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Abstract

This paper proposes a general method for deriving an optimal monetary policy
rule in the case of a dynamic linear rational-expectations model and a quadratic ob-
jective function for policy. A commitment to a rule of the type proposed results in a
determinate equilibrium in which the responses to shocks are optimal. Furthermore,
the optimality of the proposed policy rule is independent of the specification of the
stochastic disturbances. Finally, the proposed rules can be justified from a “time-
less perspective,” so that commitment to such a rule need not imply time-inconsistent
policy.

We show that under fairly general conditions, optimal policy can be represented
by a generalized Taylor rule, in which however the relation between the interest-rate
instrument and the other target variables is not purely contemporaneous, as in Tay-
lor’s specification. We also offer general conditions under which optimal policy can be
represented by a “super-inertial” interest-rate rule, and under which it can be repre-
sented by a pure “targeting rule” that makes no explicit reference to the path of the
instrument.
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2001 Far Eastern Meeting of the Econometric Society, Kobe, Japan, July 21, 2001. We thank Ed Nelson,
Julio Rotemberg and Lars Svensson for helpful discussions, and the National Science Foundation, through a
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Both positive and normative accounts of monetary policy are often expressed in terms

of systematic rules for determining the central bank’s operating target for a short-term

nominal interest rate. For example, the “Taylor rule” (Taylor, 1993) expresses the Fed’s

operating target for the federal funds rate as a linear function of a current inflation rate

and a current measure of output relative to potential. Alternatively, “inflation targeting” is

often described as a commitment to adjust a nominal interest-rate instrument as necessary

in order to bring about an inflation projection (say, over a two-year horizon) consistent with

the central bank’s inflation target (e.g., Vickers, 1998; Svensson, 1999a). A common feature

of such prescriptions is that a precise criterion is given that should be checked each time

an interest-rate decision is made, in order to determine whether the central bank’s current

interest-rate target is acceptable or not, given the observed or projected behavior of variables

such as inflation and the “output gap” (i.e., the variables that define the bank’s stabilization

objectives, rather than any “intermediate” targets).

This paper considers the optimal choice of a criterion of this form to guide monetary

policy deliberations. The question has been extensively discussed in recent years.1 However,

most of the recent literature assumes some low-dimensional parametric family of policy rules,

and then optimizes over the coefficients of the rule, using an economic model to compute the

equilibrium associated with each possible set of parameters. A characteristic weakness of

such work,2 in our view, is that the conclusions reached about the optimal values of certain

parameters are likely to be strongly influenced by the parametric family of rules considered,

i.e., by which other kinds of feedback are assumed not to be possible. Hence we propose

here to take a different approach. We propose first to characterize the best possible pattern

of equilibrium responses to disturbances — solving an optimization problem in which the

structural equations of one’s model of the economy appear as constraints — and then ask

what kind of policy rule can bring about the desired equilibrium.

This alternative approach is standard in the theory of public finance, and is also used in

1See, e.g., the papers in Taylor (1999).
2This includes our own previous studies, such as Rotemberg and Woodford (1999).
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optimal-control approaches to the analysis of monetary policy, such as that of Currie and

Levine (1993). However, work of this latter kind typically assumes that optimal policy has

been adequately characterized once one has solved for the optimal instrument setting as a

function of the history of exogenous disturbances.3 Instead, our primary interest will be in

the further question of how best to choose a policy rule with which to implement the optimal

pattern of responses to disturbances. We shall argue that a policy rule specified in terms of

a mapping from the history of disturbances to the instrument setting is not the only possible

type of policy rule that would be consistent with the optimal pattern of responses, and that

it is generally not the best one. Thus our concern with policy rules does not derive from

the idea we should be willing to accept an outcome that is not as good as what could be

achieved by a more sophisticated policy, purely for the sake of maintaining a simple policy

commitment. Instead, we note that many forms of policy commitment are equally suitable

for implementing the optimal equilibrium, so that we can ask for a representation of optimal

policy that has other desirable features as well.

For example, we shall demand that our policy rule be not merely consistent with the de-

sired equilibrium, but also that commitment to the rule imply a determinate equilibrium, so

that the rule is not equally consistent with other, less desirable equilibria. We shall also look

for policy rules that are time-invariant, and that refer only to the evolution of certain state

variables (those that we call target variables) that represent the central bank’s stabilization

goals. Finally, we shall seek to derive policy rules that continue to be optimal regardless

of what the statistical properties of the exogenous disturbances hitting the economy are

believed to be.

In this paper, we present a method for deriving policy rules with these properties, for

a fairly general class of policy problems in which the monetary transmission mechanism is

represented by a linear(ized) rational-expectations model, and stabilization objectives are

represented by a discounted quadratic loss function.4 Under fairly general circumstances,

3These literatures also typically identify optimal policy with what we call a “t0−optimal commitment”
in section 3 below, whereas we argue for a slightly different concept of optimal policy, that does not seek to
exploit the expectations that people happen to have held prior to the adoption of the policy.
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optimal policy can be represented by a sort of generalized Taylor rule, i.e., an expression for

the central bank’s operating target as a linear function of the projected paths of the target

variables. However, an optimal criterion of this kind is generally not a purely contempora-

neous one, as in Taylor’s (1993) rule. We show that the presence of forward-looking terms

in the model’s structural equations necessarily implies history-dependence of the optimal

policy rule; in particular, the optimal instrument setting is a function of lagged values of the

instrument, even if only the contemporaneous value of the instrument enters the structural

equations. We furthermore offer general conditions under which an optimal instrument rule

will involve super-inertial dynamics for the policy instrument, as in the optimal interest-rate

rules derived by Rotemberg and Woodford (1997, 1999). We also show, conversely, that the

presence of lagged endogenous variables in the model’s structural equations implies that an

optimal policy rule will be at least somewhat forward-looking.5

We also find that in general, an optimal rule of the kind proposed here defines the

central bank’s operating target only implicitly; that is, the central bank cannot solve for the

appropriate instrument setting without projecting the paths of variables that depend on the

setting that it chooses. Thus the central bank must use a model of the economy in choosing

the level of interest rates, as in the inflation-forecast targeting regimes mentioned above.

Indeed, our optimal rules can be viewed as “targeting rules” in the sense of Svensson (1997,

1999a, 2001) and Svensson and Woodford (1999) — rules that are specified in terms of a

criterion that certain target variables are to satisfy as a result of the way the central bank

adjusts its instrument — even when they involve an implicit expression for the interest rate,

and in some cases they can only be understood as “targeting rules”.

In sections 1-4, we discuss further our general criteria for an optimal policy rule, and

state them more precisely. We then offer in sections 5-7 a general approach to the derivation

of optimal policy rules that allows us to derive a rule (or rules) satisfying all of these criteria

4Conditions under which the linear policies that are optimal for a problem of this kind represent a linear
approximation to optimal policy from the point of view of expected-utility maximization in an intertemporal
general-equilibrium model are presented in Woodford (2002, chap. 6).

5The degree to which an optimal rule is likely to be forward-looking in practice is considered quantitatively
in our companion paper, Giannoni and Woodford (2002).
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in the case of a fairly general linear-quadratic policy problem. In this general discussion,

the instrument of policy need not be an interest rate, and the stabilization goals need have

nothing to do with nominal variables, though this is the application that motivates our

formulation of the problem. Applications to the problem of interest-rate policy in the context

of explicit optimizing models of the monetary transmission mechanism are then taken up in

a companion paper (Giannoni and Woodford, 2002).

1 Alternative Forms of Policy Rules

We begin by discussing in general terms the properties that we would like a monetary

policy rule to have, in order for it to be considered a suitable approach to implementing

the optimal responses to disturbances that one can characterize using standard control-

theoretic methods. A first issue is what we should consider to be a complete specification of

a monetary policy rule. This might seem to have a simple answer: a policy rule should specify

the central bank’s instrument setting as a function of the “state of the world” at that time,

which would be identified by the complete history of exogenous disturbances up through

the current date. But we shall not insist upon this sort of representation of optimal policy.

First, it is not the way in which the sorts of policy commitments that are actually discussed

in central-banking circles are ever expressed. Instead, popular current proposals, such as the

Taylor rule (Taylor, 1993) or inflation-forecast targeting (Svensson, 1999a), specify responses

to the actual and/or projected evolution of endogenous variables such as inflation and real

activity. That such proposals appear more practical (whatever their other merits) is clear;

a rule specified in terms of the appropriate response to “this quarter’s technology shock”

and so on would obviously raise questions about the measurement of the state in question

that are even more severe than the questions that arise in practice about the appropriate

measurement of inflation and of the “output gap”. An even more serious problem is the fact

that it would not be feasible, in practice, to list all of the possible types of real disturbances

on which optimal state-contingent policy should depend; thus identification of the state of

the economy through a complete enumeration of the exogenous disturbances (let alone their
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complete histories!) is not really possible for an actual economy. Of course, description of

the economy’s state in terms of a small number of endogenous variables may or may not be

an adequate substitute, but it is clear that we should consider the possible advantages of

rules specified in that way rather than excluding them a priori. In fact, we show below that

certain other desiderata — such as commitment to a policy rule that implies a determinate

equilibrium — may require that the policy rule specify feedback from endogenous variables.

It is for this reason that the question of how to implement optimal policy remains a

non-trivial one, even after the optimal responses to shocks have been computed. And once

we admit the possibility of rules that specify feedback from endogenous variables, it is rather

obvious that there will cease to be a uniquely optimal policy rule; for the same pattern of

equilibrium adjustments of the policy instrument may be equivalently described in terms of

feedback from any of a variety of endogenous variables that all respond to the same ultimate

disturbances in equilibrium. This is especially true if our model assumes the existence

of only a few real disturbances, and less so if there are as many distinct disturbances as

endogenous variables. But even in the latter case, there will be a large multiplicity of rule

specifications that are equally consistent with the optimal equilibrium, if we allow the rule to

specify feedback from exogenous as well as endogenous variables. And while the additional

requirement that the rule imply a determinate equilibrium reduces the set of possibilities,

this generally amounts to requiring that the coefficients of the feedback rule satisfy certain

inequalities, that will not suffice to determine unique coefficients.6 It is for this reason that

we are able to ask for rules with other desirable properties as well, such as the robustness

that we discuss below.

The policy problems that we treat in this paper are ones in which the constraints upon the

feasible set of paths for the various state variables can be represented by a system of linear

(or log-linear) equations, and in which the policymaker’s objective can be represented by a

quadratic function of these variables. In such cases, optimal policy rules can be described

by linear relations among the state variables. Thus the general form of policy rule that we

6See, e.g., Svensson and Woodford (1999) and Woodford (2002, chap. 4).
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wish to consider is a relation of the form

φiit + φ′z z̄t + φ′ZZ̄t + φ′ss̄t = φ̄, (1.1)

where it is the policy instrument (assumed for simplicity to be a scalar7), the value of

which is chosen in period t, z̄t is a vector of non-predetermined endogenous variables (“jump

variables”), the values of which may depend upon both the policy action and exogenous

disturbances at date t, Z̄t is a vector of predetermined endogenous variables (lags of variables

that are included in z̄t), s̄t is a vector of exogenous state variables (disturbances) that affect

the equilibrium evolution of the endogenous variables, and the coefficients φi, φz, and so on

are constants. This notation should be understood to allow dependence of current policy

both on forecasts (for example, the inflation forecast Etπt+k may be an element of z̄t) and

on past policy (as it−j may be an element of Z̄t). Our assumption here that the intercept

term φ̄ is not time-varying reflects a time-invariance property that we argue below to be a

desirable feature of a policy rule.

We assume that either φi 6= 0, φz 6= 0, or both, so that (1.1) constrains possible endoge-

nous outcomes at date t, rather than referring only to variables that cannot be affected by

the policy decision at date t. In the case that φi 6= 0, but φz = 0, equation (1.1) can be

solved for the instrument setting it as an explicit function of predetermined and exogenous

state variables alone, which variables have determinate values independent of the policy deci-

sion. In this case the rule is what Svensson and Woodford (1999) call an explicit instrument

rule. One might suppose that a fully specified policy rule should be explicit in this sense.

However, in this case some popular practical proposals such as inflation-forecast targeting

(Svensson, 1999a) would be excluded as unsuitable in form. Yet the use of such rules as

guides to policy in central banks suggests that it is of interest to consider the possibility of

representing optimal policy in such a form.

Furthermore, we shall show that desirable policy rules (on grounds to be discussed below)

can typically not be expressed in this form. While these rules could equivalently be expressed

7It should be obvious in what follows that our equations have a natural extension to the case in which it
represents a vector of instruments the values of which are chosen each period.
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as explicit instrument rules — by substituting for current inflation the equilibrium value of

that variable as a function of predetermined and exogenous state variables, and similarly

for other variables, including the current inflation forecast — this explicit description would

not remain the same in the case of a change in the specified properties of the exogenous

disturbance processes. Thus the explicit version of the rule would lack the robustness of the

version that we shall prefer. For this reason it is desirable to consider rules that implicitly

specify an instrument setting at each point in time, even if the central bank has to use

a complete model of the economy to determine the actual instrument setting, rather than

being able to delegate the task of policy implementation to a clerk with a calculator as in

the case of a rule that is “operational” in McCallum’s (1999) sense.

It is arguable that “operationality” is desirable, on the ground that in this case can the

central bank’s fulfillment of its supposed commitments be directly verified by members of the

public.8 But while we note that public understanding of and confidence in the central bank’s

commitments is crucial to successful stabilization policy, it is not clear that the improvement

in the private sector’s ability to predict central bank policy as a result of commitment to

a rigid, simple rule should be great enough to outweigh the advantages of a more flexible

specification (should the latter policy still be fairly well understood). In any event, it seems

unlikely under present circumstances, as Svensson (2001) has stressed, that any central bank

would be willing to commit itself to an explicit, mechanical rule of this kind, and so we shall

not limit our study to consideration of rules of that kind.

An implicit policy rule in which both φi and φz are non-zero is an implicit instrument

8If this is the ground for insistence upon the requirement, then one should also require that the rule
specify feedback only from state variables corresponding to published statistics, rather than allowing de-
pendence upon exogenous disturbances. It is clear that not all systematic policies need have an equivalent
representation of this form; for example, such a rule cannot allow the period t nominal interest rate to
depend, either directly or indirectly, upon any disturbances to the economy in period t. Thus the study
of what can be achieved by rules that are “operational” in such a strict sense requires one to consider the
degree to which optimal policy can be approximated by a simple rule that is admittedly not fully optimal
(but may be preferred for its simplicity). This topic is not treated here, as it cannot usefully be addressed
except in the context of a model that is intended as a realistic full representation of the various types of
disturbances affecting the economy. Rotemberg and Woodford (1999) provides an example of such a study,
in which rules that are operational in McCallum’s sense are among the families of simple rules considered.
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rule. This is a formula for setting the policy instrument as a function of other variables,

some of which must be projected by the central bank in order to implement the rule, with

the projections themselves being conditional upon (and affected by) the instrument setting.

Taylor’s classic (1993) formulation of his rule is arguably of this kind, since the quarter t

federal funds rate target is specified as a function of the quarter t GDP deflator and quarter

t real GDP, both of which would have to be projected at the time that the funds rate is

set. In the case of a bank with a model of the economy that implies that current-quarter

inflation or output should depend on current-quarter interest rates, such a rule is an implicit

instrument rule.9 Other examples would include the rules, specifying the short-term nominal

interest rate as a function of an inflation forecast, that are sometimes used to represent the

policies of inflation-targeting central banks (e.g., Black et al., 1997; Batini and Haldane,

1999).

Of course, given that such rules specify the instrument setting only implicitly, an obvious

question arises as to whether they represent a well-defined policy specification at all. Our

view is that they do if and only if the rule in question, when adjoined to the other equations

of a structural model, is consistent with the existence of a rational-expectations equilibrium,

and implies a determinate solution for the state-contingent path of the policy instrument (in

the sense described further in the next section). This means that the question whether a

given implicit rule can be considered a well-defined policy specification is model-dependent.

However, it depends only upon the coefficients by which the endogenous variables enter

the (linear) structural equations of one’s model, and not upon the assumed properties of

the exogenous disturbance processes. We argue below that robustness to changes in beliefs

about the nature of the exogenous disturbances is the primary sense in which it is important

for a proposed policy rule to be robust.

Relation (1.1) can also describe a well-defined policy rule in the case that φi = 0, as long

as φz 6= 0. In this case, the equation must be understood to specify a (pure) targeting rule

9On the other hand, if inflation and output are both predetermined variables, as in many models, then
the Taylor rule would be an example of an explicit instrument rule. Optimizing models of this kind are
discussed in Giannoni and Woodford (2002).
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of the kind advocated by Svensson (1999a, 2001).10 Such a rule specifies a target criterion

that the central bank’s projection of the economy’s future path should satisfy; the bank is

committed each period to adjust its instrument as necessary to bring about a condition in

which its projection satisfies the target criterion. An example (Svensson’s “strict inflation

targeting” rule) would be the criterion that the conditional forecast at date t of inflation at

some date t + k always equal the inflation target π̄; in a more complicated example (that

Svensson offers as an example of “flexible inflation targeting”), the criterion involves both the

conditional forecast of future inflation and a conditional forecast of the output gap, possibly

at a shorter horizon. In neither case does the criterion that the central bank commits to

maintain directly involve its instrument. However, such a rule may represent a feasible and

complete specification of policy, just as with an implicit rule that provides a formula for

the instrument setting. Once again, we shall consider that the rule represents a well-defined

policy specification if, when adjoined to the other structural equations, it is consistent with

the existence of a rational-expectations equilibrium and implies a determinate solution for

the path of the instrument. Once we admit that implicit rules can represent well-defined

policies, there is really no reason to restrict attention to rules that are expressed as formulas

for the instrument setting, and indeed the distinction between instrument rules and targeting

rules is probably not as important as that between explicit rules and implicit rules (of either

type).11

Finally, we consider whether it is desirable to restrict our attention to policy rules that

are purely forward-looking in the sense of Woodford (2000). These are rules (whether explicit

or implicit) that make policy a function only of state variables that are relevant to the de-

termination of current or future target variables (i.e., variables that affect the central bank’s

loss function either currently or in the future). In the kind of policy problem considered

10Svensson further distinguishes between “general” and “specific” targeting rules; here we consider only
the latter way of specifying a policy commitment. See also Svensson and Woodford (1999).

11Note that implicit instrument rules might also be considered to be examples of targeting rules, in which
the target criterion happens to involve the central bank’s instrument; for example, Svensson (2001) discusses
targeting rules that involve a short-term nominal interest rate. We shall speak of a pure targeting rule in
the case that the targeting rule cannot alternatively be interpreted as an implicit instrument rule.
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here, we assume a discounted quadratic loss function of the form

Et0

∞∑
t=t0

βt−t0Lt, (1.2)

where t0 is the initial date at which a policy rule is adopted, 0 < β < 1 is a discount factor,

and the period loss Lt is of the form

Lt =
1

2
(τ t − τ ∗)′W (τ t − τ ∗), (1.3)

where τ t is a vector of target variables, τ ∗ specifies the vector of target values for these vari-

ables, and W is a symmetric, positive-definite matrix. The target variables are furthermore

assumed to be linear functions of a subset of the endogenous variables mentioned earlier,

τ t = T yt, (1.4)

where

yt ≡



Zt

zt

it


 ,

Zt is a subset of the vector of predetermined variables Z̄t, zt is a subset of the vector of non-

predetermined endogenous variables z̄t, and T is a matrix of coefficients. We furthermore

suppose that Zt includes all of the predetermined endogenous variables that constrain the

possible equilibrium evolution of the variables ZT and zT for T ≥ t, and that a subset st of

the exogenous states includes all of the exogenous states that contain information about the

possible future evolution of the variables ZT and zT for T ≥ t.

A rule (1.1) is then purely forward-looking if it involves non-zero weights on variables in

z̄t, Z̄t, or s̄t only to the extent that (i) they have non-zero weights in (1.4), (ii) they enter with

non-zero weights in the structural equations that determine the possible values of variables

zt of type (i), (iii) lagged values of these variables are elements of Zt or st of types (i) or

(ii), so that the current values are relevant to the determination of target variables at some

later date, or (iv) they represent conditional expectations at date t of variables of types (i)

or (ii) at some later date. It follows that a purely forward-looking rule will involve only the
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instrument it and the variables in zt, Zt, and st, together (perhaps) with various conditional

expectations of the form Etzt+j.

In the case of the loss function assumed in the examples in Giannoni and Woodford

(2002), the target variables are inflation, the output gap, and the short-term nominal interest

rate itself. Thus examples of purely forward-looking rules would include implicit instrument

rules that specify the short-term nominal interest rate as a function solely of projections of

current and future values of inflation and the output gap. They would also include targeting

rules in which the target criterion involves only projections of current or future inflation

rates and output gaps. Many popular proposals are obviously of this kind, though the stress

on the forward-looking character of recommended policy has probably been greatest in the

literature on inflation-forecast targeting.

One might suppose on dynamic-programming grounds that optimal policy should have

no need for dependence on state variables that enter neither the objective function nor the

constraints of the policy problem looking forward from a given date, and thus that there

would be no loss of generality in restricting our attention to purely forward-looking rules.

Doing so might be expected to have the advantage of eliminating redundant complexity from

our representation of optimal policy, and thus to reduce the multiplicity of optimal rules that

would otherwise exist.

Unfortunately, as explained in Woodford (1999a), this “dynamic programming” argu-

ment is incorrect in the case of forward-looking private-sector behavior. The optimal state-

contingent path of the central bank’s instrument generally involves additional history-dependence;

it is optimal for the bank to commit itself to condition its later policy upon disturbances

that no longer constrain the possible evolution of the target variables, because of the effect of

the anticipation of such dependence upon private-sector behavior at earlier dates. A purely

forward-looking policy rule can at best be chosen to implement what Woodford (1999a) calls

“the optimal non-inertial plan”; but as is shown there, this is generally not fully optimal.

Thus, while we do give brief consideration in Giannoni and Woodford (2002) to optimal

policy within this restricted class of rules, we do not limit our attention to rules of this kind.
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Finally, we shall give particular attention to policy rules that are simple in a different

respect. By a direct instrument rule we shall mean a rule that specifies feedback only from

the observed and/or projected paths of the target variables, and from the past evolution of

the instrument itself, if this is not one of the target variables. Such a rule thus specifies a

direct connection between the bank’s ultimate objectives, the target variables τ t, and the

variable about which it makes an immediate decision, its instrument it, that does not involve

any “intermediate target” variables. We shall similarly define a direct targeting rule as one

in which the target criterion involves only (leads and lags of) the target variables.

It is obvious that many popular current proposals, including both the Taylor rule and

standard formulations of inflation-forecast targeting, are direct rules in this sense. Direct

rules evidently have a degree of practical appeal, and probably facilitate communication with

the public about the nature of policy as well. Reference to ambiguous state variables such

as “the output gap” obviously presents some difficulties, both for the implementation of a

policy rule and for the explanation of policy to the public; but if such terms of art must

be used — and in general they must be, if the policy rule is to be robustly optimal — it is

probably best to use terms that refer directly to the goals of policy, so that the meaning of

the variable can be discussed in terms of what a desirable target (say, for output) is believed

to be, rather than terms that have no meaning except in the context of a particular model

of the economy.

We shall find that it is possible to formulate direct rules that are optimal, and indeed ro-

bustly optimal, in a sense that is defined in section 4 below. We could formulate a large class

of alternative rules that would also be robustly optimal (in the same sense), by substituting

for one or another variable in terms of others using one or more of the structural equations

of our model of the economy. However, these alternative representations of optimal policy

would all involve additional variables, such as the exogenous disturbances, that enter the

structural equations of the model. Restricting attention to optimal direct rules allows us to

reach much more definite conclusions about the nature of an optimal rule, and these are the

results that we shall emphasize.
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2 Determinacy of Equilibrium

We turn now to a more precise discussion of the desiderata that we would like a policy

rule to satisfy. First of all, we shall consider only rules that imply a determinate rational

expectations equilibrium, by which we mean a unique equilibrium with the property that

bounded disturbance processes result in bounded fluctuations in the endogenous variables.12

Rules that imply indeterminacy are problematic for several reasons. As noted above, in the

case of an implicit rule, it is not even clear that an equation of the form (1.1) specifies any

well-defined policy.

And even in the case of an explicit instrument rule, a rule that implies indeterminacy

is clearly undesirable. The mere fact that such a rule may be consistent with a desirable

equilibrium is little recommendation for the rule if it is also equally consistent with other,

much less desirable equilibria. In the case of the linear models and quadratic loss functions

considered here, that is necessarily the case. A rule that implies indeterminacy will be con-

sistent with a large set of equilibria, including ones in which the fluctuations in endogenous

variables are arbitrarily large relative to the size of fluctuations in the exogenous disturbances

(Woodford, 2002, chap. 4). Except in non-generic special cases, the variables in which there

may be arbitrarily large fluctuations due to self-fulfilling expectations will include the target

variables. Hence at least some of the equilibria consistent with the rule will be less desirable,

in terms of the loss function specified by (1.2) – (1.3), than the unique bounded equilibrium

associated with any rule with a determinate equilibrium.

To be more specific, let us assume that the evolution of the endogenous variables zt and

Zt that are relevant to the central bank’s stabilization objectives is determined by a system

12The meaning of a criterion of boundedness depends, of course, upon which variables one uses to describe
the equilibrium in question; in a given equilibrium, the inflation rate may be a bounded process while the log
price level is not. We shall not be concerned by unboundedness of variables that are linked to the bounded
variables in the model only by relations that hold exactly, as in the case of the identity πt = log Pt− log Pt−1.
In such a case, the existence of unbounded fluctuations in the log price level does not imply any unbounded
approximation associated with a linear approximation to the model’s structural relations.
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of simultaneous equations

Î

[
Zt+1

Etzt+1

]
= A

[
Zt

zt

]
+ B it + C st. (2.1)

Each matrix in this equation has n = nz + nZ rows, where nz is the number of non-

predetermined and nZ is the number of predetermined endogenous variables,13 so that there

are a sufficient number of independent structural relations each period to determine each of

the endogenous variables. We may further partition the matrices as

Î =

[
I 0

0 Ẽ

]
, A =

[
A11 A12

A21 A22

]
, B =

[
0
B2

]
, C =

[
0
C2

]
,

where in each case the upper blocks have nZ rows and the lower blocks nz rows, and the

columns of Î and A are partitioned in a manner conformable to the partition of the endoge-

nous variables in (2.1). Here the assumed zero restrictions in the upper blocks reflect the

fact that the first nZ equations define the elements of Zt as elements of zt−j for some j ≥ 1.

(Because of this feature of the vector Zt+1, the assumption that the lower left block of Î

is a zero matrix is also without loss of generality.) We assume that B2 is not zero in all

elements, so that the instrument has some effect, and that A22 is non-singular, so that the

last nz equations can be solved for zt as a function of Zt, st, it, and expectations Etzt+1.

Insofar as the policy rule (1.1) involves non-zero coefficients on elements of z̄t or Z̄t not

included in the sub-vectors zt and Zt, it is necessary to augment the equilibrium conditions

(2.1) with the additional conditions that determine the equilibrium evolution of the addi-

tional endogenous variables. We shall suppose that the augmented system of equilibrium

conditions can again be written in the form

Ī

[
Z̄t+1

Etz̄t+1

]
= Ā

[
Z̄t

z̄t

]
+ B̄ it + C̄ s̄t, (2.2)

13We assume that both zt and Zt are vectors of finite length. The vector st, however, need not be;
as we discuss in section 4 below, we allow in principle for an infinite number of distinct types of random
disturbances. In the case that st is not a finite vector, our references to “bounded disturbance processes”
are to be understood to refer not simply to a bound upon each element of st, but also to a bound upon each
element of C st, so that the perturbations of the structural relations are bounded (and well-defined) each
period.
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where the larger matrices Ī and Ā contain Î and A respectively as diagonal blocks, the vector

B̄ contains B as a sub-vector, and so on.

We are here concerned solely with bounded solutions to these equations, i.e., with solu-

tions in which each element of z̄t and Z̄t satisfies some bound for all t, under the assumption

that the disturbances are bounded (each element of C̄ s̄t satisfies some bound for all t). In

the case of an exact linear-quadratic model, one might want to consider unbounded solu-

tions, subject perhaps to a transversality condition, or some other particular bound with

an economic interpretation. But in general (as in the applications treated in Giannoni and

Woodford, 2002), the structural equations (2.2) will be only linear approximations to a set of

true, nonlinear equilibrium conditions, and there will be reason to doubt whether unbounded

solutions correspond to any solutions at all of the true equations. We shall accordingly here

consider only the set of bounded solutions consistent with a given policy rule, and say that

equilibrium is determinate when there exists a unique solution of this kind.

Definition. A policy rule (1.1) implies a determinate rational-expectations equilibrium

if the system of equations obtained by conjoining this equation to the system (2.2) has a

unique bounded solution for the endogenous variables in periods t ≥ t0, given the initial

conditions Z̄t0 and bounded disturbance processes for all periods t ≥ t0.

A special case of particular interest is that of a policy rule that specifies an instrument

setting as a function of the history of exogenous disturbances. (This is often taken to be a

natural way of specifying a policy rule, especially in the literature that seeks to characterize

optimal commitment.) In this case, the complete system of equilibrium conditions is simply

(2.1), with it replaced by a specified function of s̄t. Standard results then imply that the

determinacy of equilibrium depends, in the generic case, on the roots of the characteristic

equation associated with this system,

det[A− µ Î] = 0. (2.3)

Rational-expectations equilibrium is (generically) determinate if the number of roots µi such

15



that |µi| < 1 is exactly equal to nZ , the number of predetermined state variables.

In the applications that we consider in Giannoni and Woodford (2002), the structural

equations are such that this polynomial has more than nZ roots inside the unit circle, and so

a policy rule of this kind leads to indeterminacy. This is the Sargent-Wallace (1975) problem

with rules that specify an exogenous path for the nominal interest rate, discussed further in

Woodford (2002, chap. 4). Hence we propose the following terminology.

Definition. A system (2.1) has the Sargent-Wallace property if (2.3) has more than

nZ roots µi such that |µi| < 1, where if A is singular, the zero root is counted n− rank(A)

times.

In such a case, it is important to consider as well the possibility of rules that prescribe

feedback from the actual and/or projected paths of endogenous variables.

3 Optimality from a Timeless Perspective

Next, we would like for the equilibrium determined by a policy rule to be consistent, in a

certain sense, with the optimal commitment that one can characterize using control-theoretic

methods (see, e.g., Woodford, 1999b). But the exact sense in which the two should corre-

spond deserves further discussion. Issues of some subtlety arise owing to the failure of the

optimal commitment to be time-consistent. If we compute the optimal commitment regard-

ing policy from some date t0 forward — which is optimal in the sense of minimizing expected

discounted losses from that time onward, conditional upon the state of the economy at that

time — this optimal plan will involve behavior that is not independent of the date t, i.e., the

date relative to the time at which the commitment is chosen. This is because the optimal

commitment takes no account of any effect of outcomes in the early periods of the com-

mitment upon expectations prior to the date at which the new policy takes effect (that are

simply given when the policy is chosen), whereas the commitment regarding later periods

does take account of the effect of predictable outcomes in those periods upon expectations
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in earlier periods (that are nonetheless subsequent to the choice of the policy). As a result

it may, for example, be optimal to commit at date t0 to a policy that involves inflation im-

mediately following the new commitment, given that this inflation will be unexpected, but

that promises no inflation (on average) in the long run.

One may doubt, however, whether it is really desirable for a central bank to commit itself,

once and for all, to a time-dependent policy rule intended to implement this time-dependent

optimal plan. The problem is not simply that a time-dependent rule is more complex, and

thus more difficult to explain both within the bank and to the public. A deeper problem

arises from the fact that the time-dependent character of the rule makes it obvious that the

rule privileges a particular date, the date at which the policy happens to have been chosen,

and that one continues to be committed to a rule that was optimal from the point of view of

society’s interest at that time, but that would not similarly be chosen today. This raises the

obvious question, “What is so special about date zero?” (Svensson, 1999b) — why should

one care about following a policy that was optimal from the standpoint of that date rather

than any other?

One might answer that once a central bank realizes the value of commitment, it should

accept that it is important that it keep its promises, whichever promises those happen to be

and whenever they happen to have been announced, simply because they were announced.

The problem with this view is that a central bank surely will not be willing to genuinely tie

its hands forever; it will not be willing to make a commitment that must be understood in

this way, because of the likelihood of unexpected developments that change its view of the

nature of optimal policy. The policy rule that seems optimal at one point in time, no matter

how great the expertise that has gone into its calculation, will surely seem less ideal as the

economy changes and as further experience increases understanding; it may even be seen,

at a later date, to be disastrous. No central bank would be willing to forswear attempts

to improve upon policy in the light of such increased knowledge. But if the commitment is

understood only to bind until the bank’s model of the economy changes, at which time a

new “optimal commitment” may be chosen on similar grounds, it is hard to see how such
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an approach would not reduce to pure discretion, given the constant availability of grounds

for small improvements in one’s model.

A possible solution to this dilemma is for the bank to choose a policy rule that implements

an equilibrium that is optimal not in the above sense, but from what Woodford (1999b;

2002, chap. 7) calls a “timeless perspective”. This means that the rational-expectations

equilibrium that is expected to prevail from time t = t0 onward, given a commitment to

the policy rule at that date, need not minimize expected losses from that date onward,

conditional upon the economy’s state at that time. Instead, it suffices that the equilibrium

be optimal subject to certain constraints on the economy’s initial evolution, that prevent the

central bank from exploiting the already existing expectations at the time that the policy

commitment is chosen.14 It is reasonable for the bank to accept these constraints, insofar as

they are ones to which it would wish to commit itself in the future, given that, in choosing

its commitments for the future, it takes into account the consequences of its commitments

for private-sector expectations at earlier dates. Through the same reasoning by which the

bank recognizes that it would wish to constrain itself this way in the future (and wish for

the private sector to understand it to be constrained), it should recognize that it would have

been desirable in the past for it to constrain itself to fulfill these constraints at the present

time.

Of course, one may ask why a bank should regard itself as constrained to fulfill a plan

to which it would have been optimal for the bank to have committed itself in the past —

whether or not it did actually announce any such rule in the past, whether or not the private

sector did actually expect such a policy in the past, and indeed whether or not the bank’s

previous understanding of the economy agreed with the model now used to justify the policy

14Constraints of this kind on initial behavior are often assumed in discussions of dynamic optimal fiscal
policy. For example, a constraint on the degree to which initially existing capital can be taxed is introduced
to avoid obtaining the result that an optimal policy will involve complete confiscation of initially existing
capital, together with a promise never to treat capital similarly in the future; or a constraint on the initial
price level is introduced to avoid the result that an optimal policy will involve inflating away the value
of initially existing nominal government liabilities, while promising a low rate of inflation thereafter. See
McCallum and Nelson (2000) for further discussion of the extent to which a desire for rules that are optimal
from a timeless perspective has been implicit in previous discussions both of monetary policy rules and of
optimal tax policy.
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rule in question as optimal. The answer is that behaving in such a way allows the bank’s

behavior to be consistent over time, with the advantages that this allows for the credibility

to the private sector of the bank’s supposed commitments, and for the likelihood that the

private sector can learn to predict future policy accurately. The choice of a rule of conduct

from such a perspective eliminates the problem of the time inconsistency of optimal policy,

in the sense that the same reasoning that is used to support the choice of the optimal rule

at one date can be used to support continued adherence to the same rule at any later date

(assuming that the central bank’s model of the economy has not changed in the meantime).15

The selection of a policy rule from this perspective means that it is not necessary to view

the choice of the rule as a once-and-for-all commitment, by which the central bank will be

bound no matter how unappealing the rule may come to appear at a later time. Instead, the

bank need only be committed to determine policy at all later dates by a rule that is optimal

from a similarly timeless perspective. Insofar as the bank’s model of the economy is expected

to guide its decisions in the future as well, there is no reason to expect future behavior that

does not conform to the rule currently adopted — and so there is no inconsistency involved

in adopting the rule now because of its desirable properties if the bank is expected to follow

it indefinitely. At the same time, rule-based policymaking of this sort allows the bank to

follow at all times a rule that can be justified as optimal given its best current understanding

of the structure of the economy, rather than being constrained by the straightjacket of its

past views.

Formally, optimality of a rule from a timeless perspective can be defined as follows.

Definition. A policy rule that determines a unique non-explosive rational-expectations

equilibrium is optimal from a timeless perspective if the equilibrium determined by the rule

is such that

15Note that we distinguish here between “time inconsistency” and the existence of an incentive to deviate
from the policy previously adopted, should the policymaker not regard itself as constrained not to exploit
prior expectations. This follows from the fact that we do not define “optimal policy” as policy that is optimal
from the standpoint of the policymaker’s current situation, in the absence of any constraints other than those
implied by predetermined state variables.
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(i) the non-predetermined endogenous variables zt can be expressed as a time-invariant

function of a vector of predetermined variables Z̄t and a vector of exogenous variables s̄t;

that is, a relation of the form

zt = f0 + fZZ̄t + fss̄t, (3.1)

applies for all dates t ≥ t0; and

(ii) the equilibrium evolution of the endogenous variables {yt} for all dates t ≥ t0 mini-

mizes (1.2) among the set of all bounded processes,16 subject to the constraints implied by

the economy’s initial state Zt0 , the requirements for rational expectations equilibrium (i.e.,

the structural equations (2.1), and a set of additional constraints of the form

Ẽzt0 = ē ≡ Ẽ[f0 + fZZ̄t0 + fss̄t0)] (3.2)

on the initial behavior of the non-predetermined endogenous variables.

Here the additional constraints (3.2) restrict the possible values of the initial non-predetermined

variables zt0 only insofar as expectations regarding the values of these variables should have

affected equilibrium determination at earlier dates. Note also that these additional con-

straints refer only to period t0 (the period in which the optimality of commitment to the

rule is being considered). Thus the fact that it is judged desirable to commit to a rule

that should imply evolution of the non-predetermined variables according to (3.1) in periods

t > t0 does not depend on any assumed constraint on the evolution in those periods, other

than the constraint that the expected evolution represent a rational-expectations equilib-

rium. Hence in submitting to the constraints (3.2) in period t0, the central bank is choosing

to conform to a rule of conduct to which it should have wished to be expected to conform,

16We consider only the optimal plan among possible plans satisfying some uniform bound, since the
Taylor-series approximations involved in the derivation of our quadratic loss function and linear equilibrium
conditions are generally valid only locally. Unbounded paths {yt} that yield a lower value of the objective
(1.2) need not correspond to any feasible equilibrium of the exact model, and so are not considered here.
Of course, our interest in policies that are optimal in this local sense depends on a belief that the optimal
equilibrium of the exact model is in fact one that involves only small departures from the steady state around
which we have linearized the equilibrium conditions; in that case, the locally optimal policy defined here
should represent a linear approximation to the true optimal policy.
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had the question been considered at an earlier date without any restriction of this kind upon

date-t0 conduct.

Because the additional constraints (3.2) refer only to outcomes in period t0, the equi-

librium dynamics resulting from commitment to a policy that is optimal from a timeless

perspective involve the same responses to unanticipated shocks in all periods t > t0 as would

occur under the t0−optimal plan, i.e., the evolution from date t0 onward that would minimize

(1.2) in the absence of the additional constraints. (Because of the assumed linearity of our

equilibrium conditions (2.1), the planned linear response to an unanticipated shock at date t

has no effect on the constraints on possible outcomes at earlier dates. This implies that the

optimal response to a shock at date t > t0 is independent of the constraint values ē imposed

on the choices for date t0, and indeed is the same even if the constraints (3.2) are omitted

from the minimization problem.) Furthermore, if (as we shall assume below) the solution to

the optimization problem stated in part (ii) of the above definition is one under which the

expected long-run average values of the endogenous variables are independent of the initial

conditions, then it follows that the long-run average values under a rule that is optimal from

a timeless perspective are the same as those under commitment to the t0−optimal plan.

Thus commitment to an optimal rule in this sense eliminates both the average inflation

bias and the sub-optimal dynamic responses to shocks (sometimes called “stabilization bias”)

that are typically associated with discretionary policy. The equilibrium evolution from t0

onward under the optimal policy from a timeless perspective differs from the t0−optimal

plan only in a transitory, deterministic component of the paths of the endogenous variables.

Departure (in general) from the t0−optimal choice of this component is necessary in order for

policy to be time-consistent; and the central bank’s willingness to depart from the t0−optimal

plan in this single respect can be understood as following from unwillingness to exploit

previously existing expectations at the time that the policy commitment is chosen.

In (3.1), the non-predetermined variables are allowed to depend on vectors of prede-

termined and/or exogenous variables that may include more elements than the vectors of

predetermined variables Zt and exogenous states st that suffice to define the set of possible fu-
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ture evolutions of the economy (consistent with rational-expectations equilibrium) from date

t onward. Such dependence on additional state variables will occur (under the assumption

of determinacy of equilibrium) only insofar as the policy rule itself involves those additional

variables — that is, insofar as policy is not purely forward-looking. In general, we find that

an optimal policy rule will not be purely forward-looking, for reasons that are closely related

to the observation that in general the equilibrium evolution from date t0 onward under the

optimal rule will not minimize (1.2) if the constraints (3.2) are not imposed. The optimal

plan (from the timeless perspective) involves conformity to constraints that insure that the

central bank internalizes the effects of its predictable current policy upon prior expectations,

and hence upon its ability to achieve its stabilization objectives at earlier dates. But this

implies that policy will depend not solely upon the state variables that determine the econ-

omy’s possible evolution from now on, but also upon past conditions as well, insofar as these

would matter to a determination of the value in the past of having had the private sector

expect a different sort of policy now. This requires an optimal policy rule to incorporate

additional history-dependence.17

4 Robustness to Alternative Types of Disturbances

In the case of a particular detailed specification of a quantitative model of the economy —

including not just a specification of the coefficients of the various structural equations, but

also a precise specification of the statistical properties of all of the exogenous shock processes

— it is a standard exercise to evaluate alternative policy rules through stochastic simulation

or other methods, and one may thus seek to find the optimal rule within some parametric

family.18 In the case of a linear-quadratic policy problem of the kind that we assume here, it

is even fairly straightforward to compute an optimal policy. However, the practical usefulness

of the results of such analyses is often doubted, on the ground that the conclusions obtained

obviously depend upon the precise model of the economy assumed, whereas an actual central

17See Woodford (2000; 2002, chap. 7) for additional discussion.
18See, e.g., Taylor (1999) for a collection of exercises of this kind in the context of variety of types of larger

or smaller quantitative models of the monetary transmission mechanism.
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banker is unlikely ever to give assent to any such model as a complete description of what

he or she believes about the structure of the economy.

In particular, the actual conduct of monetary policy typically involves detailed discussion

of current conditions (and projections for the next year or two), taking account of a wide

range of sources of information, both qualitative and quantitative. Central bankers are

unlikely to be willing to restrict themselves to the consideration of only a small number of

statistics when considering the economic outlook, and to be willing to identify the current

situation with a particular realization from a probability distribution that could have been

described in advance, and used in conducting the stochastic simulations used to analyze

alternative policy rules. The fact is, there are always special circumstances of one sort or

another, and it is difficult to imagine that central bankers will ever be willing to implement

a rule that has been shown to be optimal only on the assumption that circumstances like

those currently faced can never occur.

Yet much of the richness of actual central-bank discussions of the economic outlook can

be allowed for within the context of a specific quantitative model of the economy, if we

simply allow the additive disturbance terms in our equations to be extremely various in

character. That is to say, rather than assuming a small number of stochastic disturbances

(say, one per structural equation) with specified statistical properties (say, AR(1) processes

with innovation variances and coefficients of serial correlation that have been estimated

so as to match certain moments of historical time series), one should recognize that each

of the model equations can be perturbed by any of vast number of types of disturbances,

each with different statistical properties. Thus even if all of the relevant disturbances can be

usefully characterized in terms of how much they shift each of the finite number of structural

equations of one’s economic model, they will differ in terms of how long it is expected to

take for the shock to have its maximum effect, the rate at which this effect will thereafter

decay, and so on; an infinite number of parameters will be required to precisely describe the

effects of a given type of shock, even in the case of a very small economic model. One should

accept that the number of distinct types of disturbances that may occur in practice is too
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large to imagine listing them all once and for all, let alone estimating all of the parameters

of a complete description of their statistical properties and their relative likelihoods. At the

same time, one should recognize that central bankers will have fairly specific ideas about

the character of the particular disturbances that have most recently affected their national

economies, and will accordingly require that an analysis of optimal policy be able to address

the specific question of how one should optimally respond to those particular disturbances.19

Interestingly, one can base policy upon an analysis that allows for the possibility of

the specific kinds of disturbances that happen most recently to have occurred, without

policy reducing to discretionary optimization. This is because it is possible to choose a

policy rule, commitment to which would be optimal (from the timeless perspective explained

above) regardless of the statistical properties of the additive disturbances to the model

equations, and indeed even if these can only be fully specified by a statistical model with

millions of parameters. Specifically, we show below that it can be possible to establish that

a particular linear rule with constant coefficients is optimal under the hypothesis that the

disturbance terms have unconditional means of zero, without any further assumptions about

their statistical properties.

A given structural disturbance sjt need only be assumed to be of the form

sjt =
∞∑

k=0

∑
m

αj
m,kεm,t−k, (4.1)

where the index m ranges over a possibly infinite list of possible types of disturbances, and

where each of the random variables {εm,t} is an i.i.d. mean-zero variable, each with its own

probability distribution. For each disturbance, the coefficients {αj
m,k} indicate the degree to

which it is forecastable in advance and the length of time for which its effects persist; this

19Our point is related, but not identical, to Svensson’s (2001) advocacy of targeting rules on the ground
that they allow the use of “judgment”. Svensson assumes that central bankers have information about certain
state variables, and could use this knowledge in implementing a targeting rule (by using the information in its
forecasts of the target variables), but cannot adopt a rule that refers explicitly to those states. His analysis
is thus based upon a distinction between disturbances to which policy may directly respond and others to
which it must not. Our own emphasis is instead upon the advantage, from the point of view of simplicity, of
commitment to a rule that does not require explicit reference to particular types of disturbances at all, and
not simply avoiding mention of certain particularly difficult-to-describe disturbances.
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infinite list of parameters may be different for each disturbance. We may also suppose that

for most if not all of the shocks, the distribution from which εm,t is drawn each period has

a very large atom at the value zero, so that a shock of this type (of non-zero magnitude)

is observed only infrequently. Thus it is logically possible both to assume that the central

bank has a correct understanding of the nature of all of the disturbances that have hit the

economy to date, and at the same time to suppose that it does not possess a complete list

of all of the possible future disturbances, or sufficient data to estimate their likelihood of

occurrence within a certain time interval. Under the assumption that the (innumerable)

shocks are all mean-zero, such a bank would still be able to correctly evaluate both the

history of the disturbance term, sj,t−k for all k ≥ 0, and the conditional expectation of its

future path, Etsj,T for all T ≥ t + 1. In a log-linear (certainty-equivalent) model of the kind

that we use to approximate our account of the monetary transmission mechanism, assump-

tion of a (symmetric-information) rational-expectations equilibrium requires that we assume

that everyone in the economy shares a common (correct) evaluation of these conditional

expectations, though there need not be correct knowledge of or even agreement upon other

aspects of the probability distribution for the future disturbances; it is for this reason that

we assume correct knowledge of the average values of the disturbance terms, which we may

then without loss of generality assume to be zero.

We seek a policy rule with the following property.

Definition. A time-invariant policy rule (1.1) is robustly optimal if it is optimal from

a timeless perspective, regardless of the specification of the coefficients {αj
m,k} in (4.1), and

regardless of the distributions from which the innovations εm,t are drawn (except that these

must be bounded and have mean zero).

The key to the possibility of a robustly optimal policy rule in this sense is the certainty-

equivalence of optimal policy in the case of a linear-quadratic optimal policy problem of the

kind that we consider here. This means that the central bank’s optimal instrument setting
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may depend upon the conditional expectations of disturbances at various future horizons, as

well as upon current and past disturbance terms, but that it is independent of other details

of the probability distribution of future disturbances, and thus can be expressed without any

need to enumerate or assign probabilities to all of the possible types of future disturbances.

In fact, as we shall see, it is possible to express optimal policy in terms of an instrument

rule or targeting rule that makes no reference even to the disturbances that have already

occurred, except insofar as these affect the bank’s estimates of (and projections of the future

paths of) its target variables (such as the output gap).

The quest for policy rules that are robustly optimal allows us to obtain substantially

sharper conclusions about the nature of an optimal rule. Indeed, it is only under this

additional stipulation that questions about the optimal form of interest-rate rule become

meaningful.20 For example, the question of the degree to which it is optimal for central

bank policy to be based on forecasts has no interesting answer if an “optimal policy” is

required only to support the optimal equilibrium in the case of a particular specification

of the statistical properties of the disturbance processes. For if a forecast-based policy rule

can be found that is consistent with the desired equilibrium, one can necessarily also obtain

a purely backward-looking rule (an explicit instrument rule in the sense defined above) by

substituting for the forecast the particular function of predetermined and exogenous vari-

ables that represents the rational forecast in the case of the particular disturbance processes

and the particular equilibrium. However, the mapping between these two alternative repre-

sentations of policy is not invariant under a change in the assumed statistical properties of

the disturbances. Hence the two representations need not be equally robust to alternative

specifications of the disturbance processes, and it becomes possible to ask which form of

rule is robustly optimal. To anticipate our conclusions, we shall find that robustly optimal

20Here our perspective differs from much previous literature, where, for example, the question of the
optimal forecast horizon is addressed by computing the equilibria associated with particular tightly parame-
terized families of forecast-based policy rules with different forecast horizons (e.g., Black et al., 1997; Batini
and Haldane, 1999; Rudebusch and Svensson, 1999; Levin et al., 2001; Batini and Pearlman, 2002). The
results obtained in these studies are highly dependent upon the particular restrictive forms of policy rules
assumed, that are arbitrarily chosen, though appealing in their simplicity. Our primary interest here is
instead in what can be achieved by various classes of relatively flexibly specified classes of policy rules.
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rules are possible, but that they typically cannot be explicit instrument rules. Instead, rules

with this property involve projections at least of current endogenous variables, and generally

projections at least some distance into the future as well.

The particular form of robustness just discussed does not, of course, represent the only

practically relevant kind of uncertainty that will exist about the validity of a given model

of the monetary transmission mechanism. In fact there will also be considerable uncertainty

about the correct specification of the non-stochastic terms in the model equations as well,

and a policy rule that is shown to be optimal only under the assumption that all structural

coefficients are known with certainty will still have to face questions about how far from

optimal it might be under alternative assumptions. We do not here consider how a concern

for other sorts of “robustness” should affect our choice of a policy rule.21 This is a much

harder problem, since it is not generally possible to find a single rule that will be optimal

regardless of which of a range of possible model specifications are correct. Instead, one

faces a tension between the goals of minimizing expected losses according to the model that

represents one’s best guess, and of choosing a rule that will also not be too bad according to

alternative models; as a result, the question of how much one should be concerned about the

possibility of various alternative possibilities arises. We here note only that this important

issue is not too closely related to the kind of robustness treated here.

Even with the further stipulation of robust optimality, there will be many possible policy

rules with the desired property. Hence we further narrow our search to the category of direct

rules — rules that involve only the target variables τ t, though they may involve both leads

and lags of these22 — for the reasons discussed in section 1. We show in section 6 that it is

quite generally possible to find a time-invariant direct policy rule that is robustly optimal.

Indeed, even under these requirements, we cannot generally isolate a single uniquely optimal

21See, however, Hansen and Sargent (2000) and Giannoni (2001, 2002) for analyses of monetary policy
intended to be robust against other types of model uncertainty, in the context of forward-looking models
like those considered here.

22In fact, the optimal rules that we display involve only the target variables, whether or not the instrument
happens to be a target variable (though in general we shall assume that it is). Thus our optimal rules can
always be interpreted as targeting rules, which is the interpretation preferred in Svensson (2001).
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rule, though our attention is narrowed to a small number of possibilities.

5 Characterizing Optimal Equilibrium Dynamics

Here we begin our exposition of a general approach to the construction of robustly optimal

direct policy rules, in the case of a linear-quadratic policy problem of the kind described

above. We begin by characterizing the equilibrium dynamics that would be judged to be

optimal from a timeless perspective; we then turn, in the next section, to the construction

of a policy rule that implies a determinate equilibrium of this kind.

We begin by characterizing the state-contingent path for the endogenous variables (in-

cluding the instrument) from some date t0 onward that minimizes (1.2) subject to the con-

straints that the evolution satisfy equations (2.1) at each date t ≥ t0, given an initial value

Zt0 for the predetermined variables, and subject to the additional constraints (3.2). As in

Woodford (1999a), the Lagrangian for this minimization problem can be written in the form

Lt0 = Et0

{ ∞∑
t=t0

βt−t0
[
L(yt) + ϕ′t+1Ãyt − β−1ϕ′tĨyt

]}
, (5.1)

where

Ã ≡ [
A B

]
, Ĩ ≡ [

Î 0
]
.

Here L(yt) is the period loss Lt expressed as a quadratic function of yt, and ϕt+1 is the vector

of Lagrange multipliers associated with the constraints (2.1).

The conditional expectation has been eliminated from the term Etzt+1 in these con-

straints, using the law of iterated expectations (since the entire expression is conditional

upon information at date t0 in any event). However, because the last nz constraints hold

only in conditional expectation, the last nz elements of ϕt+1 must be measurable with re-

spect to period t information (i.e., cannot depend upon shocks at date t + 1). We therefore

introduce the notation

ϕt+1 ≡
[

ξt+1

Ξt

]
,

28



where the partition is conformable to the partition of the rows of (2.1); the different time

subscript on Ξt (as in Svensson and Woodford, 2000, 2001) serves as a reminder that these

elements of the vector are determined a period earlier. We have suppressed the terms in the

Lagrangian involving the exogenous disturbances st, as these do not matter for the first-order

conditions derived below. Finally, the term

ϕ′t0 Ĩyt0 = ξ′t0Zt0 + Ξ′t0−1Ẽzt0

has been added to the Lagrangian in (5.1). The first term on the right-hand side represents

the constraints imposed by the given initial values Zt0 for the predetermined variables, while

the second term represents the constraints (3.2).

The same Lagrangian can be used to characterize the t0−optimal plan, i.e., the time-

inconsistent “optimal commitment” that is often considered in the literature on rules versus

discretion. This is the path for the evolution of the endogenous variables from t0 onward

that minimizes the same criterion, in the absence of any constraints of the form (3.2). The

Lagrangian for such a minimization problem is of the same form as (5.1), except that the

final term Ξ′t0−1Ẽzt0 should be omitted. Alternatively, we may write the Lagrangian in the

form (5.1) for the sake of symmetry, but impose the stipulation that

Ξt0−1 = 0. (5.2)

Thus the t0−optimal plan also minimizes a Lagrangian of the form (5.1), but with (5.2)

imposed as an additional initial condition, rather than (3.2).

Differentiating the Lagrangian (5.1) with respect to the endogenous variables yt, we

obtain the first-order conditions

Ã′ Etϕt+1 + T ′W (τ t − τ ∗) − β−1Ĩ ′ ϕt = 0 (5.3)

for each t ≥ t0. An optimal plan must also satisfy a transversality condition, but this is

necessarily satisfied in the case of any bounded solution to the structural equations, and

we have already noted that we shall restrict our attention to bounded solutions. Thus any
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bounded processes for the endogenous variables {yt} and the Lagrange multipliers {ϕt} for

dates t ≥ t0, that are consistent with the initial conditions for Zt0 and with (5.2), and that

satisfy the structural equations (2.1) and the first-order conditions (5.3) for each t ≥ t0,

describe a t0−optimal commitment. Alternatively, any bounded processes consistent with

the initial conditions Zt0 and (3.2), and satisfying (2.1) and (5.3) for each t ≥ t0, satisfy part

(ii) of the requirements stated in section 3 for optimality from a timeless perspective.

In what follows we shall maintain the following assumption about our linear-quadratic

policy problem.

Assumption 1. In the case of any bounded disturbance processes and any initial condi-

tions Zt0 and Ξt0−1, there is a unique bounded solution to the system of equations consisting

of (2.1) and (5.3). In particular, in the case of any such disturbance process and any initial

conditions Zt0 , there is a unique bounded solution to the system of equations consisting of

(2.1), (5.2) and (5.3). Thus there exists a unique bounded t0−optimal plan {yt}, to which

there is associated a bounded process {ϕt} for the Lagrange multipliers as well.23

In fact, under quite weak assumptions a linear-quadratic problem of this kind has a unique

optimum (subject to bounds on the rate at which the endogenous variables may grow asymp-

totically), in which βt/2yt and βt/2ϕt are bounded. Assumption 1 thus represents only a small

strengthening of the canonical assumptions, so that the optimal processes {yt} and {ϕt} are

bounded without the rescaling.24 It should also be noted that under the canonical assump-

tions, if there exists a bounded optimal plan — as we must assume, in most applications of

interest, in order to justify working with a log-linear approximation to the exact equilibrium

conditions in our characterization of optimal policy — then the first order conditions must

have a unique bounded solution, as assumed here, for other bounded solutions would have

23By a bounded optimal plan we mean a process {yt} that minimizes (1.2) among the class of bounded
processes, subject to the other stated constraints.

24The asymptotic growth rates of these variables depend upon certain roots of a characteristic polynomial,
that are necessarily no larger than β−1/2, but will for most parameter values be smaller, and can easily be
smaller than one. If β is only slightly less than one, Assumption 1 will hold for a large range of parameter
values.
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to correspond to alternative optimal plans.

Assumption 1 also states that there is a unique bounded solution regardless of the as-

sumed value for Ξt0−1, and not only in the case of the value Ξt0−1 associated with the

t0−optimal commitment. But in the generic case, the existence of a unique bounded solu-

tion to the system consisting of (2.1) and (5.3) depends only on the roots of a characteristic

polynomial associated with the coefficients of these equations, and is independent of the

assumed vectors of initial conditions Zt0 and Ξt0−1. Hence a unique bounded solution will

almost always exist for arbitrary Zt0 and Ξt0−1 if there exists a unique bounded t0−optimal

plan for arbitrary Zt0 .

It follows from the definition in section 3 that in the equilibrium associated with a policy

rule that is optimal from a timeless perspective, the evolution of the endogenous variables

from date t0 onward must satisfy (2.1) and (5.3) for each t ≥ t0, for some choice of the initial

multipliers Ξt0−1. Under Assumption 1, there is a unique bounded solution corresponding to

any given specification of Ξt0−1, and in particular a unique implied value for

Ẽzt0 = e0 + eZZt0 + esst0 + eΞΞt0−1. (5.4)

Hence corresponding to any specification of Ξt0−1 there is an associated value of ē, given by

the right-hand side of (5.4), such that the unique bounded solution corresponding to this

choice of Ξt0−1 represents the optimal evolution from date t0 onward subject to the additional

constraints (3.2).

Our definition of optimality from a timeless perspective can then be equivalently restated

as follows. A policy rule that determines a unique bounded equilibrium is optimal from a

timeless perspective if

(i) the equilibrium satisfies a time-invariant relation of the form (3.1);

(ii) in this equilibrium, the endogenous variables yt for t ≥ t0 evolve according to the

unique bounded solution to (2.1) and (5.3) for t ≥ t0, consistent with the given initial

conditions Zt0 and some initial Lagrange multipliers Ξt0−1; and
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(iii) the initial multipliers are given by a linear rule of the form

Ξt0−1 = g0 + gZZ̄t0 + gss̄t0 , (5.5)

where the coefficients g0, gZ , gs are such that in the equilibrium,

Ẽzt = e0 + eZZt + esst + eΞ[g0 + gZZ̄t + gss̄t] (5.6)

at all dates t ≥ t0 and under all possible realizations of the exogenous disturbances; that is,

the right-hand side of (3.1) pre-multiplied by Ẽ coincides with the right-hand side of (5.6).

Here condition (ii) guarantees that the evolution of the endogenous variables from t0 onward

is optimal subject to some constraint of the form (3.2), while condition (iii) ensures that the

constraint value ē for which this is true is derivable from the initial conditions Z̄t0 , s̄t0 using

a time-invariant rule (5.6) that one wishes to commit to satisfying in all subsequent periods.

One case in which we may be sure that the rule (5.5) satisfies (5.6), of course, is if the

corresponding relation

Ξt−1 = g0 + gZZ̄t + gss̄t (5.7)

holds for all t > t0 in the unique bounded solution to the system consisting of (2.1) and

(5.3) consistent with initial multipliers (5.5). This is the approach that we shall take to

the construction of a policy rule that is optimal from a timeless perspective. Note that in

equilibrium, the multipliers Ξt−1 for any t > t0 depend only on the economy’s state at date

t− 1 (hence our choice of subscript). Thus (5.7) must have this property; that is, gZ and gs

must put non-zero weight only on elements of Z̄t and s̄t that are known at date t− 1.

Our proposed approach can now be sketched as follows. First, our structural equations

(2.1) and stabilization objectives (1.2) allow us to define the optimal dynamics corresponding

to any specification Ξt0−1 of the initial Lagrange multipliers. We then seek to find a rule

(5.5) for choosing the initial multipliers with the property that the implied equilibrium

satisfies the corresponding relation (5.7) at all later dates as well. This then determines

the particular equilibrium evolution of the economy that we wish to implement. Finally,
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we seek to formulate a time-invariant target criterion referring only to the projected path

of the target variables, with the property that commitment to fulfill this target criterion

in all periods t ≥ t0 implies a determinate rational-expectations equilibrium in which the

endogenous variables evolve in the desired way.

6 Existence of Optimal Policy Rules

We now turn to the question of finding a policy rule that can be expected to bring about

equilibrium dynamics of the kind characterized in the previous section. The key insight is

that one can design a time-invariant target criterion (1.1) that implies that the endogenous

variables must evolve in a way that is consistent with the system of first-order conditions

(5.3) that characterize an optimal commitment,25 under a particular rule (5.5) for choice of

the initial Lagrange multipliers. This kind of rule necessarily implies a determinate equi-

librium, because the system of first-order conditions has (under Assumption 1) a unique

bounded solution. And while the equilibrium will in general not coincide in its transition

dynamics with the t0−optimal commitment — for the initial Lagrange multipliers must gen-

erally not be set equal to zero, in order for the proposed rule to be time-consistent — the

economy’s equilibrium evolution is optimal from the timeless perspective defined in section

3. Moreover, because the first-order conditions involve only the target variables (in addition

to the Lagrange multipliers, that we eliminate in order to derive the policy rule), the optimal

rule is a direct rule. And because the first-order conditions are independent of the assumed

statistical properties of the disturbance processes, the optimal rule is robust to changes in

that aspect of the model specification.

In order to apply the method presented here, we require a further assumption about the

matrices Î and A in the structural equations (2.1).

Assumption 2. The characteristic polynomial (2.3) has at least nZ roots such that

25Our approach generalizes the derivation of optimal “specific targeting rules” in Svensson (1997), Svensson
and Woodford (1999), and Svensson (2001).
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|µi| < β−1, i.e., at least rank(A) − nz non-zero roots satisfying that bound, in addition to

the zero root that is repeated n− rank(A) times. Furthermore, it is possible to select a set

of exactly nZ roots, including the n− rank(A) zeroes, such that either (i) the roots in this

set consist entirely of real roots and of complex pairs, both elements of which belong to the

set; or (ii) there is a single complex root µ in the set, the complex conjugate of which is not

also in the set, and this root is such that |Re µ−1| > β.

In the generic case, the first part of Assumption 2 implies that in the case of a constant

instrument setting, it = ı̄ for all t, there exists one or more solutions to the structural

equations (2.1) in which βtyt remains bounded for all t, regardless of the initial conditions

Zt0 and regardless of the specification of the disturbance processes, as long as the disturbances

are themselves bounded. This means that policy need not be adjusted in any special way in

order to prevent explosive (at least, unduly explosive) dynamics; a non-explosive equilibrium

path for the endogenous variables will exist as long as explosive dynamics are not required

by the violent adjustment of the policy instrument. We note furthermore that this part of

Assumption 2 is implied by the Sargent-Wallace property.

The further stipulation regarding the set of exactly nZ roots is a relatively weak additional

restriction. It is necessarily possible to choose a set of roots with property (i), except in the

case that the non-zero roots satisfying |µi| < β−1 are all complex, and rank(A)− nz is odd.

Even in this case, it is necessarily possible to choose a set of nZ roots in which there is only

one complex root such that the complex conjugate is not also in the set. Thus the only

real restriction is the further stipulation that this root be such that |Re µ−1| > β, which is

stronger than the restriction already assumed on the modulus of the root.

We shall also assume that these matrices satisfy two additional technical assumptions,

Assumptions 3 and 4, stated in the Appendix. Here we simply note that both of the latter

two assumptions hold for generic matrices A and Ẽ, of arbitrary ranks 0 ≤ rank(Ẽ) ≤ nz

and nz ≤ rank(A) ≤ n.

We now recall that conditions (5.3) may be separated into two sets of first-order condi-
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tions,

A′ Etϕt+1 + T̃ ′W (τ t − τ ∗)− β−1Î ′ ϕt = 0, (6.1)

B′
2 Ξt + T i′W (τ t − τ ∗) = 0, (6.2)

where the columns of

T ≡ [T̃ T i]

are partitioned conformably with those of Ã. Given any bounded process for the evolution of

the target variables, it is possible to find a process for the multipliers that satisfies conditions

(6.1).

Proposition 1. Under Assumptions 2 – 4, there exist (real-valued) matrices Λ and Υ

and linear operators Q(L−1) and R(L−1) such that bounded processes {ϕt} and {τ t} satisfy

(6.1) for all t ≥ t0 if and only if they satisfy the conditions

Ξt = ΛΞt−1 + Et[Q(L−1) T̃ ′W (τ t − τ ∗)], (6.3)

ξt = ΥΞt−1 + Et[R(L−1) T̃ ′W (τ t − τ ∗)] (6.4)

for all t ≥ t0. These linear operators are such that Q(L−1) xt and R(L−1) xt are well-defined

and bounded processes in the case of any bounded process xt.

The proof is given in the Appendix, along with the statement of Assumptions 3 and 4.

In the case that there are exactly nZ roots of (2.3) such that |µi| < β−1, Λ, Υ, Q and R are

unique, and there is a unique solution to (6.1) for the evolution of the multipliers {ϕt} given

a process the evolution of the target variables {τ t} and an initial condition Ξt0−1. If instead

there are more than nZ such roots, there are many possible solutions for the evolution of

the multipliers. Nonetheless, it is possible to select a solution in which Ξt and ξt are time-

invariant functions of the lagged value Ξt−1 and the expected path of the target variables

from date t onward, as indicated in (6.3) – (6.4). In this case the values of Λ, Υ, Q and R

are not uniquely determined, but there are only a small number of possibilities that work,
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corresponding to the different ways in which it is possible to select a set of nZ roots of (2.3)

with modulus |µi| < β−1.

We next observe that for any square matrix Λ of dimension nz, there exist an nz × nz

matrix polynomial B(L) and a scalar polynomial α(L) such that

B(L) (I − ΛL) = α(L) I. (6.5)

Here α(L) = det(I − ΛL), and B(L) is the adjoint of (I − ΛL), i.e., the transpose of the

matrix of cofactors. Note that α(L) is of order rank(Λ) = rank(Ẽ) ≡ k, while B(L) is of

order d ≡ min(k, nz − 1). Premultiplying (6.3) by B(L), we obtain

α(L) Ξt = B(L) Et[Q(L−1) T̃ ′W (τ t − τ ∗)].

This equation holds for all t ≥ t0 + k if (6.3) holds for all t ≥ t0, and conversely, if (6.3)

holds for all t0 ≤ t < t0 + k and the above condition holds for all t ≥ t0 + k, it follows that

(6.3) also holds for all t ≥ t0 + k.

Finally, premultiplying this last equation by B′
2 and using (6.2) to eliminate the B′

2 Ξt

terms, we obtain the condition

α(L) T i′W (τ t − τ ∗) + B′
2B(L) Et[Q(L−1) T̃ ′W (τ t − τ ∗)] = 0, (6.6)

which involves only the target variables. Under the optimal once-and-for-all commitment

chosen at date t0, the evolution of the target variables will satisfy this criterion at all dates

t ≥ t0 +k.26 Thus a commitment by the policymaker to enforce condition (6.6) each period is

an example of a policy that can be justified on the ground that it would have been optimal to

commit to such a policy in the case of any optimal commitment chosen at a date sufficiently

far in the past.

Condition (6.6) is an example of a direct policy rule that takes the time-invariant form

(1.1). Both are desirable properties of a policy rule, as discussed above. In order to express

26Under this optimal commitment, both (6.2) and (6.3) hold for all t ≥ t0. Once both (6.2) and (6.3) have
held for the previous k periods, it is possible to use the derivation in the text to show that (6.6) must hold.
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(6.6) in the form (1.1), it suffices that the vector Z̄t be defined as

Z̄t ≡ (Z ′
t q′t−1 . . . q′t−d vt−1 . . . vt−k)

′ (6.7)

where

qt ≡ Et[Q(L−1) T̃ ′W (τ t − τ ∗)], (6.8)

vt ≡ T i′W (τ t − τ ∗), (6.9)

and that the vector z̄t include not only the non-predetermined endogenous variables that

matter for the current targets τ t, but also the conditional expectations of future target

variables that are involved in qt. In general, (6.7) will require that the vector Z̄t include

elements beyond those needed in order to specify the possible evolution of the target variables

from period t onward.27 Thus the rule is in general not purely forward-looking in the sense

of Woodford (2000).

One can show quite generally that such a rule implies a determinate equilibrium. The fol-

lowing result relies upon an additional Assumption 5, stated in the Appendix; this condition

is again one that holds for generic matrices of arbitrary rank.

Proposition 2. Under Assumptions 1 – 5, a commitment to ensure that condition (6.6)

holds at all dates t ≥ t0 results in a determinate REE. In this equilibrium, zt each period

is given by a linear relation of the form (3.1), where s̄t = st (the exogenous state vector

required to define the possible evolution of the target variables from date t onward) and Z̄t

is given by (6.7).

Furthermore, the bounded process {yt} associated with this equilibrium minimizes (1.2)

among all possible bounded evolutions of the endogenous variables from date t0 onward that

are consistent with conditions (2.1), the initial conditions Zt0 , and the additional constraints

Ẽzt0 = ē, (6.10)

27This is almost inevitably the case if Λ 6= 0, which is the case as long as Ẽ 6= 0, i.e., as long as the
structural equations are at all forward-looking. See section A.1 of the Appendix for the relation between the
rank of Λ and the rank of Ẽ.
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where ē is the function of Z̄t0 and st0 specified in (3.2).

The proof is given in the Appendix. The essential idea is that one can uniquely determine a

vector of initial Lagrange multipliers Ξt0−1 implied by the given initial conditions Z̄t0 , with

the property that a bounded solution to the system consisting of (2.1) and (6.6) for all t ≥ t0

consistent with the initial conditions Z̄t0 , st0 must correspond to a bounded solution to the

system consisting of (2.1) and (5.3) consistent with the initial conditions Zt0 , Ξt0−1, st0 . The

existence and uniqueness of the latter solution (under Assumption 1) then implies deter-

minacy of rational expectations equilibrium under the commitment to the target criterion

(6.6). In addition, the fact that the determinate equilibrium satisfies the system of equations

consisting of (2.1) and (5.3) for some choice of the initial multipliers Ξt0−1 implies that it

is optimal subject to additional constraints of the form (6.10). The fact that the initial

Lagrange multipliers are a time-invariant function of the initial conditions of the form (5.7)

then guarantees that the additional constraints are the ones specified in (3.2).

This second part of Proposition 2 implies that policy rule (6.6) is optimal from a timeless

perspective, in the sense defined in section 3. We note furthermore that the coefficients

of this rule depend only upon the coefficients of the first-order conditions (5.3), which are

independent of any assumptions about the statistical properties of the disturbances. Hence

this policy rule is also robustly optimal, in the sense defined in section 4.

7 On the Form of Optimal Policy Rules

The coefficient multiplying the current instrument setting it in (6.6) is28

T i′WT i + B′
2Q(0) T̃ ′WT i.

If this quantity is non-zero, the rule can be interpreted as an implicit instrument rule. A

case of particular interest is the following one.

28Note that the definitions above imply that α(0) = 1, B(0) = I.
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Assumption 6. The target variables can be partitioned as

τ t =

[
τ̂ t

it

]
,

where τ̂ t = T̂ ỹt is a function only of ỹt, the vector of endogenous variables other than the

instrument, and the target values τ ∗ can similarly be partitioned into target values τ̂ ∗ and

i∗. The matrix W in (1.3) is also block-diagonal, so that

Lt =
1

2
(τ̂ t − τ̂ ∗)′Ŵ (τ̂ t − τ̂ ∗) +

λi

2
(it − i∗)2,

where Ŵ is a symmetric, positive-definite matrix, and λi ≥ 0.

This assumption is satisfied in the examples considered in Giannoni and Woodford (2002).

Under this assumption, the coefficient multiplying it in (6.6) is simply λi. Then if λi > 0

(i.e., if the policymaker’s objective includes a concern for stabilization of the instrument),

the optimal rule is an implicit instrument rule, that may be expressed in the form

it = (1− γ(1))i∗ + γ(L)it−1 − λ−1
i B′

2B(L) Et[Q(L−1) T̂ ′Ŵ (τ̂ t − τ̂ ∗)]. (7.1)

Here we have expressed the lag polynomial α(L) as 1− γ(L)L, where γ(L) is a polynomial

of order k − 1.

On the other hand, if λi = 0, the optimal rule reduces to

B′
2B(L) Et[Q(L−1) T̂ ′Ŵ (τ̂ t − τ̂ ∗)] = 0. (7.2)

This is now a target criterion that does not involve the path of the instrument; it can

nonetheless be regarded as specifying a well-defined policy rule, a pure “targeting rule”.29

Because we have shown that there is a determinate rational-expectations equilibrium in

which this criterion is fulfilled at all dates, the use of the instrument to ensure that this

criterion holds is both feasible and suffices to uniquely determine an implied instrument

setting at each date.

29As noted earlier, rule (6.6) can also be regarded as a targeting rule even in the case that the target
criterion involves it. Svensson (2001) discusses optimal targeting rules of this form.
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We have shown under relatively general conditions that a robustly optimal direct policy

rule will exist. But it does not follow that there is a single uniquely optimal rule in this

sense. First of all, we have noted above that the Λ, Υ, Q and R referred to in Proposition 1

may not be unique, so that (6.6) may not correspond to a unique specification of the policy

rule. One way of obtaining a unique proposal of this kind, that we favor, is to select the

representation of optimal policy of this kind that results in the lowest possible upper bound

on the moduli of the eigenvalues of Λ.30 This makes the dependence of the rule (6.6) upon

lagged variables (and lagged expectations) as little as possible, so we call this the minimally

history-dependent rule. As is discussed further in the Appendix (and illustrated in the

analysis of the model with inflation inertia in Giannoni and Woodford, 2002), this choice

also reduces unnecessary dependence upon forecasts of target variables far in the future in

the statement of the rule.

But this does not suffice to resolve the question of uniqueness, for a rule need not be of

the form (6.6) at all to be a robustly optimal direct rule. Any rule of the form

a(L)′ Et[Ψ(L−1) (τ t − τ ∗)] = 0 (7.3)

is equivalent to the rule

Et

{
φ(L−1) a(L)′ Et[Ψ(L−1) (τ t − τ ∗)]

}
= 0, (7.4)

where φ(L−1) is any invertible (scalar) polynomial function of the inverse lag operator, i.e.,

any polynomial such that all roots of φ(µ) = 0 are outside the unit circle. These rules are

equivalent in the sense that a bounded process {τ t} satisfies (7.3) if and only if it satisfies

(7.4). One might suppose that the form (7.4) is necessarily a more complex specification,

on the ground that it involves projections of the target variables farther in the future, and

therefore that (7.3) would unambiguously be preferred. But this need not be so. If one or

more of the lag polynomials ai(L) can be factored as

ai(L) = γ1(L)γ2(L),

30The construction of this particular rule of the form (6.6) is discussed in section A.2.3 of the Appendix.
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where γ1(L) is a lag polynomial of order m ≥ 1 such that all roots of γ1(µ) = 0 are inside the

unit circle, we may choose φ(L−1) = γ̃1(L
−1)−1, where γ̃1(L

−1) ≡ γ1(L)L−m is a polynomial

of order m with all of its zeroes outside the unit circle. In this case,

Et

{
φ(L−1) ai(L) xt

}
= γ2(L) xt−m,

for any bounded variable xt, and this is a simpler function of xt (involving fewer lags and no

more leads) than is ai(L) xt.

In particular, this possibility arises in the following case.

Assumption 7. The characteristic polynomial (2.3) has nZ + m roots such that |µ| <

β−1, for some m ≥ 1, where once again, if A is singular, the zero root is counted n− rank(A)

times.

The examples in Giannoni and Woodford (2002) demonstrate that this can easily occur

in models of practical interest; note that Assumption 7 is implied by the Sargent-Wallace

property (that holds in our examples). In such a case, we obtain the following stronger

characterization of optimal policy.

Proposition 3. In the case of a linear-quadratic policy problem satisfying Assumptions

1 – 7, with λi > 0, the optimal instrument rule (7.1) necessarily involves weights on lagged

interest rates that are large enough for the lag polynomial α(L) = 1 − γ(L)L to have m

zeroes inside the unit circle. Let this polynomial be factored as

α(L) = α1(L) α2(L),

where α1(L) is a polynomial of order m with all of its zeroes inside the unit circle and α2(L)

is a polynomial of order k −m with all of its zeroes outside the unit circle. Then another

optimal policy rule is given by

Et

{
α̃1(L

−1)−1 B′
2B(L) Et[Q(L−1) T̂ ′Ŵ (τ̂ t − τ̂ ∗)]

}
+ λi α2(L) (it−m − i∗) = 0, (7.5)
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where α̃1(L
−1) ≡ α1(L)L−m. Note that this can only be interpreted as a targeting rule, since

the criterion (7.5) does not involve the period t instrument setting it. Rules (7.1) and (7.5)

are equivalent in the sense that bounded processes {it} and {τ̂ t} satisfy (7.1) if and only if

they satisfy (7.5). Thus (7.5) is an example of a robustly optimal direct targeting rule that

cannot be interpreted as an instrument rule.

Note that the result that α(L) has zeroes inside the unit circle means that the instrument

dynamics implied by (7.1) in the case of an arbitrary bounded path for the other target

variables {τ̂ t} will almost always be explosive. Thus the finding of Rotemberg and Woodford

(1999) and Woodford (1999a), that an optimal interest-rate rule for certain forward-looking

models involves “superinertial” interest-rate dynamics, is no fluke; for an interesting general

class of forward-looking models, every optimal instrument rule of the form (7.1) will have

this property.

Of course, commitment to such a rule does not imply that interest-rate dynamics will

be explosive in equilibrium; to the contrary, we have shown that a rational-expectations

equilibrium exists in which the interest rate (along with all of the other state variables) is

bounded, and the fact that the dynamics are explosive in all other solutions to the system

consisting of (2.1) and (7.1) is what makes this equilibrium determinate. In fact, under

the assumption that private-sector expectations coordinate upon the determinate rational-

expectations equilibrium consistent with a given policy rule, a commitment to set interest

rates according to a “superinertial” rule represents a way of forcing the evolution of the other

target variables to satisfy the condition that is required in order for the implied interest-rate

dynamics not to be explosive. The expectation that the evolution of the target variables

will satisfy this condition is exactly what is expressed by the target criterion (7.5). Thus

a commitment to set interest rates according to (7.1) and a commitment to adjust interest

rates as necessary to ensure that criterion (7.5) holds at all times are not really different

policies; the representation of policy in terms of an implicit instrument rule simply specifies

more directly the size of interest-rate adjustments that are involved.
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The possibility of equivalent representations of optimal policy in terms of either an im-

plicit instrument rule or a targeting rule is illustrated in Giannoni and Woodford (2002).

Note that the equivalence of the two representations holds not only in the case of a single

specification of the disturbance processes, but for all possible disturbance processes. Thus

neither representation is more robust than the other, or requires more information for its

implementation than does the other, or allows more scope for the exercise of “judgment”

than does the other. We accordingly see little ground for drawing a sharp distinction be-

tween implicit instrument rules and targeting rules as general approaches to the conduct of

monetary policy. If there are grounds for preferring one form of policy commitment to the

other in a case of the sort described by Proposition 3, these presumably have to do with ease

of communication with the public about commitments of the two types, rather than with

any differences in the consequences associated with a credible commitment of either type.
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A Proofs of Propositions

A.1 Assumptions 3 and 4

The proof of Proposition 1 requires additional technical assumptions, beyond those stated

in the text.

Assumption 3. The characteristic polynomial (2.3) has rank(Ẽ)+ rank(A)−nz distinct

non-zero roots, in addition to the root zero if rank(A) < n (i.e., if A is singular). In addition,

if rank(A) < n, there are n− rank(A) linearly independent vectors ui such that A ui = 0,

and likewise n− rank(A) linearly independent vectors f ′i such that f ′i A = 0. Similarly, if

rank(Ẽ) < nz, there are nz− rank(Ẽ) linearly independent vectors e′j such that e′j Î = 0,

and likewise nz− rank(Ẽ) linearly independent vectors hj such that Î hj = 0.

Assumption 3 implies that there are rank(Î) = nZ+ rank(Ẽ) linearly independent vectors

ui with the property that

A ui = µi Î ui (A.1)

for some (scalar) eigenvalue µi. The eigenvalues correspond to the roots µi of (2.3), and there

is one eigenvector for each of the non-zero roots, in addition to n− rank(A) corresponding

to the zero root. The eigenvectors associated with real eigenvalues are real-valued, while

the eigenvectors associated with complex eigenvalues are complex-valued. Complex roots

come in complex conjugate pairs, and if ui is the eigenvector associated with a complex

eigenvalue µi, then the eigenvector associated with µ†i is u†i , where the dagger denotes a

complex conjugate. There is also an additional set of nz− rank(Ẽ) linearly independent

vectors hj such that Î hj = 0, necessarily linearly independent of the set of eigenvectors.

Taken together, these vectors comprise a set of n linearly independent vectors that can be

used as a basis for Cn.

There are similarly at least rank(A) linearly independent vectors e′j with the property
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that

θj e′j A = e′j Î (A.2)

for some θj.
31 Corresponding to each of the non-zero roots µi of (2.3) there is a left eigenvector

e′i satisfying this equation for θi = µ−1
i . The remaining left eigenvectors are the nz− rank(Ẽ)

linearly independent vectors e′j such that e′j Î = 0; these satisfy (A.2) for θj = 0. Again there

is also an additional set of n− rank(A) linearly independent vectors f ′i such that f ′i A = 0.

Taken together, this set of n generalized left eigenvectors also forms a basis for Cn.

In the case of a left eigenvector e′j and a right eigenvector ui corresponding to eigenvalues

such that θj µi 6= 1, we necessarily have

e′j A ui = e′j Î ui = 0. (A.3)

The same condition can be shown to hold if either e′j or ui is one of the generalized eigen-

vectors, i.e., if e′j A = 0 or Î ui = 0. We can also normalize the eigenvectors so that if e′j and

ui are eigenvectors for which θj µi = 1, then

e′j Î ui = 1.

Assumptions 2 and 3 together imply that there exist at least nZ linearly independent

vectors ui satisfying (A.1) for which the associated eigenvalue satisfies |µi| < β−1. Thus we

can form a n× nZ matrix J with the property that

A J = Î J Ω, (A.4)

where Ω is a square matrix of dimension nZ , all of the eigenvalues of which satisfy |µi| < β−1.

This last property implies that

||β Ω|| < 1. (A.5)

The columns of J are linear combinations of nZ of the eigenvectors ui, and the eigenvalues

of Ω are the associated eigenvalues.32 It is possible to include all of the vectors ui such that

31Note that in the case of a complex-valued column vector or matrix e, we use the notation e′ to denote
the transpose of e, not the conjugate transpose.

32In the case that one selects a complex conjugate pair of eigenvectors, it is convenient for the columns of
J not to be the eigenvectors themselves, so that the columns of J can be real-valued.
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A ui = 0 among the eigenvectors used to form the columns of J, and we shall assume that

J is constructed in this way.

When it is possible to select a set of eigenvectors that are all real-valued, or that consist

of real-valued eigenvectors along with one or more complex conjugate pairs (case (i) of

Assumption 2), it is possible to choose the matrices J and Ω to be real-valued. However,

if the non-zero eigenvalues such that |µi| < β−1 are all complex and rank(A) − nz is odd,

then it is necessary to split a complex conjugate pair, and in this case both J and Ω must

be complex-valued.33 Even in this case, however, it is possible to choose J and Ω to be of

the form

J = [J̃ u], Ω =

[
Ω̃ 0
0 µ

]
, (A.6)

where J̃ and Ω̃ are real-valued, and u is the complex-valued right eigenvector (i.e., vector

satisfying (A.1)) corresponding to the complex eigenvalue µ. In this case (case (ii) of As-

sumption 2), we have assumed that the eigenvalue µ is such that |Re µ−1| > β. We shall

assume that J and Ω are constructed in one of these two ways.

Corresponding to this selection from among the right eigenvectors, we may similarly

form two sets of (generalized) left eigenvectors, Φ and Ψ. Here the rows of Ψ′ are nz linearly

independent combinations of the nz left eigenvectors with eigenvalues equal to zero, or to

the reciprocals of roots of (2.3) that are not among the eigenvalues of Ω. It follows that there

is a matrix Θ such that

Θ′ Ψ′ A = Ψ′ Î; (A.7)

this matrix is of rank k ≡ rank(Ẽ) and has non-zero eigenvalues corresponding to the recip-

rocals of the roots of (2.3) just mentioned. It also follows from (A.3) that

Ψ′ A J = Ψ′ Î J = 0. (A.8)

Similarly, the rows of Φ′ are nZ linear combinations of the n− rank(A) vectors f ′i such

that f ′i A = 0 and the rank(A)−nz left eigenvectors with eigenvalues that are the reciprocals

33This happens in the example in Giannoni and Woodford (2002) with inflation inertia, in the case that
the degree of inertia is large.
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of non-zero eigenvalues of Ω. We can select this matrix so that

Φ′ A = Ω Φ′ Î , (A.9)

Φ′ Î J = I. (A.10)

Note that the columns of Ψ and Φ together form a basis for Cn.

In case (i) of Assumption 2, the matrices Ψ, Φ and Θ are all real-valued. On the other

hand, in case (ii), when a complex pair of eigenvalues is split in constructing J and Ω, it is

also necessary for Ψ and Φ to each contain at least one complex-valued eigenvector, and for

Θ to have at least one complex eigenvalue. We can, however, choose these matrices to be of

the form

Ψ = [Ψ̃ v], Θ =

[
Θ̃ 0
0 µ†−1

]
, (A.11)

Φ = [Φ̃ v†], (A.12)

where Ψ̃, Θ̃, and Φ̃ are all real-valued. Here µ is again the complex eigenvalue in (A.6), v′ is

the complex-valued left eigenvector associated with eigenvalue µ†−1, and the dagger denotes

the complex conjugate. We shall assume that in case (ii) the matrices Ψ, Φ and Θ are of this

form.

We can now state our remaining technical assumption.

Assumption 4. The matrix of left eigenvectors Ψ is such that (i) the matrix A′ Ψ is of

full rank (i.e., rank nz); and (ii) if the rows of Ψ are partitioned

Ψ ≡
[

Ψ1

Ψ2

]
,

conformably with the partition of the vector of endogenous variables in (2.1), then

det[Re Ψ2] 6= 0.

Like Assumption 3, this assumption will be satisfied by generic matrices A and Ẽ of arbitrary

ranks 0 ≤ rank(Ẽ) ≤ nz ≤ rank(A) ≤ n. We turn now to the proofs of the Propositions in

the text.
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A.2 Proof of Proposition 1

Proposition 1. Under Assumptions 2 – 4, there exist (real-valued) matrices Λ and Υ and

linear operators Q(L−1) and R(L−1) such that bounded processes {ϕt} and {τ t} satisfy (6.1)

for all t ≥ t0 if and only if they satisfy the conditions

Ξt = ΛΞt−1 + Et[Q(L−1) T̃ ′W (τ t − τ ∗)], (A.13)

ξt = ΥΞt−1 + Et[R(L−1) T̃ ′W (τ t − τ ∗)] (A.14)

for all t ≥ t0. These linear operators are such that Q(L−1) xt and R(L−1) xt are well-defined

and bounded processes in the case of any bounded process xt.

Proof: Let J be a matrix satisfying (A.4) for some matrix Ω with the properties stated

above. Then premultiplying (6.1) by J ′, using the transpose of (A.4) to substitute for J ′A′,

and re-arranging terms, we obtain

Et[(I − βΩ′ L−1) J ′Î ′ ϕt] = βJ ′ T̃ ′W (τ t − τ ∗).

Because of (A.5), (I − βΩ′ L−1) is invertible, and the above is equivalent to

J ′Î ′ ϕt = βEt[(I − βΩ′ L−1)−1 J ′T̃ ′W (τ t − τ ∗)], (A.15)

in the sense that bounded processes {ϕt, τ t} satisfy one relation for all t ≥ t0 if and only if

they satisfy the other.

Now let the columns of Ψ and Φ be used as a basis, and represent ϕt in the form

ϕt ≡ Ψ ψt + Φ φt. (A.16)

Using (A.8) and (A.10), it follows that J ′Î ′ ϕt = φt, so that (A.15) provides a solution for

the coefficients φt in the case of any bounded process for the evolution of the target variables.

Substituting (A.16) into (6.1) to eliminate ϕt, and then substituting the right-hand side

of (A.15) for φt, we obtain

A′Ψ Etψt+1 = β−1Î ′Ψ ψt + (Î ′ΦJ ′ − I) T̃ ′W (τ t − τ ∗) (A.17)
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as a restriction upon the optimal evolution of the coefficients {ψt}. (Here we have used (A.9)

to substitute for A′Φ.)

We note furthermore that (A.10) implies that

J ′ (Î ′ΦJ ′ − I) = 0.

But (A.8), together with part (i) of Assumption 4, implies that the 2nz−dimensional sub-

space of Cn consisting of vectors orthogonal to all rows of J ′ is spanned by the columns of

A′Ψ. Thus there must be a representation of the form

Î ′ΦJ ′ − I = A′Ψ S

for some matrix S. Substituting this, and also using (A.7) to substitute for Î ′Ψ, condition

(A.17) may be written

A′Ψ [Etψt+1 − β−1Θ ψt] = A′Ψ S T̃ ′W (τ t − τ ∗).

Finally, because A′Ψ is of full rank, this is possible only if

Etψt+1 = β−1Θ ψt + S T̃ ′W (τ t − τ ∗). (A.18)

A.2.1 Case (i)

Let us now consider first case (i) of Assumption 2, in which case J, Ψ and Φ are all real-

valued. If we partition the rows of Φ in the same way as those of Ψ, then (A.16) implies

that

Ξt−1 = Ψ2 ψt + Φ2 φt, (A.19)

and part (ii) of Assumption 4 implies that Ψ2 is invertible, allowing us to solve for

ψt = Ψ−1
2 Ξt−1 −Ψ−1

2 Φ2 φt. (A.20)

Substituting this into (A.18) to eliminate ψt, then substituting the right-hand side of (A.15)

for φt, and finally premultiplying all terms by Ψ2, we obtain a relation of the form (A.13),

in which

Λ ≡ β−1Ψ2ΘΨ−1
2 , (A.21)

52



Q(L−1) ≡ β(L−1 − Λ) Φ2 (I − βΩ′ L−1)−1 J ′ + Ψ2 S.

Similarly, (A.16) implies that

ξt = Ψ1 ψt + Φ1 φt. (A.22)

Substituting (A.20) for ψt and (A.15) for φt, we obtain a relation of the form (A.14), in

which

Υ ≡ Ψ1Ψ
−1
2 ,

R(L−1) ≡ β(Φ1 −Ψ1Ψ
−1
2 Φ2) (I − βΩ′ L−1)−1 J ′.

Note that in this case Λ, Υ, Q(L−1) and R(L−1) are all real-valued.

We have shown that with these definitions, any bounded processes {ϕt} and {τ t} that

satisfy (6.1) for all t ≥ t0 must also satisfy (A.13) – (A.14) for all t ≥ t0. Conversely, suppose

that one is given bounded processes that satisfy the latter conditions each period. Then

defining ψt by (A.20) and φt by the right-hand side of (A.15), using (A.13) one can show

that the process {ψt}must satisfy (A.18), and hence (A.17) for all t ≥ t0. Using the definition

of φt one can then write this in the form

A′ (Ψ Etψt+1 + Φ Etφt+1) = β−1Î (Ψ ψt + Φ φt)− T̃ ′W (τ t − τ ∗). (A.23)

Similarly, one observes that (A.14) implies (A.22), while the definition of ψt implies

(A.19). Together these relations imply that ϕt satisfies (A.16). But using this one observes

that (A.23) implies (6.1), so that this relation must hold for all t ≥ t0. Thus the proposition

is established, for case (i) of Assumption 2.

A.2.2 Case (ii)

Now consider instead case (ii), in which J, Ψ and Φ each have one complex-valued column.

In this case, in the representation (A.16), the coefficients ψt and φt are complex-valued.

However, if we introduce the decompositions

ψt ≡
[

ψ̃t

ψvt

]
, φt ≡

[
φ̃t

φvt

]
,
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where in each case the lower sub-vector has only a single element, then ψ̃t and φ̃t will be

real-valued, and the two complex elements will satisfy φvt = ψ†vt.

Furthermore, using the previously introduced decompositions of J and Ω, the right-hand

side of (A.15) can be decomposed to yield the two equations

φ̃t = β Et[(I − βΩ̃′ L−1)−1 J̃ ′ T̃ ′W (τ t − τ ∗)], (A.24)

φvt = β Et[(1− βµ L−1)−1 u′ T̃ ′W (τ t − τ ∗)]. (A.25)

We note that all coefficients appearing in (A.24) are real-valued, so that the equation implies

a real-valued bounded process for {φ̃t} corresponding to any real-valued bounded process

for {τ t}.
Similarly, each of the terms in (A.17) can be decomposed, yielding

A′Ψ̃ Etψ̃t+1 + A′v Etψv,t+1 = β−1A′Ψ̃Θ̃ ψ̃t + β−1µ†−1A′v ψvt

+[(Î ′Φ̃J̃ ′ − I) + µ−1A′v†u′] T̃ ′W (τ t − τ ∗). (A.26)

The fact that Î ′Φ̃J̃ ′ − I is real-valued and satisfies

J̃ ′ (Î ′Φ̃J̃ ′ − I) = 0

implies that it must have a representation of the form

Î ′Φ̃J̃ ′ − I = A′Ψ̃ S̃ + A′v s′ + A′v† s†′,

for some real-valued matrix S̃ and complex-valued vector s′. The fact that in addition

u′ (Î ′Φ̃J̃ ′ − I) = −u′

then implies furthermore that s′ = −µ†−1u†′. Hence equations (A.18) can be separated, in

this case, into two equations,

Etψ̃t+1 = β−1Θ̃ ψ̃t + S̃ T̃ ′W (τ t − τ ∗), (A.27)

Etψv,t+1 = β−1µ†−1 ψvt − µ†−1u†′ T̃ ′W (τ t − τ ∗), (A.28)
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corresponding to the coefficients multiplying A′Ψ̃ and those multiplying A′v, respectively.

We note that all of the coefficients appearing in (A.27) are real-valued.

Finally, we note that (A.28) may equivalently be written

Et[(1− βµ† L−1) ψvt] = βu†′ T̃ ′W (τ t − τ ∗).

Because |µ| < β−1, the operator 1− βµ† L−1 is invertible, and this relation is equivalent to

ψvt = β Et[(1− βµ† L−1)−1 u†′ T̃ ′W (τ t − τ ∗)]. (A.29)

Comparison of this relation with (A.25) indicates that these relations imply that φvt = ψ†vt,

as is necessary in order for ϕt to be real-valued.

It is useful now to introduce an alternative set of basis vectors, a set of n real-valued

vectors that span Rn, consisting of the columns of the matrices Ψ̄ and Φ̄ defined by

Ψ̄ ≡ [Ψ̃ v̄], Φ̄ ≡ [Φ̃ ṽ],

where v̄ ≡ Re v and ṽ ≡ Im v. In terms of this new basis, ϕt can be given the representation

ϕt = Ψ̄ ψ̄t + Φ̄ φ̄t, (A.30)

where

ψ̄t ≡
[

ψ̃t

ψrt

]
, φ̄t ≡

[
φ̃t

φit

]
,

and

ψrt ≡ 2Re ψvt, φit ≡ 2Im φvt.

Note that now all of the coefficients ψ̄t and φ̄t are real-valued.

Given the definitions of the new coefficient φit, (A.25) implies that

φit =
β

i
Et{[(1− βµ L−1)−1 u′ − (1− βµ† L−1)−1 u†′] T̃ ′W (τ t − τ ∗)}

≡ Et[f(L−1)′ T̃ ′W (τ t − τ ∗)]. (A.31)

Here all of the coefficients of f(L−1) are real-valued. Hence the complete vector of coefficients

φ̄t is given by

φ̄t = Et[F (L−1) T̃ ′W (τ t − τ ∗)], (A.32)
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where

F (L−1) ≡
[

β (I − βΩ̃′ L−1)−1 J̃ ′

f(L−1)′

]
.

Similarly, given the definition of ψrt, (A.28) implies that

Etψr,t+1 = β−1 Re{µ†−1 (ψrt − iφit)} − 2 Re{µ†−1u†′} T̃ ′W (τ t − τ ∗),

= λ̄ ψrt + λ̃ φit − (µ−1u′ + µ†−1u†′) T̃ ′W (τ t − τ ∗),

= λ̄ ψrt + Et[g(L−1)′ T̃ ′W (τ t − τ ∗)], (A.33)

where

λ̄ ≡ β−1 Re µ†−1, λ̃ ≡ β−1 Im µ†−1,

and

g(L−1)′ ≡ λ̃ f(L−1)′ − (µ−1u′ + µ†−1u†′).

Here λ̄ and all of the coefficients of g(L−1)′ are real-valued. Hence the complete vector of

coefficients ψ̄t satisfies a relation of the form

Etψ̄t+1 = β−1Θ̄ ψ̄t + Et[G(L−1) T̃ ′W (τ t − τ ∗)], (A.34)

where Θ̄ ≡ Re Θ and

G(L−1) ≡
[

S̃
g(L−1)′

]
.

Finally, if we partition the rows of Ψ̄ and Φ̄ in the same way as before, and note that

Ψ̄ ≡ Re Ψ, we see that part (ii) of Assumption 4 implies that Ψ̄2 is non-singular. Then

(A.30) implies that

ψ̄t = Ψ̄−1
2 Ξt−1 − Ψ̄−1

2 Φ̄2 φ̄t, (A.35)

analogous to (A.20) in the case of only real-valued eigenvectors. Substituting this into (A.34)

to eliminate ψ̄t, and then substituting (A.32) for φ̄t, we once again obtain a relation of the

form (A.13), in which now

Λ ≡ β−1Ψ̄2Θ̄Ψ̄−1
2 , (A.36)

Q(L−1) ≡ Ψ̄2 G(L−1) + (L−1 − Λ) Φ̄2 F (L−1).
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Similarly, (A.30) allows us to solve for ξt as a function of Ξt−1 and φ̄t. Substitution of

(A.32) for φ̄t again yields a relation of the form (A.14), in which now

Υ ≡ Ψ̄1Ψ̄
−1
2 ,

R(L−1) ≡ (Φ̄1 − Ψ̄1Ψ̄
−1
2 Φ̄2) F (L−1).

Once again, Λ, Υ, Q(L−1) and R(L−1) are all real-valued.

Thus with these definitions, we have established that any bounded processes {ϕt} and

{τ t} that satisfy (6.1) for all t ≥ t0 must also satisfy (A.13) – (A.14) for all t ≥ t0. The

converse can also be established, as before, largely by reversing the series of calculations

used to derive this result. Given bounded processes that satisfy (A.13) – (A.14) each period,

one can define ψ̄t by (A.35) and φ̄t by (A.32). It then follows that ϕt satisfies (A.30) each

period, where the coefficients ψ̄t satisfy (A.34) and the coefficients φ̄t satisfy (A.32).

The one point at which our previous calculations are not directly reversible is where we

derived the properties of the real-valued coefficients ψrt and φit from those of the complex-

valued ψvt and φvt. While it is easy to see that (A.25) implies (A.31) and that (A.28) implies

(A.33), the converses need not hold. Nonetheless, the fact that both (A.31) and (A.33) hold

implies that (A.25) and (A.28) must hold. For (A.31) implies that

Et[(1− βµ L−1)(1− βµ† L−1)(L−1 − λ̄) φit]

= Et[(1− βµ L−1)(1− βµ† L−1)(L−1 − λ̄) f(L−1)′ T̃ ′W (τ t − τ ∗)]

= −2β Im Et[(L
−1 − λ̄)(1− βµ L−1) u†′ T̃ ′W (τ t − τ ∗)].

Similarly, (A.33) implies that

Et[(1− βµ L−1)(1− βµ† L−1)(L−1 − λ̄) ψrt]

= Et[(1− βµ L−1)(1− βµ† L−1) g(L−1)′ T̃ ′W (τ t − τ ∗)]

= 2β Re Et[(L
−1 − λ̄)(1− βµ L−1) u†′ T̃ ′W (τ t − τ ∗)].
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Then, since

ψvt =
1

2
(ψrt − i φit),

it follows that

Et[(1− βµ L−1)(1− βµ† L−1)(L−1 − λ̄) ψvt]

= β Et[(L
−1 − λ̄)(1− βµ L−1) u†′ T̃ ′W (τ t − τ ∗)]. (A.37)

Assumption 2 implies both that |µ| < β−1 and that |λ̄| > 1. (It is at this point that we

require the assumption that |Re µ−1| > β.) Hence the operators 1 − βµ L−1, 1 − βµ† L−1,

and L−1 − λ̄ are each invertible, and (A.37) implies (A.29). This last equation then implies

(A.28), and also (A.25), using the fact that φvt = ψ†vt. Thus we can show that the coefficients

φt must satisfy (A.24) – (A.25), and that the coefficients ψt must satisfy (A.18). It then

follows as above that the processes {ϕt} and {τ t} must satisfy (6.1) for all t ≥ t0, and the

proposition is established in case (ii) as well.

A.2.3 Remarks

We have noted in the text that there may be some arbitrariness in the construction of the

Λ, Υ, Q and R referred to in Proposition 1. This follows from the possible non-uniqueness

of the set of nZ eigenvalues used to construct the matrices J and Ω. However, given a choice

of nZ roots of (2.3) with the assumed properties, the choice of how to order the columns of

J can be shown not to matter for the Λ, Υ, Q and R obtained from the above construction.

Thus in the case that the number of roots such that |µi| < β−1 is exactly nZ , the Λ, Υ, Q

and R referred to in Proposition 1 are uniquely determined.

Even when the number of such roots exceeds nZ , there is an attractive method for se-

lecting a particular characterization of the form given in Proposition 1. This is to form the

matrix J from the eigenvectors associated with a set of nZ roots that are chosen so as to

minimize ||Λ||, the upper bound on the eigenvalues of Λ; we shall call this the minimally

inertial specification. It follows from (A.36) that the eigenvalues of Λ are the set of quantities

β−1θj, where θj is an eigenvalue of Θ̄ ≡ Re Θ. The eigenvalues of Θ, other than zero (in the
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case that Ẽ is singular), are equal to the reciprocals of the rank(Ẽ) roots of (2.3) that are

not included among the eigenvalues of Ω. Thus a consideration of the roots of (2.3) alone

tells one which ones to select in order to construct the minimally inertial specification.

Note also that in most cases, the minimally inertial specification will also minimize ||Ω||.
Thus it not only minimizes the degree to which the value of Ξt in (A.13) depends on Ξt−1, but

also the degree to which Q(L−1) and R(L−1) involve projected future, as opposed to current,

values of the target variables. This representation expresses the restrictions (A.13) – (A.14)

on the admissible evolution of the variables {ϕt} and {τ t} in as nearly contemporaneous a

form as is possible.

A.3 Assumption 5

The proof of Proposition 2 relies upon the following additional assumption.

Assumption 5. The vector B′
2 and the vectors B′

2Λ
j, for j = 1, ..., k − 1, are linearly

independent of one another. Similarly, the vectors B′
2Λ

j for j = 1, ..., k are linearly indepen-

dent.

Note that this assumption is violated in particular in the special case in which B′
2 is a left

eigenvector of Λ, or indeed if B′
2 is any linear combination of fewer than k of the left eigenvec-

tors corresponding to non-zero eigenvalues, plus the left eigenvectors corresponding to zero

eigenvalues. (Recall that rank(Λ) = k, so that there are exactly k non-zero eigenvalues.)

It follows that Assumption 5 also requires that B′
2gi 6= 0 for any right eigenvector gi of Λ

corresponding to a non-zero eigenvalue. Nonetheless, the assumption is clearly satisfied for

generic matrices of arbitrary rank, since the elements of B2 are not involved in the conditions

that define the matrix Λ.
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A.4 Proof of Proposition 2

The policy rule (6.6) can be rewritten as

α (L) vt + B′
2B (L) qt = 0, (A.38)

where qt and vt are defined in (6.8) and (6.9) respectively, α (L) is a scalar polynomial of

order k, and B (L) is a matrix polynomial of order d = min (k, nz − 1) . To apply policy rule

(A.38) at all dates t ≥ t0, one must start with initial conditions vt0−1, ..., vt0−k, qt0−1, ..., qt0−d.

Note that from equations (6.2) and (6.3), the variables vt and qt can determined from

the Lagrange multipliers, using the relations

vt = −B′
2Ξt (A.39)

qt = Ξt − ΛΞt−1, (A.40)

at all dates t. We first show that under Assumption 5, there is a unique sequence of initial

Lagrange multipliers Ξt0−1, ..., Ξt0−d and ΛΞt0−d−1 that satisfies (A.39) – (A.40), and that

is consistent with the initial conditions vt0−1, ..., vt0−k, qt0−1, ..., qt0−d that are part of the

specification of Z̄t0 .

A.4.1 Initial Conditions for Multipliers

We first note that given the vector ΛΞt0−d−1, and values for qt0−1, ..., qt0−d, it is possible to

solve equations (A.40) uniquely for the vectors Ξt0−1, ..., Ξt0−d. The solutions obtained are of

the form

Ξt0−j = Λd+1−j Ξt0−d−1 + ∆j q (A.41)

for j = 1, ..., d, where

q =




qt0−1
...

qt0−d




and ∆j is a matrix the elements of which need not be specified. It then remains simply

to show that there exists a unique vector ΛΞt0−d−1 such that the solutions (A.41) will also

satisfy equations (A.39).
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Substituting the solutions (A.41) into each of the equations (A.39), one obtains a system

of equations for the unknown vector ΛΞt0−d−1 that can be written in the form

V = D ΛΞt0−d−1 + F q, (A.42)

where

V =




vt0−1
...

vt0−k


 , D =



−B′

2Λ
k−1

...
−B′

2


 ,

and again the elements of the matrix F need not be specified. Assumption 5 implies that D

is of full rank, i.e., of rank k.

Because Λ is of rank k, the linear space of possible vectors of the form ΛΞt0−d−1 is of

dimension k. This, together with the fact that D is of rank k, guarantees that there is a

unique solution ΛΞt0−d−1 to the system of k equations (A.42), regardless of the value of

the vector Fq. It follows that there is exactly one sequence Ξt0−1, ..., Ξt0−d and one vector

ΛΞt0−d−1 that is consistent with any sequence of initial values vt0−1, ..., vt0−k, qt0−1, ..., qt0−d.

A.4.2 Existence of Equilibrium

Now, given any initial conditions Zt0 , vt0−1, ..., vt0−k, qt0−1, ..., qt0−d, we wish to show that

there exists a unique bounded solution for {yt} for periods t ≥ t0 satisfying (2.1) and (6.6)

for all t ≥ t0. We begin by establishing existence of such a solution.

The result of the previous section implies that associated with these initial conditions

will be a unique sequence of initial multipliers Ξt0−1, ..., Ξt0−d and ΛΞt0−d−1, such that (A.39)

is satisfied for all t0 − k ≤ t ≤ t0 − 1 and (A.40) is satisfied for all t0 − d ≤ t ≤ t0 − 1.

Given the value of Ξt0−1 that is determined in this way, Assumption 1 implies that there is

a unique bounded solution {yt, ξt, Ξt} satisfying (2.1) and (5.3) for all t ≥ t0. Proposition 1

then implies that this is also the unique bounded solution to the equation system consisting

of (2.1) and (6.2) – (6.4) for all t ≥ t0. We next wish to show that this solution also satisfies

(6.6) for all t ≥ 0. In that case, we will have established that there exists a solution {yt}
that satisfies (2.1) and (6.6), as desired.
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The solution must satisfy

(I − ΛL)Ξt = qt (A.43)

for each t ≥ t0, as a consequence of (6.3). The multipliers for the periods prior to t0 have

been chosen so that (A.43) holds for t0 − d ≤ t ≤ t0 − 1 as well. Thus we can pre-multiply

both sides of (A.43) by B′
2B(L), a lag polynomial of order d, and obtain a relation that must

hold for all t ≥ t0. It then follows from (6.5) that

α(L)B′
2Ξt = B′

2B(L)qt (A.44)

for all t ≥ t0.

Similarly, the solution must satisfy (A.39) for each t ≥ t0, as a consequence of (6.2).

And the multipliers for the periods prior to t0 have been chosen so that (A.39) holds for

t0 − k ≤ t ≤ t0 − 1 as well. Thus we can pre-multiply both sides of (A.39) by α(L), a lag

polynomial of order k, and obtain a relation that must hold for all t ≥ t0. Substituting this

into (A.44), we obtain relation (A.38), which is equivalent to (6.6). Thus the solution shown

to exist above must satisfy (6.6) for all t ≥ t0. It follows that there exists a bounded solution

that satisfies both (2.1) and (6.6) for all t ≥ t0.

A.4.3 Uniqueness of Equilibrium

Let us next consider the uniqueness of this solution. Suppose that there were some other

bounded solution {yt} to (2.1) and (6.6) for all t ≥ t0 consistent with the given initial condi-

tions Zt0 and vt0−1, ..., vt0−k, qt0−1, ..., qt0−d. A unique sequence of multipliers Ξt0−1, ..., Ξt0−d

and ΛΞt0−d−1 consistent with these initial conditions can be constructed as above. Using

this initial value for Ξt0−1, one can then construct an associated solution for the multipliers

{ξt, Ξt} for all t ≥ t0 using equations (6.3) – (6.4).

We first show that the multipliers constructed in this way must satisfy (6.1) for all t ≥ t0.

By construction, they satisfy (A.43) for all t ≥ t0 − d. Pre-multiplying this by B′
2B(L), one

observes that they must satisfy (A.44) for all t ≥ t0. Comparing this with (6.6), one can

show that

α(L)[B′
2Ξt + vt] = 0
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for each t ≥ t0. But since the term in square brackets is zero for each t0 − k ≤ t ≤ t0 − 1

by construction, it follows, by a recursive argument, that it must be zero for each t ≥ t0 as

well. This establishes (6.2).

We next establish that the multipliers constructed in this way are bounded. Let fj
′ and

gj be the left and right eigenvectors of the matrix Λ corresponding to the eigenvalue λj, for

j = 1, 2, ..., nz, and let these be numbered so that |λj| > 1 for j ≤ m while |λj| < 1 for

j > m. Let them also be normalized so that fj
′gj = 1 for any j, while fj

′gi = 0 for any

i 6= j. Then noting that the vectors gj form a basis for Cnz , we can express Ξt as a linear

combination of these vectors. Let

Ξ̂t ≡ Ξt −
m∑

j=1

gjfj
′Ξt

be the projection of Ξt on the eigenvectors gj with j > m, and q̂t be the corresponding

projection of qt.

It then follows from (A.40) that

Ξ̂t = ΛΞ̂t−1 + q̂t. (A.45)

Because Ξ̂t is a (real-valued) linear combination of the eigenvectors j > m, there exists a

norm for Rnz in terms of which ||ΛΞ̂t−1|| ≤ b · ||Ξt−1||, where b = maxj>m |λj| < 1. The

triangle inequality together with (A.45) then implies that

||Ξ̂t|| ≤ b · ||Ξ̂t−1||+ Q

for all t ≥ t0, where Q > 0 is a uniform bound for ||q̂t||. (A finite bound Q necessarily exists

under the hypothesis that {yt} is bounded.) It then follows from recursive application of

this inequality that

||Ξ̂t|| ≤ b · ||Ξ̂t0−1||+ (1− b)−1Q

for all t ≥ t0. Thus {Ξ̂t} is necessarily a bounded process.

If m = 0, the proof that {Ξt} is bounded is complete. Suppose now instead that m ≥ 1.

Pre-multiplying (A.40) by fj
′ for any j ≤ m, we obtain a stochastic difference equation for
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the evolution of fj
′Ξt that can be solved forward to show that

lim
T→∞

λ
−(T−t)
j fj

′EtΞT−1 = fj
′Ξt−1 + q̃j

t ,

where

q̃j
t ≡

∞∑
T=t+1

λ
−(T−t)
j Et[fj

′qT−1]

is well-defined and bounded because {yt} is bounded and |λj| > 1. Hence

lim
T→∞

{
EtΞT−1 −

m∑
j=1

[fj
′Ξt−1 + q̃j

t ]λ
T−t
j gj

}
= lim

T→∞
EtΞ̂T−1 = 0.

Pre-multiplying this by B′
2 and using (A.39), we find that

lim
T→∞

{
EtvT−1 +

m∑
j=1

[fj
′Ξt−1 + q̃j

t ]λ
T−t
j B′

2gj

}
= 0. (A.46)

Because by hypothesis our solution for {yt} is bounded, equation (A.46) can hold only

if for each j = 1, ..., m, either B′
2gj is zero or the term in square brackets is zero. But

Assumption 5 requires that B′
2gj 6= 0 for each of these j; hence the term in square brackets

must be zero in each case. This gives us an expression for fj
′Ξt for each j = 1, ..., m, which

allows us to write

Ξt = Ξ̂t −
m∑

j=1

q̃j
t+1gj.

As we have already established that Ξ̂t and each of the q̃j
t are bounded, it follows from this

representation that the constructed {Ξt} is a bounded process. It then follows from (6.4)

and the boundedness of {yt} that the constructed process {ξt} is bounded as well.

We can then apply Proposition 1 to show that the assumed solution {yt} and the con-

structed multipliers {ϕt} must satisfy (6.1) for all t ≥ t0. But this means that we have

at least two distinct bounded solutions to the system of equations consisting of (2.1), (6.1)

and (6.2), each consistent with the same initial conditions Zt0 and Ξt0−1. This is impossible

under Assumption 1. Hence there must in fact be a unique bounded solution {yt} to the

system consisting of (2.1) and (6.6) under the given initial conditions.
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A.4.4 Optimality

We have shown in section A.4.1 that there is a unique value of Ξt0−1 consistent with initial

conditions vt0−1, . . . , vt0−k, qt0−1, . . . , qt0−d and with the conditions (A.39) – (A.40). This

solution can be written in the form

Ξt0−1 = g0 + gZZ̄t0 , (A.47)

where we we note that gZ places non-zero weight only on elements of Z̄t0 that are known at

t0 − 1. Furthermore, the unique equilibrium shown above to exist has associated with it a

sequence of Lagrange multipliers that satisfy (A.39) – (A.40) in all later periods as well. It

follows that these multipliers similarly satisfy

Ξt−1 = g0 + gZZ̄t (A.48)

for all t > t0 as well, where the coefficients are the same as in (A.47).

But then as discussed in section 5 of the text, our bounded solution to (2.1) and (5.3)

consistent with Zt0 and the initial multipliers Ξt0−1 given by (A.47) involves a plan {yt} that

is optimal subject to an additional set of constraints of the form Ẽzt = ē, where

ē = e0 + eZZt0 + esst0 + eΞ[g0 + gZZ̄t0 ], (A.49)

and the coefficients e0, eZ , es, eΞ are the ones defined in (5.4). (Their existence is guaranteed

by Assumption 1.)

Similarly, the continuation of the plan from any date t > t0 onward corresponds to the

unique bounded solution to (2.1) and (5.3) consistent with initial conditions Zt and Ξt−1,

where Ξt−1 satisfies (A.48). Thus the same reasoning implies that in each period t > t0,

Ẽzt = e0 + eZZt + esst + eΞ[g0 + gZZ̄t]. (A.50)

Hence the constraint values ē specified in (A.49) are the same function of Z̄t0 and st0 as Ẽzt

is of Z̄t and st according to (A.50). It follows that the plan {yt} is optimal from a timeless

perspective, in the sense defined in section 3 of the text.
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A.5 Proof of Proposition 3

First note that the characteristic polynomial (2.3) is a polynomial of order rank
(
Î
)

= k+nZ ,

where k ≡ rank
(
Ẽ

)
, and thus that admits k + nZ roots µi, where i = 1, ..., k + nZ .

Assumption 7 implies that (2.3) has (k −m) roots such that |µi| ≥ β−1 and (m + nZ) roots

such that |µi| < β−1, for some m ≥ 1.

From section A.1, we know that under Assumptions 2 and 3, there exists a square matrix

Ω of dimension nZ for which all of the eigenvalues satisfy |µi| < β−1. Under Assumptions

2, 3 and 7, the characteristic polynomial (2.3) has therefore rank
(
Î
)
− nZ = k roots that

are not among the eigenvalues of Ω, and (k −m) of these roots are such that |µi| ≥ β−1,

while m roots are such that |µi| < β−1. Moreover, we know from Appendix A.1 that under

Assumptions 2 and 3 there is a square matrix Θ of dimension nz, and of rank k, for which

all of the eigenvalues, θi, for i = 1, ...nz, are either zero or the reciprocal of the roots of (2.3)

that are not among the eigenvalues of Ω. Thus the k non-zero eigenvalues of Θ can be split

as follows: (k −m) of these eigenvalues are such that
∣∣θ−1

i

∣∣ ≥ β−1 and m eigenvalues are

such that
∣∣θ−1

i

∣∣ < β−1. The remaining (nz − k) eigenvalues of Θ are zero.

Let us first consider case (i) of Assumption 2, in which case the matrix Θ and the

associated matrix of eigenvectors Ψ are real. We know from (A.21) that under Assumptions

2 – 4, the matrix Λ is given by

Λ ≡ β−1Ψ2ΘΨ−1
2 ,

where Ψ2 is the matrix that is composed of the last nz lines of Ψ. Because Ψ2 is invertible, it

follows that Λ and β−1Θ are similar matrices, and so must have the same set of eigenvalues.

Thus the eigenvalues of Λ are given by λj = β−1θj for j = 1, ..., nz, or alternatively by

λj = β−1µ−1
j , for j = 1, ..., k, where the µj’s are once again the non-zero roots of (2.3) that

are not among the eigenvalues of Ω, and λj = 0 for j = k + 1, ..., nz. Thus the characteristic

polynomial of the matrix Λ is given by

det (Λ− λI) =
(
β−1µ−1

1 − λ
)
...

(
β−1µ−1

k − λ
)
(−λ)nz−k .

Let us consider the polynomial α (χ) = det (I − Λχ) of order rank (Λ) = k, with k roots
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χj 6= 0, and let these be numbered j = 1, ..., k. Using the previous equation, we have

α (χ) = (−χ) det
(
Λ− χ−1I

)

=
(
β−1µ−1

1 − χ−1
)
...

(
β−1µ−1

k − χ−1
) (−χ−1

)nz−k−1
.

Because the roots µj are the non-zero roots of (2.3) that are not among the eigenvalues of

Ω, and because (k −m) of these roots are such that
∣∣βµj

∣∣ ≥ 1, and m roots are such that
∣∣βµj

∣∣ < 1, the polynomial α (χ) has exactly m roots inside the unit circle.

Let us now turn to the case (ii) of Assumption 2, in which the matrices Θ and Ψ have

one complex-valued column. It then follows from (A.36) that Λ is given by

Λ ≡ β−1Ψ̄2Θ̄Ψ̄−1
2 ,

where Ψ̄2 is the matrix composed of the last nz lines of Re Ψ, and the matrix Θ̄ is given by

Θ̄ ≡ Re Θ =

[
Θ̃ 0
0 Re µ−1

1

]
,

where Θ̃ is the real-valued matrix mentioned in (A.11), and where µ1 (arbitrarily labeled

as µ1) is the complex conjugate of the eigenvalue that lies in the lower right corner of Ω

in (A.6). Because of the properties of the latter eigenvalue, and because of Assumption 2,

part (ii), we have |µ1| < β−1 and
∣∣Re µ−1

1

∣∣ > β. The k non-zero eigenvalues of Θ̄ can be

partitioned as follows: one eigenvalue is equal to θ1 = Re µ−1
1 and satisfies |θ1| > β, (m− 1)

eigenvalues are such that
∣∣θ−1

j

∣∣ < β−1, and (k −m) eigenvalues are such that
∣∣θ−1

j

∣∣ ≥ β−1.

The eigenvalues of Λ, i.e., λ1, ..., λnz , are equal to the eigenvalues of β−1Θ̄. It follows that

λ1 = β−1 Re µ−1
1 , λj = β−1µ−1

j , for j = 2, ..., k, where once again the µj’s are the non-zero

roots of (2.3) distinct from the root µ1, and that are not among the eigenvalues of Ω, and

λj = 0 for j = k + 1, ..., nz. Thus the characteristic polynomial of the matrix Λ is given by

det (Λ− λI) =
(
β−1 Re µ−1

1 − λ
) (

β−1µ−1
2 − λ

)
...

(
β−1µ−1

k − λ
)
(−λ)nz−k .

Again, the polynomial α (χ) = det (I − Λχ) admits k roots χj 6= 0 and can be written as

α (χ) =
(
β−1 Re µ−1

1 − χ−1
) (

β−1µ−1
2 − χ−1

)
...

(
β−1µ−1

k − χ−1
) (−χ−1

)nz−k−1
.
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Because
∣∣β−1 Re µ−1

1

∣∣ > 1, and thus
∣∣β−1 Re µ−1

1

∣∣−1
< 1, and because (m− 1) roots µj among

the roots µ2, ..., µk are such that
∣∣βµj

∣∣ < 1 and that the remaining (k −m) are such that
∣∣βµj

∣∣ ≥ 1, the polynomial α (χ) has exactly m roots inside the unit circle.

We know from the text that under Assumption 7 the polynomial α (L) reduces to 1 −
γ (L) L, and it is the lag polynomial that enters the optimal policy rule (7.1), when λi > 0.

Thus under Assumptions 1 – 7, with λi > 0 — and for both cases (i) and (ii) of Proposition

2 — the optimal interest-rate rule (7.1) necessarily involves weights on lagged interest rates

that are large enough for the lag polynomial to have m zeros inside the unit circle.

Let us now factor the lag polynomial α (L) as

α (L) = α1 (L) α2 (L)

where α1 (L) is a polynomial of order m with all its zeros, χ1, ..., χm, inside the unit circle

and α2 (L) is a polynomial of order k −m with all of its zeros outside the unit circle. Note

that α1 (L) can be expressed as

α1 (L) = α0 (χ1 − L) ... (χm − L)

= Lmα0

(
χ1L

−1 − 1
)
...

(
χmL−1 − 1

)

≡ Lmα̃1

(
L−1

)
,

where α0 6= 0, and

α̃1

(
L−1

)
= (−1)m α0

(
1− χ1L

−1
)
...

(
1− χmL−1

)
.

Using this, and assuming again that λi > 0, we can rewrite the optimal policy rule (7.1)

as

λiα (L) (it − i∗) = −B′
2B (L) Et

[
Q

(
L−1

)
T̂ ′Ŵ (τ̂ t − τ̂ ∗)

]

or equivalently as

λiL
mα̃1

(
L−1

)
α2 (L) (it − i∗) = −B′

2B (L) Et

[
Q

(
L−1

)
T̂ ′Ŵ (τ̂ t − τ̂ ∗)

]
.
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Because all of the zeros χ1, ..., χm are inside the unit circle, the polynomial α̃1 (L−1) is

invertible, and the above equation is equivalent to

λiα2 (L) (it−m − i∗) = −Et

{
α̃1

(
L−1

)−1
B′

2B (L) Et

[
Q

(
L−1

)
T̂ ′Ŵ (τ̂ t − τ̂ ∗)

]}
,

in the sense that bounded processes {it} and {τ̂ t} satisfy one relation for all t ≥ t0 if and

only if they satisfy the other for all t ≥ t0. Thus rules (7.1) and (7.5) are equivalent in this

sense.

69


