiscal considerations are taken into account.
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On the one hand, fluctuations in the cost-push term ut do not necessarily imply any

conflict between the two stabilization goals, as another policy instrument (variation

in the tax rate τ t) can be used to offset cost-push shocks. But on the other hand,

there will be a conflict between the two goals, even in the absence of any cost-push

effects, to the extent that shocks cause variations in the requirements for intertem-

poral government solvency (variations in “fiscal stress”). Hence the case in which

complete price stability is optimal is found to be even more restrictive. Nonetheless,

inflation stabilization is found to be an important goal (for both monetary and fiscal

policy), and in our numerical analysis of the optimal response to fiscal disturbances,

we conclude that inflation should fluctuate very little under an optimal policy.

Benigno and De Paoli (2005) extend this analysis to the case of a small open

economy of the kind treated by De Paoli (2004). Ferrero (2005) studies a currency-

area model with centralized monetary policy and independent fiscal authorities and

characterizes the policy objective function for the whole area in order to determine the

optimal decisions of monetary and fiscal policies. He also compares the jointly optimal

plan with the rules that would be followed if fiscal authorities are constrained to

maintain balanced national budgets. In all of these cases, a linear-quadratic approach

proves insightful in characterizing both the appropriate aims of stabilization policy

and the nature of optimal policy.
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A Proofs of Propositions

Proposition 1. Given ∆t0−1, let the process {xt} be determined by (i) choosing

xt0 and state-contingent commitments Xt0+1(ξt0+1) to solve the first-stage problem

stated in section 1.2, and (ii) for each possible state of the world ξt0+1, choosing the

evolution of xt for t ≥ t0+1 so as to maximize Ut0+1, among all of the paths consistent

with (1.19) and (1.20) for each t ≥ t0 + 1, given ∆t0 , and that are also consistent

with the value of Xt0+1(ξt0+1) determined in the first stage. Then the process {xt}
represents a Ramsey policy; that is, it maximizes Ut0 among all of the paths consistent

with (1.19) and (1.20) for each t ≥ t0, given ∆t0−1.

Proof: First, note that the process {xt} associated with the solution to the two-

stage problem is a feasible plan for the Ramsey problem; that is, it satisfies (1.19)

and (1.20) for each t ≥ t0, given ∆t0−1. For conditions (1.19) and (1.20) are satisfied

for t = t0 as a consequence of conditions (i) – (iii) of the first-stage problem, while

they are satisfied for all dates t ≥ t0 + 1 as a consequence of the constraints on the

second-stage problem. It then remains to show that there cannot be any other process

{x̃t} that also satisfies all of the constraints of the Ramsey problem, and that attains

a higher level of ex ante expected utility Ut0 .

The proof is by contradiction. Suppose that there exists such a process {x̃t}, and

let X̃t0+1(·) be the implied state-contingent values for Xt0+1 in each of the possible

states of the world at date t0 + 1, let Ũt0+1(ξt0+1) be the utility looking forward from

any given state of the world at date t0 +1 under that plan, and let Ũt0 be the implied

level of ex ante expected utility under the plan. By hypothesis, Ũt0 > Ut0 , where the

latter quantity represents the level of ex ante expected utility implied by the solution

to the two-stage problem.

Note then that the values (x̃t0 , X̃t0+1(·)) satisfy conditions (i) – (iii) of the first-

stage problem. It is then possible to define Ĵ [x̃t0 , X̃t0+1(·)](ξt0). Because the process

{x̃t} for t ≥ t0 + 1 is one possible plan consistent with (1.19) and (1.20) for each

t ≥ t0 + 1, given ∆̃t0 , and also consistent with the precommitment X̃t0+1(ξt0+1) in

each possible state of the world at date t0 + 1, we must have

V (∆̃t0 , X̃t0+1; ξt0+1) ≥ Ũt0+1(ξt0+1)
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for each possible state ξt0+1. It follows from this that

Ĵ [x̃t0 , X̃t0+1(·)](ξt0) ≥ Ũt0 .

But then

Ĵ [x̃t0 , X̃t0+1(·)](ξt0) > Ut0 ,

which contradicts the assumption that the process {xt} solves the first-stage opti-

mization problem. Hence no such alternative process {x̃t} can exist, and the process

{xt} represents a Ramsey policy.

Proposition 2. Given some (∆t0−1, Xt0) ∈ F(ξt0), consider the sequential de-

cision problem in which in each period t ≥ t0, (xt, Xt+1(·)) are chosen to maximize

Ĵ [xt, Xt+1(·)](ξt), subject to constraints (i) – (iii) of the “first stage” problem stated

above, given the predetermined state variable ∆t−1 and the precommitted values Xt.

Then the process {xt} that is chosen in this way is the process that maximizes Ut0

among all of the paths consistent with (1.19) and (1.20) for each t ≥ t0, given ∆t0−1,

and also consistent with the specified values Xt0 .

Proof: Consider the problem of choosing a process {xt} to maximize Ut0 among

all of the paths consistent with (1.19) and (1.20) for each t ≥ t0, given ∆t0−1, and also

consistent with the specified values Xt0 . This is the same kind of optimization problem

as in Proposition 1, except for the additional constraint that Xt0 take the specified

values. Using a proof exactly analogous to the one used to establish Proposition 1,

one can show that this problem is equivalent to a two-stage problem in which (i) one

chooses xt0 and state-contingent commitments Xt0+1(ξt0+1) to solve the first-stage

problem stated in section 1.2, except with the additional stipulation that equations

(1.21) – (1.22) are satisfied by the specified values for Xt0 ; and (ii) for each possible

state of the world ξt0+1, one chooses the evolution of xt for t ≥ t0+1 so as to maximize

Ut0+1, among all of the paths consistent with (1.19) and (1.20) for each t ≥ t0 + 1,

given ∆t0 , and that are also consistent with the value of Xt0+1(ξt0+1) determined in

the first stage. This establishes that in the optimal plan, (xt0 , Xt0+1(·)) solve a “first

stage” problem of the kind described in the proposition.

Note furthermore that the “second stage” problem here is exactly the same form

of optimization problem as the one considered in the proposition. One can then use

the same proof to show that it is itself equivalent to a two-stage problem of the same
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kind. This then implies that in the optimal plan, (xt0+1, Xt0+2(·)) solve a “first stage”

problem of the kind described in the proposition. The same argument can be applied,

iteratively (t−t0+1 times), to establish that for any period t ≥ t0, in the optimal plan

(xt, Xt+1(·)) solve a “first stage” problem of the kind described in the proposition.

Now suppose that for each t ≥ t0, (xt, Xt+1(·)) are chosen to solve the “first

stage” problem described in the proposition, given the solution for previous periods,

as assumed in the hypothesis. It follows from the argument just given that in any

period t, the vector xt chosen in this way coincides (for every possible history) with

the one that would be chosen under an optimal plan, as asserted by the proposition.

Proposition 3. Randomization of monetary policy increases the expected losses

(2.14) — and hence is locally welfare-reducing in the exact problem as well — if and

only if the quadratic form (3.5) is positive definite on the subspace H1. Furthermore,

if and only if this is true, processes {πt, Ŷt} that satisfy the first-order conditions for

the LQ optimization problem represent a loss minimum, and hence an approximation

to (at least a local) welfare maximum in the exact problem.

Furthermore, the necessary and sufficient conditions for (3.5) to be positive defi-

nite on H1 reduce to the following: qπ and qy are not both equal to zero; and either

(i) qy ≥ 0 and

qπ + (1− β1/2)2κ−2qy > 0, (A.1)

holds, or (ii) qy ≤ 0 and

qπ + (1 + β1/2)2κ−2qy > 0, (A.2)

holds.

Proof: (1) We begin by considering the second-order conditions for optimality,

i.e., the conditions under which a solution to the first-order conditions (3.9)–(3.10)

will represent a loss minimum. Let {πt, Ŷt} be any stochastic processes in H con-

sistent with both the equilibrium relation (2.16) at all dates t ≥ t0 and the initial

constraint (2.15), and then consider the perturbed processes {π̃t, Ỹt} defined by (3.1)

for some stochastic processes {ψπ
t , ψy

t } ∈ H1. Because the perturbation processes

are assumed to satisfy (3.3) and (3.4), both the original processes (π, Ŷ ) and the

perturbed processes (π̃, Ỹ ) represent rational-expectations equilibria consistent with

(2.15). It also follows from our hypotheses that both pairs of stochastic processes
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belong to H, and hence that the loss function (2.14) is well-defined for each pair of

processes.

Let L(π, Ŷ ) denote the value of (2.14) in the case of the original processes and

L(π̃, Ỹ ) the value in the case of the perturbed processes. Then

L(π̃, Ỹ ) = L(π, Ŷ ) + Et0

∞∑
t=t0

βt−t0 [qππtψ
π
t + qyŶtψ

y
t ] + Et0

∞∑
t=t0

βt−t0
[qπ

2
ψπ2

t +
qy

2
ψy2

t

]
.

(A.3)

Suppose furthermore that the original processes {πt, Ŷt} satisfy the first-order con-

ditions for a loss minimum (3.9)–(3.10). This implies that the middle term on the

right-hand side of (A.3) must equal zero, for any processes {ψπ
t , ψy

t } satisfying (3.2)

– (3.4). A solution to the first-order conditions is then a loss minimum if and only if

Et0

∞∑
t=t0

βt−t0
[qπ

2
ψπ2

t +
qy

2
ψy2

t

]
> 0 (A.4)

for any processes {ψπ
t , ψy

t } satisfying (3.2) – (3.4), other than the trivial case in which

ψπ
t = ψy

t = 0 for all t almost surely. Thus the first- and second-order conditions are

jointly necessary and sufficient for a pair of processes (π, Ŷ ) ∈ H to represent a loss

minimum in the LQ problem; they also imply that the solution {πt, Ŷt} approximates

an equilibrium that maximizes expected utility at least locally in the exact policy

problem.

(2) The second-order conditions (A.4) are also necessary and sufficient in order

for arbitrary randomization of policy to be welfare-reducing, at least locally. For

suppose that {π̃t, Ỹt} are some equilibrium processes consistent with (2.15), (2.16) and

(3.2), which depend non-trivially on the realization of a “sunspot” variable at some

date t > t0. Then let {πt, Ŷt} be the processes obtained by averaging the processes

{π̃t, Ỹt} over the alternative sunspot states with the same values of all “fundamental”

disturbances. The processes {πt, Ŷt} will then also satisfy (2.16) for all t ≥ t0, (2.15)

and (3.2). Defining the processes {ψπ
t , ψy

t } by relations (3.1), one notes that

Et0πtψ
π
t = Et0Ŷtψ

y
t = 0

for all t > t0. Hence the middle term on the right-hand side of (A.3) is equal to zero.

Then if the second-order conditions (A.4) hold, it follows that L(π, Ŷ ) < L(π̃, Ỹ ).

Since a lower-loss equilibrium can be found in the case of any equilibrium {π̃t, Ỹt} that

involves arbitrary randomization, optimal policy cannot involve such randomization.
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(3) Conversely, suppose that the second-order conditions do not hold. Then there

exist processes {ψπ
t , ψy

t }, not both equal to zero almost surely at all times, such that

the expression in (A.4) is less than or equal to zero. Since condition (A.4) depends

only on the serial correlation properties of the processes {ψπ
t , ψy

t }, and not on their

relation to any fundamental sources of uncertainty, we may suppose that they are

“sunspot” variables, distributed independently of the fundamental disturbances. We

may furthermore suppose that they have ex ante mean zero, i.e., that

Et0ψ
π
t = Et0ψ

y
t = 0 (A.5)

for all t ≥ t0.
55

Now consider any equilibrium processes {πt, Ŷt} consistent with (2.15) and (3.2),

and the perturbed processes {π̃t, Ỹt} defined by (3.1), where {ψπ
t , ψy

t } are the sunspot

processes just discussed. The perturbed processes represent another possible equilib-

rium consistent with (2.15) and (3.2), one involving arbitrary randomization. Further-

more, because the processes {ψπ
t , ψy

t } are distributed independently of the processes

{πt, Ŷt},
Et0πtψ

π
t = Et0πtEt0ψ

π
t = 0,

and likewise for Et0Ŷtψ
y
t . It follows that the middle term on the right-hand side of

(A.3) must equal zero. Then the hypothesis that (A.4) does not hold implies that

L(π̃, Ỹ ) ≤ L(π, Ŷ ), so that arbitrary randomization is not welfare-reducing. Thus

the second-order condition is also necessary for this not to be possible.

(4) It remains to consider the algebraic conditions on the parameters of the LQ

optimization problem under which (A.4) holds for all stochastic processes ψ ∈ H1

that are not equal to zero at all times almost surely. We first show that this is

55Let {ψ̂π

t , ψ̂
y

t } be any sunspot processes (not almost surely equal to zero at all times) that satisfy
(3.3) for all t ≥ t0 and (3.4), as well as (3.2), such that the expression in (A.4) is less than or equal
to zero. By hypothesis, some such processes exist. Then consider the alternative sunspot processes
such that ψ̃

π

t0 = ψ̃
y

t0 = 0, while the joint distribution of the processes {ψ̃π

t , ψ̃
y

t } for t ≥ t0 + 1 is
identical to the joint distribution of the processes {ψ̂π

t , ψ̂
y

t } for t ≥ t0, under a time shift of one
period. Finally, let ψπ

t0 = ψy
t0 = 0, and ψπ

t = σt0+1ψ̃
π

t , ψy
t = σt0+1ψ̃

y

t for all t ≥ t0 + 1, where σt0+1

is another independently distributed sunspot variable, realized at date t0+1, and taking the value -1
or 1, each with probability 1/2. Then the processes {ψπ

t , ψy
t } are also sunspot processes, not almost

surely equal to zero at all times, that satisfy (3.3) for all t ≥ t0 and (3.4), as well as (3.2), and such
that the expression in (A.4) is less than or equal to zero. In addition, the new processes {ψπ

t , ψy
t }

necessarily satisfy (A.5), even if the original processes {ψ̂π

t , ψ̂
y

t } did not.
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equivalent to the positive definiteness of a corresponding quadratic form defined for

deterministic sequences. Let H̄ be the Hilbert space of complex-valued sequences

{ψ̄π
t , ψ̄

y
t } such that

∞∑
t=t0

βt−t0|xt|2 < ∞ (A.6)

for x = ψ̄
π
, ψ̄

y
, and let H̄1 be the subspace of H̄ consisting of sequences that in

addition satisfy

ψ̄
π
t = κψ̄

y
t + βψ̄

π
t+1 (A.7)

for all t ≥ t0.
56 Then we shall establish that (A.4) holds for all (real-valued) stochastic

processes {ψπ
t , ψy

t } ∈ H1 that are not equal to zero at all times almost surely if and

only if

L̄(ψ̄) ≡
∞∑

t=t0

βt−t0
[qπ

2
|ψ̄π

t |2 +
qy

2
|ψ̄y

t |2
]

> 0 (A.8)

for any complex-valued (deterministic) sequences {ψ̄π
t , ψ̄

y
t } ∈ H̄1 that are not equal

to zero at all times.

We begin by showing that (A.4) holding on H1 implies that (A.8) must hold on

H̄1. We show this by contradiction. Suppose instead that that there exists a pair of

sequences {ψ̄π
t , ψ̄

y
t } ∈ H̄1, not both equal to zero at all dates, for which (A.8) does

not hold. If a pair of complex-valued sequences of this kind exist, we can also find a

pair of real-valued sequences. For any ψ̄ ∈ H̄1 can be written as

ψ̄ = ψ̄
re

+ iψ̄
im

,

where ψ̄
re

, ψ̄
im

are real-valued sequences, and it can be shown that ψ̄
re

, ψ̄
im

are both

real-valued elements of H̄1. Furthermore, one observes that

L̄(ψ̄) = L̄(ψ̄
re

) + L̄(ψ̄
im

).

Then as by hypothesis L̄(ψ̄) ≤ 0, it follows that L̄ ≤ 0 for at least one of the real-

valued sequences as well. Thus we may assume without loss of generality that ψ̄ is a

real-valued sequence.

Then we can define a real-valued sunspot process ψπ
t0

= ψy
t0 = 0, and ψπ

t =

σt0+1ψ̄
π
t−1, ψ

y
t = σt0+1ψ̄

y
t−1 for all t ≥ t0+1, where σt0+1 is an independently distributed

56Note that in the definition of the subspace H̄1, we do not require that a condition analogous to
(2.15) be satisfied.
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sunspot variable, realized at date t0 + 1, and taking the value -1 or 1, each with

probability 1/2. Then the processes {ψπ
t , ψy

t } satisfy (3.2), are not almost surely

equal to zero at all times, satisfy (3.3) for all t ≥ t0, and satisfy (3.4), but are such

that the left-hand side of (A.4) is less than or equal to zero. Thus (A.4) would not

hold for all processes ψ ∈ H1. It follows that if (A.4) holds on H1, (A.8) must hold

for all complex-valued sequences ψ̄ ∈ H̄1.

(5) Conversely, one can also show that (A.8) holding on H̄1 implies that (A.4)

must hold on H1. Let any process ψ ∈ H1 be decomposed as

ψt =

t−t0∑
j=0

ψ
(j)
t ,

where ψ
(0)
t ≡ Et0ψt and ψ

(j)
t ≡ Et0+jψt − Et0+j−1ψt, for each j ≥ 1. Note that this

implies that ψ
(j)
t = 0 for all t0 ≤ t < t0 + j, and that the entire sequence {ψ(j)

t } is

known with certainty at date t0 + j. It then follows that

Et0x
2
t =

t−t0∑
j=0

Et0x
(j)2
t (A.9)

for x = ψπ, ψy, from which it follows that if the process {xt} satisfies (3.2), the process

{x(j)
t } must also satisfy (3.2), for each j ≥ 0. This in turn implies that for any j, the

sequences of values {ψ(j)
t } for t ≥ t0 + j satisfies (A.6) almost surely. Furthermore,

if for any j ≥ 0 we define the sequence ψ̄
(j)

by ψ̄
(j)
t = ψ

(j)
t+j for all t ≥ t0, then the

fact that (by hypothesis) the process ψ satisfies (3.3) furthermore implies that the

sequences ψ̄
(j)

each such satisfy (A.7) almost surely.57 Thus for each j ≥ 0, the

sequence ψ̄
(j)

belongs almost surely to H̄1. Furthermore, there exists at least one j

for which ψ̄
(j)

is not almost surely equal to zero.

It follows from (A.9) that

L(ψπ, ψy) =
∞∑

j=0

βjEt0L̄(ψ̄
(j)

). (A.10)

Since by hypothesis (A.8) holds for all elements of H̄1, L(ψ̄
(j)

) ≥ 0 for all j, and

the inequality is strict in the case of those j (of which there must be at least one,

57The value of the sequence ψ̄
(j) is known with certainty at date t0 + j. The “almost surely” refers

to the ex ante probability distribution over possible states of the world at date t0 + j.
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with positive probability) for which ψ(j) 6= 0. Thus the sum on the right-hand side

of (A.10) must be positive, from which it follows that ψ satisfies (A.4), as was to be

proven.

(6) Our problem thus reduces to a search for necessary and sufficient conditions

under which (A.8) must be satisfied by all complex-valued sequences ψ̄ ∈ H̄1. We can

show that this is equivalent to a related problem that arises in connection with the

optimal control of a purely backward-looking system, so that classical results can be

applied. Let H̄2 be the subspace of H̄1 consisting of those sequences that satisfy the

additional condition ψπ
t0

= 0. We shall establish that (A.8) holds for all sequences

ψ ∈ H̄1 if and only if it holds for all sequences in H̄2. It is obvious, of course, that if

(A.8) holds on H̄1 it must hold on H̄2. It remains to show that the converse is true

as well.

For any complex number ψ0, let us define58

V (ψ0) ≡ min
ψ̄∈H̄1

L̄(ψ̄) s.t. ψ̄
π
t0

= ψ0.

We establish the following properties of the function V . First, we note that if ψ̄ is

an element of H̄1 consistent with initial condition ψ0, then the complex conjugate

sequence ψ̄
†

is an element of H̄1 consistent with initial condition ψ†0. Then since

L̄(ψ̄
†
) = L̄(ψ̄), it follows that V (ψ†0) ≤ V (ψ0). The same argument can be used to

show that V (ψ0) ≤ V (ψ†0), and so we conclude that V (ψ†0) = V (ψ0) for all ψ0. An

argument of exactly the same form shows that V (−ψ0) = V (ψ0) for all ψ0.

Similarly, if ψ̄1 is an element of H̄1 consistent with initial condition ψ0,1, and ψ̄2

is an element of H̄1 consistent with ψ0,2, then for any real number 0 < λ < 1, one

observes that the sequence λψ̄1 +(1−λ)ψ̄2 is an element of H̄1 consistent with initial

condition λψ0,1 + (1− λ)ψ0,2. Because L̄ is a convex function,

L̄(λψ̄1 + (1− λ)ψ̄2) ≤ λL̄(ψ̄1) + (1− λ)L̄(ψ̄2), (A.11)

from which it follows that

V (λψ0,1 + (1− λ)ψ0,2) ≤ λV (ψ0,1) + (1− λ)V (ψ0,2). (A.12)

58It is easily shown that the set of sequences ψ̄ ∈ H̄1 consistent with any given initial value ψ0 is
non-empty. If there is no lower bound on the value of L̄ on this set, the value of V (ψ0) is defined to
be −∞.
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One thus establishes that V is a convex function of ψ0. Furthermore, the inequality

in (A.11) is strict unless ψ̄1 = ψ̄2, from which it follows that the inequality in (A.12)

is strict unless ψ0,1 = ψ0,2 or V (ψ1,0) = V (ψ2,0) = −∞. Thus V is a strictly convex

function, if there exists any ψ0 for which V (ψ0) > −∞.

We have established that if there exists any ψ0 for which V (ψ0) > −∞, V is a

strictly convex function of ψ0 with the properties that V (ψ†0) = V (ψ0) and V (−ψ0) =

V (ψ0) for all ψ0. It is easily shown that any such function must reach its unique

minimum at ψ0 = 0. Hence V (ψ0) > 0 for all ψ0 6= 0 if and only if V (ψ0) ≥ 0. It then

follows that L̄(ψ̄) > 0 for all non-zero ψ̄ ∈ H̄1 if and only if the same inequality holds

for all non-zero ψ̄ ∈ H̄1 that satisfy the initial condition ψ̄
π
t0

= 0, i.e., all non-zero

ψ̄ ∈ H̄2. This is what we have sought to establish.

(7) Our problem now reduces to a search for necessary and sufficient conditions

under which (A.8) must be satisfied by all complex-valued sequences ψ̄ ∈ H̄2. This is

just the second-order condition for optimality in the problem of minimizing

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
y2

t

}
, (A.13)

subject to the constraints that the deterministic sequences {πt, yt} satisfy (3.2) and

the law of motion

πt+1 = β−1[πt − κyt], (A.14)

starting from a given initial condition for the predetermined state variable πt0 . (Note

that (A.14) is just a deterministic version of (2.16), except that we now treat inflation

as a predetermined state variable, so that the constraint (A.14) is no longer forward-

looking.)

This problem is of the type studied by Telser and Graves (1972). We can write

our problem as the minimization of a loss function of the form

∞∑
t=t0

βt−t0x′tBxt

where

xt ≡
[

πt

yt

]
, B ≡

[
qπ 0

0 qy

]
,

subject to a law of motion of the form

A(L)xt = 0
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for all t ≥ t0, where

A(L) ≡ [1 0] + [−β−1 β−1κ]L.

Then by Theorems 5.1 and 5.3 of Telser and Graves, the second-order condition for

this problem is satisfied — i.e., (A.8) is satisfied by all complex-valued sequences

ψ̄ ∈ H̄2 — if and only if the determinant of the bordered Hermitian matrix59

M(θ) ≡
[

0 A(β1/2e−iθ)

A′(β1/2eiθ) B

]

is negative for all −π ≤ θ ≤ π.

In our case,

det M(θ) = −qπβ−1κ2 − qy(1− 2β−1/2 cos θ + β−1),

so that the SOC reduces to the requirement that

min
θ

{
qπβ−1κ2 + qy(1− 2β−1/2 cos θ + β−1)

}
> 0. (A.15)

If qy ≥ 0, the minimum value of the term in curly braces occurs when θ = 0, in

which case the term in parentheses is equal to (1 − β−1/2)2. If instead qy ≤ 0, the

minimum value occurs when θ = ±π, in which case the term in parentheses is equal

to (1−β−1/2)2. Making the appropriate substitution in each of the two cases, we find

that (A.15) is equivalent to the inequalities stated in the proposition.

Proposition 4. Suppose that Ŷ n
t = Ŷ ∗

t at all times, and that the conditions

stated in Proposition 3 are satisfied. Then the policy that uniquely minimizes Lt0 is

the one under which πt = 0 at all times, regardless of the realizations of the exogenous

disturbances [as long as these are small enough to make such an equilibrium possible].

Proof. If Ŷ n
t = Ŷ ∗

t at all times, then ut = 0 at all times. The first-order necessary

conditions for an optimum60 are then

qππt + ϕt − ϕt−1 = 0,

59In the way that Telser and Graves define the matrix M(θ), 2B appears as the lower right block
rather than B, but this makes no difference for the second-order conditions that are implied. Note
that replacing B by B/2 in the loss function does not change the optimization problem at all.

60See section 3.3 for further discussion of these.
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qyyt − κϕt = 0,

together with

πt − κyt − βEtπt+1 = 0,

each of which must hold for all t ≥ t0. If there is an additional constraint of the

form (2.15), then this condition also be satisfied by an optimum; if there is no such

constraint, then one must adjoin the additional condition

ϕt0−1 = 0.

In the case that disturbances are small enough, a policy under which πt = 0 at all

times is feasible, since the nominal interest rate required for this equilibrium is non-

negative at all times. Moreover this policy satisfies the above necessary conditions

for an optimum, as all of these conditions are observed to be satisfied in the case that

πt = yt = ϕt = 0 for all t. Proposition 3 implies that the second-order conditions are

also satisfied, and that the zero-inflation policy represents a unique loss minimum for

all t ≥ t0, among those policies consistent with an initial commitment π̄t0 = 0.

The Kuhn-Tucker theorem then implies that the zero-inflation policy also mini-

mizes

Lt0 − ϕt0−1πt0 ,

for some value of the multiplier ϕt0−1, subject only to the constraint that the paths

{πt, yt} represent a rational-expectations equilibrium. The first-order conditions for

this alternative minimization problem are easily seen to be identical to the conditions

written above, from which we observe that the value of the multiplier is zero. Hence

the zero-inflation policy minimizes Lt0 , even when the value of πt0 is unconstrained.

Proposition 5 is proved in the text, and Proposition 6 is directly analogous to the

results derived in Woodford (2003b, chap. 7).
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B Additional Appendices

B.1 Lagrangian for the optimal policy problem

Here we present a Lagrangian for the optimal policy problem characterized in Propo-

sition 2 (i.e., the problem in which policy is constrained by initial commitments). We

recall that the problem is to choose a process {xt} for dates t ≥ t0 to maximize (1.8)

among all of the paths consistent with (1.19) and (1.20) for each t ≥ t0, given ∆t0−1,

and also consistent with the precommitted values X∗
t0
.61

We wish to express the Lagrangian in the discounted stationary form

Et0

∞∑
t=0

βt−t0g(φ̃t; x̃t), (B.1)

where x̃t is a vector of endogenous variables (that may include more variables than

just xt), φ̃t is a vector of Lagrange multipliers, and the function g(·) takes the same

form at each date, so that we obtain a time-invariant system of first-order conditions

(which in turn make the definition of an optimal steady state straightforward). The

constraints corresponding to the precommitments are not naturally in this form, since

the definitions of (1.14) – (1.15) of Ft and Kt involve a different discount factor than

the objective (1.8). However, we can obtain a system of constraints of a suitable form

by writing them as constraints on the joint evolution of the processes {xt, Xt}.
We can write (1.19) more compactly as

Ktp(Πt)
1+ωθ
θ−1 = Ft, (B.2)

where we define

p(Πt) ≡
(

1− αΠθ−1
t

1− α

)
.

This is a first constraint on the possible joint values of xt and Xt. Definitions (1.14)

and (1.15) respectively imply that

Ft = (1− τ t)f(Yt; ξt) + αβEt[Π
θ−1
t+1Ft+1], (B.3)

Kt = k(Yt; ξt) + αβEt[Π
θ(1+ω)
t+1 Kt+1]. (B.4)

61Here we use asterisks to denote the precommitted values, as we wish, in our Lagrangian, to
distinguish between the precommitted values for the vector Xt0 and the value of that vector under
an arbitrary policy.
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Conversely, any paths {xt, Xt} that satisfy (B.3) – (B.4) together with certain bounds

must satisfy (1.14) – (1.15). Since we are here only interested in the case in which

optimal policy involves paths for the endogenous variables that remain forever near a

steady state to be defined below, we may impose bounds such that conditions (B.3)

– (B.4) are equivalent to (1.14) – (1.15). Finally, (1.20) can be written as

∆t = α∆t−1Π
θ(1+ω)
t + (1− α)p(Πt)

θ(1+ω)
θ−1 . (B.5)

Our problem can then equivalently be stated as the choice of processes {xt, Xt} for

dates t ≥ t0 (satisfying bounds sufficient to guarantee that the expressions on the

right-hand sides of (1.14) and (1.15) are well-defined) to maximize (1.8) among all

of the paths consistent with (B.2) – (B.5) for each t ≥ t0, given ∆t0−1, and also

consistent with the precommitted values X∗
t0
.

The constraints implied by the initial commitments can be written as Xt0 = X∗
t0
.

Alternatively, we can write the constraints in the form

Πθ−1
t0

Ft0 = Π
∗(θ−1)
t0 F ∗

t0
, (B.6)

Π
θ(1+ω)
t0 Kt0 = Π

∗θ(1+ω)
t0 K∗

t0
, (B.7)

where Π∗
t0
≡ Π(F ∗

t0
, K∗

t0
) is the initial inflation rate implied by the precommitments.

One can easily show that (B.6) – (B.7) imply that Xt0 = X∗
t0
, so that this is an

equivalent system of initial commitments. The alternative form is useful in obtaining

the desired discounted stationary form for the Lagrangian.

We introduce Lagrange multipliers φ1t through φ4t corresponding to constraints

(B.2) through (B.5) respectively for each t ≥ t0,, and multipliers −αφ∗2,t0−1 and

−αφ∗3,t0−1 for constraints (B.6) and (B.7) respectively. (This last choice of notation

is necessary in order to achieve the desired stationary form.) A Lagrangian for the

optimization problem just defined then can be written as

Lt0 = Et0

∞∑
t=t0

βt−t0
{

U(Yt, ∆t) + φ1,t[Ktp(Πt)
1+ωθ
θ−1 − Ft]

+φ2,t[Ft − (1− τ t)f(Yt; ξt)− αβ(Πθ−1
t+1Ft+1)]

+φ3,t[Kt − k(Yt; ξt)− αβ(Π
θ(1+ω)
t+1 Kt+1)]

+φ4,t[∆t − α∆t−1Π
θ(1+ω)
t − (1− α)p(Πt)

θ(1+ω)
θ−1 ]

}

−φ∗2,t0−1α[Πθ−1
t0

Ft0 − Π
∗(θ−1)
t0 F ∗

t0
]− φ∗3,t0−1α[Π

θ(1+ω)
t0 Kt0 − Π

∗θ(1+ω)
t0 K∗

t0
].
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Rearranging terms, we see that (up to a constant) this is of the desired form (B.1),

where

g(φt−1, φt; xt−1, xt, Xt) = U(Yt, ∆t) + φ1,t[Ktp(Πt)
1+ωθ
θ−1 − Ft]

+φ2,t[Ft − (1− τ t)f(Yt; ξt)]− αφ2,t−1[Π
θ−1
t Ft]

+φ3,t[Kt − k(Yt; ξt)]− αφ3,t−1[Π
θ(1+ω)
t Kt]

+φ4,t[∆t − α∆t−1Π
θ(1+ω)
t − (1− α)p(Πt)

θ(1+ω)
θ−1 ].

B.2 The optimal deterministic steady state

Here we show the existence of an optimal steady state, i.e., of a solution to the re-

cursive policy problem defined in Proposition 2 (under appropriate initial conditions)

that involves constant values of all variables, in the case that there are no stochas-

tic disturbances. Thus we consider a deterministic problem in which the exogenous

disturbances C̄t, Gt, H̄t, At, µw
t , τ t each take constant values C̄, H̄, Ā, µ̄w, τ̄ > 0

and Ḡ ≥ 0 for all t ≥ t0. We wish to find an initial degree of price dispersion ∆t0−1

and initial commitments Xt0 = X̄ such that the recursive problem involves a con-

stant policy xt0 = x̄, Xt+1 = X̄ each period, in which ∆̄ is equal to the initial price

dispersion.

This is just a deterministic version of the problem discussed in Appendix B.1, and

it can be analyzed using a deterministic version of the Lagrangian defined there. The

first-order conditions of the maximization problem are then obtained by differentiat-

ing the Lagrangian. The one with respect to Yt is

Uy(Yt, ∆t)− (1− τ t)fy(Yt)φ2t − ky(Yt)φ3t = 0; (B.8)

that with respect to ∆t is

U∆(Yt, ∆t) + φ4t − αβΠ
θ(1+ω)
t+1 φ4,t+1 = 0; (B.9)

that with respect to Πt is

1 + ωθ

θ − 1
p(Πt)

(1+ωθ)
θ−1

−1pπ(Πt)Ktφ1,t − α(θ − 1)Πθ−2
t Ftφ2,t−1

−θ(1 + ω)αΠ
θ(1+ω)−1
t Ktφ3,t−1+

−θ(1 + ω)α∆t−1Π
θ(1+ω)−1
t φ4t −

θ(1 + ω)

θ − 1
(1− α)p(Πt)

(1+ωθ)
θ−1 pπ(Πt)φ4t = 0; (B.10)
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that with respect to Ft is

−φ1t + φ2t − αΠθ−1
t φ2,t−1 = 0; (B.11)

and finally, that with respect to Kt is

p(Πt)
1+ωθ
θ−1 φ1t + φ3t − αΠ

θ(1+ω)
t φ3,t−1 = 0; (B.12)

We search for a solution to these first-order conditions in which Πt = Π̄, ∆t = ∆̄,

Yt = Ȳ at all times. A steady-state solution of this kind also requires that the

Lagrange multipliers take constant values. We furthermore conjecture the existence

of a solution in which Π̄ = 1, as stated in the text. Note that such a solution

implies that ∆̄ = 1, p(Π̄) = 1, pπ(Π̄) = −(θ − 1)α/(1 − α), and K̄ = F̄ . Using

these substitutions, we find that (the steady-state version of) each of the first-order

conditions (B.8) – (B.12) is satisfied if the steady-state values satisfy

[(1− τ̄)fy(Ȳ )− ky(Ȳ )]φ2 = Uy(Ȳ , 1),

(1− αβ)φ4 = −U∆(Ȳ , 1),

φ1 = (1− α)φ2,

φ3 = −φ2.

These equations can obviously be solved (uniquely) for the steady-state multipliers,

given any value Ȳ > 0.

Similarly, (the steady-state versions of) the constraints (B.2) – (B.5) are satisfied

if

(1− τ̄)uc(Ȳ − Ḡ) =
θ

θ − 1
µ̄wvy(Ȳ ), (B.13)

K̄ = F̄ = (1− αβ)−1k(Ȳ ),

Equation (B.13) can be solved for the steady-state value Ȳ .

B.3 A second-order approximation to utility (equations (2.1),

(2.2) and (2.3))

We derive here equations (2.1) — (2.3) in the main text, taking a second-order ap-

proximation to (equation (1.8)) following the treatment in Woodford (2003b, chap.
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6). We start by approximating the expected discounted value of the utility of the

representative household

Ut0 = Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(yt(i); ξt)di

]
. (B.14)

First we note that∫ 1

0

v(yt(i); ξt)di =
λ

1 + ν

Y 1+ω
t

A1+ω
t H̄ν

t

∆t = v(Yt; ξt)∆t

where ∆t is the measure of price dispersion defined in the text. We can then write

(B.14) as

Ut0 = Et0

∞∑
t=t0

βt−t0 [u(Yt; ξt)− v(Yt; ξt)∆t] . (B.15)

The first term in (B.15) can be approximated using a second-order Taylor expan-

sion around the steady state defined in the previous section as

u(Yt; ξt) = ū + ūcỸt + ūξξt +
1

2
ūccỸ

2
t + ūcξξtỸt +

1

2
ξ′tūξξξt +O(||ξ||3)

= ū + Ȳ ūc · (Ŷt +
1

2
Ŷ 2

t ) + ūξξt +
1

2
Ȳ ūccŶ

2
t

+Ȳ ūcξξtŶt +
1

2
ξ′tūξξξt +O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ ūc + Ȳ 2ūcc]Ŷ

2
t − Ȳ 2ūccgtŶt + t.i.p. +O(||ξ||3)

= Ȳ ūc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt

}

+t.i.p. +O(||ξ||3), (B.16)

where a bar denotes the steady-state value for each variable, a tilde denotes the

deviation of the variable from its steady-state value (e.g., Ỹt ≡ Yt−Ȳ ), and a hat refers

to the log deviation of the variable from its steady-state value (e.g., Ŷt ≡ ln Yt/Ȳ ).

We use ξt to refer to the entire vector of exogenous shocks,

ξ′t ≡
[

Ĝ gt qt µ̂w
t τ̂ t

]
,

in which Ĝt ≡ (Gt − Ḡ)/Y , gt ≡ Ĝt + sC c̄t, ωqt ≡ νh̄t + φ(1 + ν)at, µ̂w
t ≡ ln µw

t /µ̄w,

τ̂ t ≡ (τ t − τ̄)/τ̄ , c̄t ≡ ln C̄t/C̄, at ≡ ln At/Ā, h̄t ≡ ln H̄t/H̄. Moreover, we use the

definitions σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Ȳ . We have used the Taylor expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t +O(||ξ||3)
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to get a relation for Ỹt in terms of Ŷt. Finally the term “t.i.p.” denotes terms that

are independent of policy, and may accordingly be suppressed as far as the welfare

ranking of alternative policies is concerned.

We may similarly approximate v(Yt; ξt)∆t by

v(Yt; ξt)∆t = v̄ + v̄(∆t − 1) + v̄y(Yt − Ȳ ) + v̄y(∆t − 1)(Yt − Ȳ ) + (∆t − 1)v̄ξξt

+
1

2
v̄yy(Yt − Ȳ )2 + (Yt − Ȳ )v̄yξξt +

1

2
ξ′tv̄ξξξt+O(||ξ||3)

= v̄(∆t − 1) + v̄yȲ

(
Ŷt +

1

2
Ŷ 2

t

)
+ v̄y(∆t − 1)Ȳ Ŷt + (∆t − 1)v̄ξξt

+
1

2
v̄yyȲ

2Ŷ 2
t + Ȳ Ŷtv̄yξξt + t.i.p.+O(||ξ||3) (B.17)

= v̄yȲ [
∆t − 1

1 + ω
+ Ŷt +

1

2
(1 + ω)Ŷ 2

t + (∆t − 1)Ŷt − ωŶtqt

−∆t − 1

1 + ω
ωqt] + t.i.p.+O(||ξ||3). (B.18)

We further note that a Taylor approximation to (1.20), of first order in ∆̂t and of

second order in πt, takes the form

∆̂t = α∆̂t−1 +
α

1− α
θ(1 + ω)(1 + ωθ)

π2
t

2
+O(||ξ||3), (B.19)

which involves no linear terms in inflation. It follows that as long as ∆̂t0−1 =

O(||ξ||2),62 (B.19) implies that ∆̂t = O(||ξ||2) for all t ≥ t0. Then since

∆t = 1 + ∆̂t +O(|∆̂t|2),

it follows that ∆t − 1 = O(||ξ||2) for all t ≥ t0 as well.

Substituting this into (B.18) yields

v(Yt; ξt)∆t = (1− Φ)Ȳ uc

{
∆̂t

1 + ω
+ Ŷt +

1

2
(1 + ω)Ŷ 2

t − ωŶtqt

}
+ t.i.p. +O(||ξ||3),

(B.20)

where we have used the steady state relation v̄y = (1−Φ)ūcto replace v̄y by (1−Φ)ūc,

and where

Φ ≡ 1−
(

θ − 1

θ

)(
1− τ̄

µ̄w

)
< 1

62Note that equations (2.1), (2.2) and (2.3) in the text are correct only under this assumption. It
should be recalled that in footnote 47 of the text, we have defined the bound ||ξ|| so as to ensure
that this is true.
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measures the inefficiency of steady-state output Ȳ . Combining (B.16) and (B.20), we

then obtain equation (2.1) in the text,

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt − u∆∆̂t]

+ t.i.p. +O(||ξ||3), (B.21)

where

uyy ≡ (ω + σ−1)− Φ(1 + ω),

uyξξt ≡ [σ−1gt + (1− Φ)ωqt],

u∆ ≡ (1− Φ)

1 + ω
.

We finally observe that (B.19) can be integrated to obtain

∆̂t = αt−t0+1∆̂t0−1 +
α

(1− α)(1− αβ)
θ(1+ω)(1+ωθ)

t∑
s=t0

αt−s π2
s

2
+O(||ξ||3). (B.22)

Multiplying this by βt−t0 and summing over t, we obtain expression (2.2) in the text,

where “t.i.p.” refers to a multiple of ∆̂t0−1. By substituting this expression for the

term
∑∞

t=t0
βt−t0 ∆̂t in (B.21), we obtain equation (2.3) in the text, in which we

further define

κ ≡ (1− αβ)(1− α)

α

(ω + σ−1)

(1 + θω)
, uπ ≡ θ(ω + σ−1)(1− Φ)

κ
. (B.23)

B.4 A second-order approximation to the AS equation (equa-

tions (2.4), (2.7), and (2.8))

The AS relation can be written exactly as

log

(
1− αΠθ−1

t

1− α

)
=

θ − 1

1 + ωθ
(log Kt − log Ft). (B.24)

A second-order Taylor series for the left-hand side of (B.24) takes the form

log

(
1− αΠθ−1

t

1− α

)
=

α

1− α
(θ − 1)

{
πt +

1

2

θ − 1

1− α
π2

t +O(||ξ||3).
}

(B.25)
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It remains to derive similar second-order approximations for log Kt and log Ft on the

right-hand side.

The definitions of Kt and Ft imply second-order expansions

K̂t +
1

2
K̂2

t +O(||ξ||3) = (1− αβ)Et

∞∑
T=t

(αβ)T−t

[
k̂t,T +

1

2
k̂2

t,T

]
+O(||ξ||3) (B.26)

F̂t +
1

2
F̂ 2

t +O(||ξ||3) = (1− αβ)Et

∞∑
T=t

(αβ)T−t

[
f̂t,T +

1

2
f̂ 2

t,T

]
+O(||ξ||3) (B.27)

where k̂t,T and f̂t,T are given by

k̂t,T ≡ k̂T + θ(1 + ω)
T∑

s=t+1

πs

f̂t,T ≡ f̂T + (θ − 1)
T∑

s=t+1

πs

and we use the definitions

k̂T ≡ (1 + ω)ŶT − ωqT + µ̂w
T (B.28)

f̂T ≡ ŜT + ŶT − σ̃−1(ĈT − c̄T ) (B.29)

ŜT ≡ log(1− τ t)/(1− τ̄).

Substituting (B.25) into (B.24) yields

πt +
1

2

θ − 1

1− α
π2

t =
1− α

α

1

1 + ωθ
(K̂t − F̂t) +O(||ξ||3). (B.30)

Note that to first order, this reduces to

πt =
1− α

α

1

1 + ωθ
(K̂t − F̂t) +O(||ξ||2) (B.31)

=
(1− α)(1− αβ)

α

1

1 + ωθ
Et

∞∑
T=t

(αβ)T−t
[
k̂t,T − f̂t,T

]
+O(||ξ||2). (B.32)
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We can use (B.26)–(B.27) to obtain a second-order expansion for the right-hand

side of (B.30). Subtracting (B.27) from (B.26), we obtain

K̂t − F̂t = (1− αβ)Et

∞∑
T=t

(αβ)T−t

[
(k̂t,T − f̂t,T ) +

1

2
(k̂2

t,T − f̂ 2
t,T )

]

−1

2
(K̂2

t − F̂ 2
t ) +O(||ξ||3)

= (1− αβ)Et

∞∑
T=t

(αβ)T−t

[
(k̂t,T − f̂t,T ) +

1

2
(k̂2

t,T − f̂ 2
t,T )

]
(B.33)

−1

2
(K̂t − F̂t)(K̂t + F̂t) +O(||ξ||3)

= (1− αβ)Et

∞∑
T=t

(αβ)T−t

[
(k̂t,T − f̂t,T ) +

1

2
(k̂2

t,T − f̂ 2
t,T )

]
(B.34)

−1

2
(1− αβ)

α

(1− α)
(1 + ωθ)πtZt +O(||ξ||3),

where in passing from (B.33) to (B.34) we have used (B.31) to substitute for (K̂t−F̂t)

in the second term on the right-hand side, and

(K̂t + F̂t) = (1− αβ)Zt +O(||ξ||2)

to substitute for (K̂t + F̂t), in which expression we define

Zt ≡ Et

∞∑
T=t

(αβ)T−t
[
k̂t,T + f̂t,T

]
. (B.35)

We can use the definitions of k̂t,T and f̂t,T to further expand the first term on the

right-hand side of (B.34). We obtain

Et

∞∑
T=t

(αβ)T−t
[
k̂t,T − f̂t,T

]
= Et

∞∑
T=t

(αβ)T−t
[
k̂T − f̂T

]
+ (1 + ωθ)Et

∞∑
T=t

(αβ)T−t

T∑
s=t+1

πs

= Et

∞∑
T=t

(αβ)T−t
[
k̂T − f̂T

]
+

(1 + ωθ)

1− αβ
Pt, (B.36)

where

Pt ≡ Et

∞∑
T=t+1

(αβ)T−tπT , (B.37)
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and

1

2
Et

∞∑
T=t

(αβ)T−t
[
k̂2

t,T − f̂ 2
t,T

]
=

1

2
Et

∞∑
T=t

(αβ)T−t
[
k̂2

T − f̂ 2
T

]

+Et

∞∑
T=t

(αβ)T−t[θ(1 + ω)k̂T + (1− θ)f̂T ] ·
T∑

s=t+1

πs

+
1

2
(2θ + θω − 1)(1 + θω)Et

∞∑
T=t

(αβ)T−t

(
T∑

s=t+1

πs

)2

=
1

2
Et

∞∑
T=t

(αβ)T−t
[
k̂2

T − f̂ 2
T

]
+ Et

∞∑
T=t+1

(αβ)T−tπT NT

+
1

2

(2θ + θω − 1)(1 + θω)

(1− αβ)
Et

∞∑
T=t+1

(αβ)T−tπT (πT + 2PT )

where

Nt ≡ Et

∞∑
T=t

(αβ)T−t[θ(1 + ω)k̂T + (1− θ)f̂T ]. (B.38)

Substituting these expressions into (B.34), we obtain

K̂t − F̂t = (1− αβ)Et

∞∑
T=t

(αβ)T−t

[
(k̂T − f̂T ) +

1

2
(k̂2

T − f̂ 2
T )

]
+

+(1 + ωθ)Et

∞∑
T=t+1

(αβ)T−tπT + (1− αβ)Et

∞∑
T=t+1

(αβ)T−tπT NT +

1

2
(2θ + θω − 1)(1 + θω)Et

∞∑
T=t+1

(αβ)T−tπT (πT + 2PT )

−1

2
(1− αβ)

α

(1− α)
(1 + ωθ)πtZt +O(||ξ||3). (B.39)

This can be written recursively as

K̂t − F̂t +
1

2

α(1− αβ)(1 + ωθ)

(1− α)
πtZt = (1− αβ)

[
(k̂t − f̂t) +

1

2
(k̂2

t − f̂ 2
t )

]
+

+αβ(1 + ωθ)Etπt+1 + (1− αβ)αβEtπt+1Nt+1 +
1

2
(2θ + θω − 1)(1 + θω)Etπt+1(πt+1 + 2Pt+1) +

+αβEt

[
K̂t+1 − F̂t+1 +

1

2

α(1− αβ)(1 + ωθ)

(1− α)
πt+1Zt+1

]
+

+O(||ξ||3) (B.40)
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Using (B.30) to substitute for K̂t − F̂t in (B.40), we obtain

πt +
1

2

θ − 1

1− α
π2

t +
1

2
(1− αβ)πtZt =

1− α

α

(1− αβ)

(1 + ωθ)

[
(k̂t − f̂t) +

1

2
(k̂2

t − f̂ 2
t )

]
+

+(1− α)βEtπt+1 + (1− α)β
(1− αβ)

(1 + θω)
Etπt+1Nt+1 +

1

2
(2θ + θω − 1)(1− α)βEtπt+1(πt+1 + 2Pt+1) +

+αβEt

[
πt+1 +

1

2

θ − 1

1− α
π2

t+1 +
1

2
(1− αβ)πt+1Zt+1

]
+

+O(||ξ||3). (B.41)

This is our second-order approximation to the AS relation. Note that to first order,

this reduces to

πt =
1− α

α

(1− αβ)

(1 + ωθ)
(k̂t − f̂t) + βEtπt+1 +O(||ξ||2), (B.42)

as could also have been obtained directly from (B.32).

We can furthermore eliminate Nt by observing that (B.38) implies that

Nt ≡ 1

2
Et

∞∑
T=t

(αβ)T−t[(1 + θω)(k̂t + f̂t) + (2θ + θω − 1)(k̂t − f̂t)]

=
1

2
Et

∞∑
T=t

(αβ)T−t[(1 + θω)(k̂t,T + f̂t,T ) + (2θ + θω − 1)(k̂t,T − f̂t,T )]

−(2θ + θω − 1)(1 + θω)

(1− αβ)
Pt

=
1

2
(1 + θω)Zt +

1

2
(2θ + θω − 1)

(1 + θω)

1− α

α

(1− αβ)
πt

−(2θ + θω − 1)(1 + θω)

(1− αβ)
Pt (B.43)

By substituting (B.43) into (B.41), we obtain

πt +
1

2

θ − 1

1− α
π2

t +
1

2
(1− αβ)πtZt =

1− α

α

(1− αβ)

(1 + ωθ)

[
(k̂t − f̂t) +

1

2
(k̂2

t − f̂ 2
t )

]
+

+βEtπt+1 +
1

2
β(1− αβ)Etπt+1Zt+1 +

1

2
(2θ + θω − 1)βEtπ

2
t+1 + αβEt

[
1

2

θ − 1

1− α
π2

t+1

]
+

+O(||ξ||3),
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which can be rewritten as

πt +
1

2

θ − 1

1− α
π2

t +
1

2
(1− αβ)πtZt =

1− α

α

(1− αβ)

(1 + ωθ)

[
(k̂t − f̂t) +

1

2
(k̂2

t − f̂ 2
t )

]

+βEtπt+1 +
1

2
β(1− αβ)Etπt+1Zt+1 + βEt

[
1

2

θ − 1

1− α
π2

t+1

]

+
1

2
θ(1 + ω)βEtπ

2
t+1 +O(||ξ||3). (B.44)

This is a relation of the form (2.4); it can be integrated forward to obtain a relation

of the form (2.8),

Vt0 =
1− α

α

(1− αβ)

(1 + ωθ)
Et

∞∑
t=t0

(αβ)t−t0

[
(k̂t − f̂t) +

1

2
(k̂2

t − f̂ 2
t )

]
+

1

2
θ(1+ω)Et

∞∑
t=t0

(αβ)t−t0π2
t ,

(B.45)

where

Vt ≡ πt − 1

2

1− θ

1− α
π2

t +
1

2
(1− αβ)πtZt +

1

2
θ(1 + ω)π2

t . (B.46)

Note that this last definition is of the form (2.5) given in the text, where the coeffi-

cients are defined as

vπ ≡ θ(1 + ω)− 1− θ

(1− α)
, vz ≡ (1− αβ)

2
.

We then obtain the relations given in the text by substituting into the above

equations the definitions (B.28) for k̂t and (B.29) for f̂t. In the expression for f̂t, we

can furthermore use a second-order approximation to the identity Yt = Ct + Gt to

solve for Ĉt as a function of Ŷt and exogenous disturbances,

Ĉt = s−1
C Ŷt − s−1

C Ĝt +
s−1

C (1− s−1
C )

2
Ŷ 2

t + s−2
C ŶtĜt + s.o.t.i.p. +O(||ξ||3), (B.47)

where “s.o.t.i.p” refers to second-order (or higher) terms independent of policy; the

first-order terms have been kept as these will matter for the log-linear aggregate-

supply relation that appears as a constraint in our policy problem. We similarly note

that

Ŝt = −ωτ τ̂ t + s.o.t.i.p. +O(||ξ||3), (B.48)

where ωτ ≡ τ̄ /(1 − τ̄). Equations (B.47) – (B.48) can be used to substitute for Ĉt

and Ŝt in (B.29), resulting in an expression for f̂t that involves only Ŷt and elements

of ξt.
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Substituting these expressions for k̂t and f̂t into (B.44), we obtain equation (2.4)

in the text, where we define

cξξt ≡ (ω + σ−1)−1[−σ−1gt − ωqt + µ̂w
t + ωτ τ̂ t],

cyy ≡ (2 + ω − σ−1) + σ−1(1− s−1
C )(ω + σ−1)−1,

cyξξt ≡ (ω + σ−1)−1[−σ−1s−1
C Ĝt + σ−1(1− σ−1)gt + ω(1 + ω)qt

−(1 + ω)µ̂w
t − (1− σ−1)ωτ τ̂ t],

cπ ≡ θ(1 + ω)

κ
,

and κ is again the coefficient defined in (B.23). (Note that κ > 0, as asserted in

the text.) The same substitutions into definition (B.35) allow us to define Zt by an

expression of the form (2.6) given in the text, where

zy ≡ (2 + ω − σ−1) + vk(ω + σ−1),

zξξt ≡ σ−1(1− vk)gt − ω(1 + vk)qt + (1 + vk)µ̂
w
t − ωτ (1− vk)τ̂ t,

zπ ≡ −(ω + σ−1)

κ
vk,

in which expressions we define

vk ≡ κ

(ω + σ−1)

α

1− αβ
(1− 2θ − ωθ).

To a first-order approximation, equation (2.4) reduces to equation (2.7) given in

the text. Finally, the same substitutions for k̂t and f̂t into (B.45) yields equation

(2.8) in the text, where the term cξξt is now included in terms independent of policy.

(Such terms matter when part of the log-linear constraints, as in the case of (2.7),

but not when part of the quadratic objective.)
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B.5 Derivation of equation (2.9)

We can multiply equation (2.8) by ΦȲ ūc and subtract from (2.1) to obtain

Ut0 = −Ȳ ūcEt0

∞∑
t=t0

βt−t0

{
1

2
qyŶ

2
t − Ŷt(uyξξt + Φcyξξt) +

1

2
qππ2

t

}
+Tt0+t.i.p.+O(||ξ||3),

where

qπ ≡ uπ + Φcπ

=
θ(ω + σ−1)(1− Φ)

κ
+ Φ

θ(1 + ω)

κ

=
θ

κ
[(ω + σ−1) + Φ(1− σ−1)],

qy ≡ uyy + Φcyy

= (ω + σ−1)− Φ(1 + ω) + Φ(2 + ω − σ−1) + Φσ−1(1− s−1
C )(ω + σ−1)−1

= (ω + σ−1) + Φ(1− σ−1) +
Φσ−1(1− s−1

C )

ω + σ−1
.

This can be rewritten in the form (2.9) given in the text, where

Ŷ ∗
t ≡ q−1

y [uyξξt + Φcyξξt]

= q−1
y {σ−1gt + (1− Φ)ωqt + (ω + σ−1)−1Φ[−σ−1s−1

C Ĝt + σ−1(1− σ−1)gt + ω(1 + ω)qt

−(1 + ω)µ̂w
t − (1− σ−1)ωτ τ̂ t]}

= ω1Ŷ
n
t − ω2Ĝt + ω3µ̂

w
t + ω4τ̂ t,

and Ω, Ŷ n
t , and the ωi are defined as in the text.
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B.6 The optimal non-inertial plan (equations (4.2), (4.3),

(4.6), and (4.13))

We take a second-order approximation of (4.1) around the same steady state as in

the calculations above. We thus obtain

Ût0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0

{
ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt − u∆∆̂t

}
+

−φ̄
∗
2αF̄ [F̂t0 − K̂t0 − (1 + θω)πt0 +

1

2
(F̂ 2

t0
− K̂2

t0
) +

+(θ − 1)F̂t0πt0 − θ(1 + ω)K̂t0πt0 +
1

2
((θ − 1)2 − θ2(1 + ω)2)π2

t0
]

−φ̄
∗
2αF̄ [((θ − 1)πt0 + F̂t0)φ̂

∗
2,t0−1 − (θ(1 + ω)πt0 + K̂t0)φ̂

∗
3,t0−1] +

+t.i.p. +O(||ξ||3), (B.49)

where we have used the facts that in the steady state φ̄
∗
2 = −φ̄

∗
3 and K̄ = F̄ as shown

in Appendix B.2.

We can simplify the above expression to obtain

Ût0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0

{
ΦŶt − 1

2
uyyŶ

2
t + Ŷtuyξξt − u∆∆̂t

}
+ φ̄

∗
2

(1− αβ)(ω + σ−1)

κ
F̄Vt0

−φ̄
∗
2αF̄ [((θ − 1)φ̂

∗
2,t0−1 − θ(1 + ω)φ̂

∗
3,t0−1)πt0 ]− φ̄

∗
2αF̄ [F̂t0φ̂

∗
2,t0−1 − K̂t0φ̂

∗
3,t0−1] +

+t.i.p. +O(||ξ||3), (B.50)

where we now have used the results

K̂t − F̂t =
α

1− α
(1 + ωθ)πt +O(||ξ||2), (B.51)

K̂t + F̂t = (1− αβ)Zt +O(||ξ||2), (B.52)

established in Appendix B.3, and recalled the definitions of Vt and Zt given by (2.5)

and (2.6), respectively.

We can then substitute equation (2.8) into (B.50) to obtain

Ût0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
(Ŷt − Ŷ ∗

t )2
}

+ Tt0 + φ̄
∗
2

(1− αβ)(ω + σ−1)

κ
F̄Vt0 +

−φ̄
∗
2αF̄ [((θ − 1)φ̂

∗
2,t0−1 − θ(1 + ω)φ̂

∗
3,t0−1)πt0 ]− φ̄

∗
2αF̄ [F̂t0φ̂

∗
2,t0−1 − K̂t0φ̂

∗
3,t0−1] +

+t.i.p. +O(||ξ||3). (B.53)
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Then using (B.31) to write πt0 (to first order) as a linear function of X̂t0 , the second

line of (B.53) can be written as a quadratic form φ̂
∗′
t0−1QX̂t0 . We thus obtain an

expression of the form (4.2) given in the text.

We next recall from Appendix B.2 that φ̄
∗
2 = −Φ/[(1 − τ̄)(ω + σ−1)] and that

F̄ = (1− τ̄)ūcȲ /(1− αβ), so that

Tt0 ≡ ΦȲ ūcκ
−1Vt0 = −φ̄

∗
2

(1− αβ)(ω + σ−1)

κ
F̄Vt0 . (B.54)

Using this result, (4.2) simplifies to (4.3).

We can furthermore substitute (B.51) and (B.52) into (B.53) to obtain

Ût0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
(Ŷt − Ŷ ∗

t )2
}

+

−φ̄
∗
2αF̄ [((θ − 1)φ̂

∗
2,t0−1 − θ(1 + ω)φ̂

∗
3,t0−1)πt0

+
1

2
(1− αβ)Zt(φ̂

∗
2,t0−1 − φ̂

∗
3,t0−1)−

1

2

α(1 + θω)

1− α
(φ̂
∗
2,t0−1 + φ̂

∗
3,t0−1)]

t.i.p. +O(||ξ||3). (B.55)

We finally observe that a first-order approximation of constraints (B.11) and (B.12)

in appendix B.2 implies that

φ̂
∗
2,t − αφ̂

∗
2,t−1 = φ̂

∗
3,t − αφ̂

∗
3,t−1. (B.56)

It follows that in the case of any self-consistent function φ(·) mapping histories of the

exogenous disturbances in vectors of Lagrange multipliers, one must have

φ̂
∗
2,t = φ̂

∗
3,t (B.57)

for any possible history of disturbances. We can then simplify (B.55) to

Ût0 = −ΩEt0

∞∑
t=t0

βt−t0
{qπ

2
π2

t +
qy

2
yt

}
− ΩΦκ−1φ̂

∗
2,t0−1(πt0 − π∗t0) +

+t.i.p. +O(||ξ||3). (B.58)

Defining ϕt0−1 = −Φκ−1φ̂
∗
2,t0−1, we obtain a representation of the form (4.5) given in

the text. This welfare criterion is in turn easily seen to vary inversely with the loss

function (4.6).
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In order to compute the optimal non-inertial plan, we must evaluate (4.6) in the

case that inflation and the output gap evolve in accordance with (4.8) – (4.9). Using

the restrictions (4.10) – (4.11), we obtain

E[Lr
t0
] = E{Et0

∞∑
t=t0

βt−t0 [ qy

2
(ȳ + fyut)

2 + qπ

2
(π̄ + fπut)

2]} − Eϕt0−1(π̄ + fπut0),

suppressing a term that is independent of policy. This can in turn be simplified to

E[Lr
t0
] =

(qyȳ
2 + qππ̄2)

2(1− β)
+

qyf
2
y + qπf 2

π

2

σ2
u

(1− β)
− fπE{ϕt0−1ut0}, (B.59)

using the law of motion (4.7) for the process {ut}. Finally, using the solution (4.12)

for ϕ∗t0−1, we can show that

E{ϕ∗t0−1ut0} = − qπρuµ

(1− βρuµ)(1− ρuµ)
σ2

u.

Substituting this into (B.59), we obtain the criterion (4.13) given in the text.
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