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Abstract

We reconsider the optimal taxation of income from labor and capital in the
stochastic growth model analyzed by Chari et al. (1994, 1995), but using a
linear-quadratic (LQ) approximation to derive a log-linear approximation to
the optimal policy rules. The example illustrates how inaccurate “naive” LQ
approximation — in which the quadratic objective is obtained from a simple
Taylor expansion of the utility function of the representative household — can
be, but also shows how a correct LQ approximation can be obtained, which will
provide a correct local approximation to the optimal policy rules in the case
of small enough shocks. We also consider the numerical accuracy of the LQ
approximation in the case of shocks of the size assumed in the calibration of
Chari et al. We find that the correct LQ approximation yields results that are
quite accurate, and similar in most respects to the results obtained by Chari
et al. using a more computationally intensive numerical method.
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Linear-quadratic (LQ) optimal-control problems have been the subject of an ex-

tensive literature.1 It is not clear, however, how likely it is that optimal policy

problems with explicit microfoundations — that is, policy problems in which both

the assumed objective of policy and the constraints on possible outcomes are derived

from an explicit account of the decision problems of private agents — should take

this form. Elsewhere (Benigno and Woodford, 2005b), we show that it is possible

in a broad class of models to derive an LQ problem that locally approximates an

exact policy problem, in the sense that the solution to the LQ problem represents a

local linear approximation to the solution to the exact problem, that will describe it

with arbitrary accuracy in the case of small enough random disturbances. It does not

generally suffice for this purpose to define an LQ problem in which the objective is

a local quadratic approximation to the exact objective and the constraints are local

linear approximations to the exact constraints.2 Nonetheless, we show that it is quite

generally possible to derive a correct LQ approximation, if sufficient care is taken in

the choice of the quadratic objective.

Here we illustrate both the potential problems with naive LQ approximation and

the application of our own method in the context of a well-known example, the

analysis of dynamic optimal taxation of income from labor and capital in an RBC

model, treated by Chari et al. (1994). The example is of interest not only because it

is a simple case in which naive LQ approximation would lead to extremely incorrect

conclusions, but also because the paper of Chari et al. is often cited as evidence

that log-linearization is dangerous in the context of optimal tax policy problems,3

even if it can be used with fair accuracy in other contexts (such as the approximate

characterization of the aggregate fluctuations implied by an RBC model).

In fact, Chari et al. use a minimum-weighted-residual method that is computa-

tionally more difficult than ours to numerically characterize the optimal dynamics of

capital and labor taxes, and state that they do so because a log-linear approximation

was found to be quite inaccurate.4 We therefore consider the accuracy of the local

1Important references include Bertsekas (1976), Chow (1975), Hansen and Sargent (2004), Kwak-
ernaak and Sivan (1972), and Sargent (1987).

2The problem with “naive” LQ approximation of this sort is discussed, for example, by Judd
(1996, sec. 4; 1999, pp. 505-508), who argues for perturbation techniques as an alternative that
avoids this problem.

3See, e.g., Kim and Kim (2003) and Albanesi (2003).
4They provide further details of the nature of the supposed inaccuracy of log-linearization in

Chari et al. (1995).
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linear approximation provided by our LQ approach in the case of disturbances of

the amplitude assumed by Chari et al. in their numerical work. We do this both

by comparing our results with those obtained by Chari et al. using their preferred

method, and also by comparing them with those that would be obtained through

a second-order perturbation analysis of the exact conditions characterizing optimal

policy. We find that the second-order perturbation solution (a local approximation

that is accurate to second order in the amplitude of the disturbances, rather than only

to first order) differs only slightly from the linear approximation provided by our LQ

approach. Similarly, the numerical results of Chari et al. are much closer to those

implied by our log-linear approximation to optimal policy than their discussion of

the accuracy of log-linearization suggests. Hence we find that an LQ approximation,

when carried out correctly, gives a useful account of the way in which capital and

labor taxes should optimally be adjusted in response to real disturbances.

In section 1, we recapitulate the analysis of optimal tax policy in a real business

cycle model of Chari et al., in order to be clear about the policy problem that we

wish to approximate. In section 2, we first show how naive LQ approximation of

this problem would lead to incorrect conclusions, and then show how a correct LQ

approximation can instead be derived. In section 3, we calibrate the model in accor-

dance with the assumptions made in the analysis of Chari et al. (1994, 1995), and use

our LQ approach to compute some of the statistics regarding the optimal dynamics

of capital and labor taxes that they report; we then compare our results both with

theirs and with those obtained using a second-order perturbation technique. Section

4 concludes.

1 The Optimal Policy Problem

We begin by recalling the optimal policy problem analyzed by Chari et al. We

recall this, not only in order to be clear about the problem for which we seek to

derive an approximate solution, but also because our definition of the optimal policy

problem differs slightly from the presentation in the papers of Chari et al. Like

these authors, we are only interested in characterizing the stationary fluctuations in

the capital and labor tax rates that occur asymptotically under a Ramsey-optimal

policy. However, the stationary fluctuations that occur asymptotically under the

(unconstrained) Ramsey policy represent the solution to a constrained version of the
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usual Ramsey problem (what we call optimal policy “from a timeless perspective”),

and it is this constrained problem that we wish to approximate by an appropriately

defined LQ problem.

1.1 The Model

As in Chari et al. (1994), we extend a standard RBC model to include proportional

tax rates on labor and capital income, and the possibility for the government to issue

non-state-contingent real debt.5 There is a continuum of measure one of households

(here indexed by j) with identical time-separable preferences

U j
t = Et

∞∑
T=t

βT−tu(cj
T , hj

T ), (1.1)

with 0 < β < 1. The period utility function u is strictly increasing and concave

in consumption, c, and in the negative of hours worked, −h, and is continuously

differentiable and satisfies standard Inada conditions.

In addition to holding capital, households can also invest in a set of state-contingent

one-period real securities that span all of the states of nature that the households may

face in the next period. These securities are in zero net supply, except for the riskless

debt that is issued by the government. Each household is subject to a flow budget

constraint of the form

cj
t + (kj

t+1 − kj
t ) + bj

t ≤ aj
t + (1− τ k

t )(ρt − δ)kj
t + (1− τh

t )wth
j
t , (1.2)

where kj
t the stock of capital goods that it owns and rents to firms in period t, and

0 ≤ δ ≤ 1 is the depreciation rate. In the budget constraint (1.2), bj
t denotes the

household j’s value of the period-t portfolio of contingent securities which delivers a

state-contingent return at+1 at time t + 1. The complete-markets assumption implies

the existence of a unique stochastic discount factor rt,t+1 such that

bj
t = Et[rt,t+1a

j
t+1], (1.3)

5Chari et al. consider a more general framework, with a broader set of securities that may
be issued by the government. But they show that this does not increase the set of equilibrium
allocations that can be achieved through an appropriate policy, and that the presence of redundant
policy instruments simply results in indeterminacy of certain aspects of optimal policy. Here we
simplify the analysis, and obtain determinate results regarding the optimal state-contingent tax
rate on income from capital, by assuming only two dimensions along which policy can be varied
each period.
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which can be substituted into (1.2) to yield

cj
t + (kj

t+1 − kj
t ) + Et[rt,t+1a

j
t+1] ≤ aj

t + (1− τ k
t )(ρt − δ)kj

t + (1− τh
t )wth

j
t . (1.4)

Households can rent their capital goods to firms at an economy-wide rental rate,

given by ρt, and they work for an as well economy-wide wage rate given by wt. The

returns to these services are taxed at the rates τ k
t and τh

t , respectively. Finally, the

household is subject to an appropriate set of borrowing limits.

The household’s optimization problem involves maximizing the utility function

(1.1) under the flow budget constraints (1.4) and the borrowing limits, given the

initial conditions aj
t0 and kj

t0 ≥ 0, subject to the additional constraints that cj
t ≥

0, hj
t ≥ 0, kj

t+1 ≥ 0 for each t ≥ t0. The Inada conditions on the utility function

ensure that corner solutions can be ignored. Necessary and sufficient conditions for

household optimization are then:

1. The first-order conditions (FOCs) for the optimal allocation of consumption

spending are

uc(c
j
t , h

j
t)rt,t+1 = βuc(c

j
t+1, h

j
t+1), (1.5)

for each time t and each contingency at time t + 1. Conditions (1.5) imply the

stochastic Euler equation

uc(c
j
t , h

j
t) = β(1 + rt)Etuc(c

j
t+1, h

j
t+1), (1.6)

where rt is the risk-free one-period real rate defined by

1 + rt ≡ [Etrt,t+1]
−1.

2. The FOCs for optimal capital accumulation are

uc(c
j
t , h

j
t) = βEt{uc(c

j
t+1, h

j
t+1)[(1− τ k

t+1)(ρt+1 − δ) + 1]} (1.7)

for each date t.

3. The FOCs for optimal labor supply are

uh(c
j
t , h

j
t)

uc(c
j
t , h

j
t)

= −(1− τh
t )wt (1.8)

for each date t.
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4. Finally, it is necessary that the household exhaust its intertemporal budget

constraint.

There is similarly a continuum of measure one of firms, which each produce a

homogeneous good using the same technology in competitive product and factor

markets. The good can be purchased by households, and used for both consumption

and investment (capital accumulation) purposes, and can also be consumed by the

government. Each firm’s production technology is of the form yi
t = f(ki

t, zth
i
t) where

f is a constant-returns-to-scale function and z is an exogenous labor-augmenting

technology shock. Firms maximize their profits

πi
t = f(ki

t, zth
i
t)− ρtk

i
t − wth

i
t. (1.9)

First-order necessary and sufficient conditions for this imply that

fk(k
i
t, zth

i
t) = ρt (1.10)

and

ztfh(k
i
t, zth

i
t) = wt (1.11)

at each time t. Given the symmetric structure of the model, it is clear that all

households make the same optimal choices at each date, and similarly for all firms;

we can thus omit the superscripts i and j in what follows.

It remains to describe the income and expenditure of the government. The gov-

ernment purchases goods and raises revenues through taxes on the services of capital

and labor. We assume that the government can borrow by issuing a one-period risk-

free real bond. The real value of government debt evolves according to the law of

motion

bg
t = bg

t−1(1 + rt−1)− st (1.12)

where bg
t denotes the end-of-period liabilities of the government in units of these one-

period bonds, rt is the one-period real interest rate between periods t and t + 1, and

st is the real primary government budget surplus. The latter quantity is defined by

st ≡ τ k
t (ρt − δ)kt + τh

t wtht − gt, (1.13)

where gt denotes government purchases of the good. Government purchases are

treated as an exogenously given stochastic process, rather than a policy decision
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analyzed here. Rational-expectations equilibrium requires that the expected path of

government surpluses must satisfy an intertemporal solvency condition

bs
t−1 = Et

∞∑
T=t

rt,T [τ k
T (ρT − δ)kT + τh

T wT hT − gT ] (1.14)

in each state of the world that may be realized at date t, where bs
t−1 ≡ bg

t−1(1 + rt−1)

is the value owed by the government at the beginning of period t, i.e., the value at

maturity of the debt issued in period t − 1. (Because the debt is riskless, the value

of this variable is known at date t− 1.)

Finally, goods market equilibrium requires that

yt = f(kt, ztht) = ct + gt + kt+1 − (1− δ)kt. (1.15)

1.2 Optimal Policy

In a standard Ramsey policy problem,6 the government chooses state-contingent

paths for {τ k
t , τ

h
t , b

s
t , ct, ht, rt,t+1, kt+1, wt, ρt} for all periods t ≥ t0 that satisfy con-

ditions (1.5), (1.7), (1.8), (1.10), (1.11), (1.14), (1.15) at each time t, given initial

conditions bs
t0−1 and kt0 . We first write this problem in the more compact form pre-

sented by Chari et al., and then discuss the closely related problem that we actually

approximate.

We first note that we can use condition (1.5) to substitute for rt,T in (1.14),

yielding

Vt = Et

∞∑
T=t

βT−tuc(cT , hT )[f(kT , zT hT )−(1−τ k
T )(ρT−δ)kT−δkT−(1−τh

T )wT hT−gT ],

(1.16)

where we define

Vt ≡ bs
t−1uc(ct, ht), (1.17)

and make use of the relation

f(kt, ztht) = ρtkt + wtht.

6Note that this is not precisely the problem considered by Chari et al., for reasons discussed
below.
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We can furthermore substitute (1.8) into (1.16) for the labor tax rate, and similarly

use (1.7) to replace the expected future capital tax rate terms, yielding

Wt = bs
t−1uc(ct, ht) + uc(ct, ht)kt[1 + (1− τ k

t )(fk(kt, ztht)− δ)], (1.18)

where we have also used (1.10) to substitute for ρt, and we define

Wt ≡ Et

∞∑
T=t

βT−t[uc(cT , hT )cT + uh(cT , hT )hT ]. (1.19)

Thus the Ramsey policy problem can equivalently be stated as one of choosing state-

contingent paths of {τ k
t , b

s
t , ct, ht, kt+1} for each t ≥ t0 to maximize the utility (1.1),

subject to the constraints that (1.15), (1.18), (1.19) and

uc(ct, ht) = βEt{uc(ct+1, ht+1)[1 + (1− τ k
t+1)(fk(kt+1, zt+1ht+1)− δ)]}, (1.20)

hold at each date t ≥ t0, given the initial conditions bs
t0−1 and kt0 .

In the case that there is no limit on the size of the taxes that may be levied ex

post on existing capital, this problem is equivalent to one of choosing the sequences

{ct, ht, kt+1}∞t=t0
to maximize (1.1) subject only to the constraint (1.15) for each t ≥ t0,

given the initial condition kt0 . For one can show that in the case of any sequences

{ct,ht, kt+1} satisfying (1.15) given the initial capital stock, and any initial public

debt bs
t0−1, it is possible to construct sequences {Wt, b

s
t , τ

k
t } that satisfy the other

constraints as well. Note that (1.18) together with (1.20) implies that

uc(ct, ht)kt+1 = βEt[Wt+1 − bs
tuc(ct+1, ht+1)]. (1.21)

Then given sequences {ct, ht, kt+1} satisfying (1.15), one can solve (1.19) for the im-

plied sequence {Wt}∞t=t0
, then solve (1.21) for the implied sequence {bs

t}∞t=t0
, and finally

solve (1.18) for the implied sequence {τ k
t }∞t=t0

. The constructed sequences necessarily

satisfy conditions (1.18), (1.19), and (1.21) each period in addition to (1.15), and as

a consequence they satisfy (1.20) each period as well.

It then follows that the Ramsey policy achieves the same (fully efficient) allocation

of resources, regardless of the size of the initial public debt bs
t0
; an initial levy on the

pre-existing capital stock is simply used to raise whatever amount of government

revenue is needed in the initial period to make it possible to pay off this debt and

also finance all subsequent government purchases without any need for distorting
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taxes.7 The possibility of doing this, of course, depends in general on the possibility

of choosing a large value for τ k
t0
, possibly one much larger than 1. This is not especially

realistic, and such an assumption makes the problem of optimal taxation too trivial.

Consequently, Chari et al. (1994, pp. 622), like many other authors, assume a limit

on the degree to which it is possible for the government to tax initially existing assets;

specifically, they assume that the initial tax rate on capital income (τ k
t0
) is given by

a prior commitment, though it may be freely chosen in all later periods.

We assume a constraint on initial policy in the same spirit, but specified slightly

differently, so as to make the policy problem recursive (unlike the precise problem

defined by Chari et al.); this has the technical advantage of making the optimal

policy as a stationary one, in the case of an appropriate initial capital stock and in

the absence of random disturbances, so that we can then approximate optimal policy

in the case of small enough disturbances using Taylor expansions of our objective

and constraints around this steady state.8 Specifically, we consider the problem of

choosing state-contingent paths of {τ k
t , b

s
t , ct, ht, kt+1} for each t ≥ t0 to maximize the

utility (1.1), subject to the constraints that (1.15), (1.18), (1.19) and (1.20) hold at

each date t ≥ t0, given the initial conditions bs
t0−1 and kt0 , and such that in addition

a constraint of the form

Wt0 = W t0 (1.22)

is satisfied, where Wt0 is defined by (1.19), and W t0 is a pre-existing state-contingent

commitment regarding the value (in marginal utility units) of the assets (debt and

capital) with which the representative household begins period t0. (The latter in-

terpretation of the commitment is seen from (1.18).) This commitment obviously

implies a limit on the extent to which tax revenues can be raised by taxing initially

existing capital, though there is no limit on the extent to which one may plan to tax

capital in later periods.

Following exactly the same argument as above, one can show that this con-

strained problem is equivalent to a simpler problem, namely, choosing sequences

{Wt, ct, ht, kt+1}∞t=t0
to maximize (1.1) subject only to the constraint that (1.15) hold

7In our version of the model, unanticipated ex post variation in the tax rate on capital would still
be used as a substitute for state-contingent public debt, in order to ensure intertemporal government
solvency in all states of the world.

8In Benigno and Woodford (2005b), we discuss recursive policy problems of this kind more
generally.
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for each t ≥ t0, given the initial condition kt0 , and to constraint (1.22), where Wt0

is defined by (1.19). Once again, the optimal allocation (and the level of household

utility obtained) is independent of the initial condition bs
t0−1, as variations in the ini-

tial level of public debt can still be completely offset by variations in the size of the

levy on initial capital, though the value of total initial household wealth (in marginal-

utility units) is constrained to equal W t0 . The value function for this problem can

therefore be written as J(kt0 ,W t0 ; ξt0), where we use the notation ξt to refer to the

exogenous state of the world at date t (including all information available at t about

the probability of various exogenous disturbances at any later dates).9

This constrained policy problem is recursive, in the following sense. It can be

shown to be equivalent10 to solving a sequence of policy problems, at each date

t ≥ t0, where the policy problem at date t is to choose values (ct, ht, kt+1), and state-

contingent commitments W t+1 for each possible state of the world in the following

period, so as to maximize

u(ct, ht) + βEtJ(kt+1,W t+1; ξt+1),

subject to the constraints (1.15) and

W t = uc(ct, ht)ct + uh(ct, ht)ht + βEtW t+1, (1.23)

given the values for kt and W t determined in the previous period. Here J(k, W ; ξ)

is the value function for the problem defined in the previous paragraph; it can be

shown that the value of the single-period decision problem just defined is also given

by J(kt,W t; ξt). Given the state-contingent paths {Wt, ct, ht, kt+1} that solve this

problem, the associated paths for the public debt and tax rates are given by (1.8),

(1.18), (1.21), and the initial condition bs
t0−1.

As noted above, Chari et al. assume a somewhat different constraint on policy

in period t0. However, one can show that the policy problem that they define is

equivalent to a two-stage problem, in which values (ct0 , ht0 , kt0+1) and state-contingent

commitments W t0+1 are chosen in the first stage, subject to the initial constraint

specified by Chari et al. (rather than a constraint on the value of Wt0), and policy

9This corresponds simply to the vector of exogenous disturbances at date t if each disturbance
is Markovian, as in the quantitative example treated below.

10The proof follows the same lines as the proof of Proposition 2 in Benigno and Woodford (2005a),
and is omitted here.
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from date t0 + 1 onward is chosen to solve the kind of constrained problem defined

here, given the commitments W t0+1 chosen in the first stage.11 Hence if the optimal

dynamics of tax rates and other endogenous variables eventually exhibit stationary

fluctuations (as they find to be the case), these stationary fluctuations correspond to

the equilibrium dynamics under a constrained problem of the kind that we propose,

for a suitable choice of the initial commitment W t0 . It follows that we can characterize

the asymptotic dynamics of tax rates in the model of Chari et al. (which is the main

goal of their paper) by characterizing the solution to the constrained policy problem

defined here.

An advantage of our reformulation of the optimal policy problem is that the

problem that we define — unlike the one that they consider — has a time-invariant

solution (or more precisely, a balanced growth path, with constant tax rates) in

the case that there are no random fluctuations in either technology or government

purchases, if the initial capital stock kt0 happens to be consistent with the steady

state associated with the initial commitment W t0 . There is furthermore asymptotic

convergence to a steady state of this kind under the constrained optimal policy in

the case of other (sufficiently nearby) initial conditions. Hence we can characterize

the stationary asymptotic fluctuations in tax rates under optimal policy, in the case

of small enough shocks, through a local characterization of optimal policy near such

a steady state.

Because of this property of optimal dynamics subject to the constraint (1.22), we

need not introduce any additional constraints on the admissible range of variation

in tax rates (say, an upper bound of 100 percent taxation of income from capital).

Assuming initial conditions consistent with a steady state in which such a bound does

not bind, the bound will also never bind at any date in the event of small enough

shocks, and so we need not consider it at all. If, instead, we were to impose such

a bound as an alternative to constraint (1.22) (and the bound were tight enough to

preclude the first-best allocation, but loose enough to not bind in the event of zero

taxation of capital income), optimal policy would not correspond to a steady state

11The proof follows the same lines as the proof of Proposition 1 in Benigno and Woodford (2005a),
and is omitted here. Chari et al. (1994, p. 625) note that under their formulation of the Ramsey
policy problem, the optimal allocation is described by a set of time-invariant allocation rules that
apply in each period t ≥ t0 + 1, though not in the initial period. Our reformulation of the policy
problem makes it clear that the optimal choices (ct, ht, kt+1) will be time-invariant functions of the
state variables (kt, ξt).
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even in the case of a fully deterministic environment (as the upper bound on the

capital tax rate would be initially binding, but never again binding after some finite

date), so that the kind of local approximation used below would not be valid even in

the case of arbitrarily small shocks and suitably chosen initial conditions.

Finally, because of our desire to characterize the asymptotic optimal dynamics

under a problem of the kind considered by Chari et al., we shall specify the initial

commitment (1.22) in a particular way. We specify W t0 as a function of the economy’s

initial state in a way that is self-consistent, in the sense that under the optimal

commitment subject to this constraint, one would choose a commitment W t for any

later date that is exactly the same function of the economy’s state at that later date.

This has an implication that will be important below. It is obvious from the form of

constraint (1.23) that the Lagrange multiplier associated with the constraint W t+1

(chosen, as a function of the state of the world at date t + 1, as part of the recursive

policy problem at date t) will depend only on the state of the world at date t, and not

on any shocks at date t+1. It will furthermore depend only on the Lagrange multiplier

associated with the constraint W t, and hence, by the same argument, only on the

state of the world at date t− 1. By a recursive argument of this form, one concludes

that the Lagrange multiplier associated with the constraint W t+1 can depend only

on the state of the world at the initial date t0. But if the initial constraint W t0 is

chosen to be self-consistent, it follows that the Lagrange multiplier associated with

the initial commitment must be independent of the state of the world at date t0.

We now turn to the characterization of optimal steady states for the policy prob-

lem just defined.

1.3 Balanced Growth and Detrending

Again following Chari et al., we assume that the exogenous disturbances zt and gt

each fluctuate around a deterministic trend that grows as ρt, for some ρ ≥ 1. We

assume that preferences are consistent with a balanced growth path; specifically, we

assume the functional form

u(c, h) =
[c1−γ(1− h)γ]ϕ

ϕ
, (1.24)

where 0 < γ < 1, ϕ < 1, 6= 0, or (corresponding to the case ϕ = 0)

u(c, h) = (1− γ) log c + γ log(1− h). (1.25)
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We also assume a production function of the parametric form

f(k, zh) = kα(zh)1−α

for some 0 < α < 1.

We then define detrended versions of the model variables

c̃t ≡ ct

ρt
, ỹt ≡ yt

ρt
, k̃t+1 ≡ kt+1

ρt
z̃t ≡ zt

ρt
g̃t ≡ gt

ρt
b̃s
t ≡

bs
t

ρt+1
,

while ht is already a stationary variable without detrending. Given this transfor-

mation, it can be shown that the optimal policy problem has the same formulation

as presented above except for a redefinition of the discount factor β, which must be

replaced by

β̃ = βρϕ(1−γ),

and a similar redefinition of the depreciation rate δ, which is replaced by

δ̃ ≡ 1− (1− δ)ρ−1.

Moreover the production function must be redefined as

ỹt = f̃(k̃, z̃h) ≡ ρ−αk̃α(z̃h)1−α. (1.26)

In what follows, we drop the tildes (so that “ct” actually refers to c̃t, and so on),

but all variables without a tilde should be interpreted as having been appropriately

detrended. We preserve the notation β̃ and δ̃ for the alternative numerical coefficients

that occur in various equations, as this will be important in calibrating the numerical

values of these coefficients.

After this rescaling of variables, (1.18) implies

Wt ≡ bs
t−1uc(ct, ht) + uc(ct, ht)kt[(1− δ̃) + (1− τ k

t )fk(ztht, kt) + δρ−1τ k
t ], (1.27)

where we note that

δρ−1 = ρ−1 − (1− δ̃),

while (1.20) becomes

uc(ct, ht) = β̃Et{uc(ct+1, ht+1)[(1− δ̃) + (1− τ k
t+1)fk(kt+1, zt+1ht+1) + δρ−1τ k

t+1]}.
(1.28)
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1.4 Optimal Steady States

Here we show the existence of a steady state, i.e., of an optimal policy (under

appropriate initial conditions) of the above policy problem that involves constant

values of all stationary variables. We now consider a deterministic problem in which

the detrended exogenous disturbances zt, gt, each take constant values z̄ > 0 and

ḡ ≥ 0 for all t ≥ t0, and we start from initial conditions bs
t0−1 = b̄ > 0 and kt0 = k̄ > 0.

Given any initial detrended debt b̄, we wish to find initial commitments W t0 = W

and an initial detrended capital stock k̄ > 0 such that the optimal plan involves a

constant policy τ̄h,τ̄ k, c̄, h̄, k̄, b̄ and Wt = W, each period, where b̄, k̄ and W coincide

with the initial conditions.

The optimization problem can be equivalently written as choosing the sequences

{ct, ht, kt+1}∞t=t0
that maximize

Ut0 =
∞∑

T=t0

β̃
T−t0

u(cT , hT ) (1.29)

subject to the sequence of constraints

f(kt, ztht) = ct + gt + kt+1 − (1− δ̃)kt (1.30)

for each t ≥ t0, given the initial condition kt0 > 0, and the additional constraint

Wt0 = W, where

Wt0 =
∞∑

T=t0

β̃
T−t0

[uc(cT , hT )cT + uh(cT , hT )hT ]. (1.31)

The first-order conditions with respect to ct take the form

uc(ct, ht)− [uc(ct, ht) + ucc(ct, ht)ct + uhc(ct, ht)ht]λ0 − λ1,t = 0 (1.32)

for each t ≥ t0, where λ0 is the Lagrange multiplier associated with the constraint

on Wt0 and {λ1,t} is the sequence of multipliers associated with the sequence of

constraints (1.30). The first-order condition with respect to ht can similarly be written

0 = uh(ct, ht)− [uch(ct, ht)ct + uhh(ct, ht)ht + uh(ct, ht)]λ0 +

+z̄fh(kt, z̄ht)λ1,t (1.33)

13



for each t ≥ t0. Finally, the first-order condition with respect to kt+1 is given by

λ1,t − β̃[fk(kt+1, z̄ht+1) + (1− δ̃)]λ1,t+1 = 0 (1.34)

for each t ≥ t0.

In a steady-state solution, these conditions respectively reduce to

ūc(c̄, h̄)− [ūc(c̄, h̄) + ūcc(c̄, h̄)c̄ + ūhc(c̄, h̄)h̄]λ̄0 − λ̄1 = 0, (1.35)

ūh(c̄, h̄)− [ūch(c̄, h̄)c̄ + ūhh(c̄, h̄)h̄ + ūh(c̄, h̄)]λ̄0 + z̄fh(k̄, z̄h̄)λ̄1 = 0, (1.36)

and

1 = β̃[fk(k̄, z̄h̄) + (1− δ̃)]. (1.37)

A first implication of equations (1.37) and (1.7) is that the optimal steady-state tax

on capital is zero, as found by Judd (1985) and Chamley (1986).

Equations (1.35), (1.36), (1.37) together with

c̄ + ḡ + δ̃k̄ = f(k̄, z̄h̄) (1.38)

(1− β̃)W = ūc(c̄, h̄)c̄ + ūh(c̄, h̄)h̄ (1.39)

W = b̄ūc(c̄, h̄) +
ūc(c̄, h̄)k̄

β̃
. (1.40)

can be solved, given b̄, to obtain the steady-state values for h̄, c̄, k̄, λ̄0, λ̄1, W . The

initial level of debt b̄ can be freely chosen, within certain bounds that ensure that the

problem has a solution. Finally, the steady-state tax rate on labor is determined by

ūh(c̄, h̄)

ūc(c̄, h̄)
= −(1− τ̄h)z̄fh(k̄, z̄h̄), (1.41)

where if τ̄h is restricted to lie within the range 0 ≤ τ̄h ≤ 1, tighter restrictions on

the feasible initial level of debt must be imposed. Alternatively, a particular steady

state may be indexed by the associated steady-state tax rate τ̄h; a given choice of τ̄h

then implies a particular steady-state debt level b̄. In our numerical work below, we

calibrate our model by specifying τ̄h rather than b̄, because the average tax rate on

labor income is an aspect of the asymptotic dynamics emphasized by Chari et al.12

12The equilibrium under Ramsey policy computed by Chari et al. would not correspond to a
steady state of the kind characterized here, even in the absence of random disturbances, because of
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2 Linear-Quadratic Approximations, Correct and

Incorrect

We now consider an approximate characterization of the optimal dynamics of capital

and labor income tax rates in the case of small enough shocks, and initial conditions

close enough to consistency with an optimal steady state. We first show that a naive

approach to LQ approximation would not yield correct results, and then show how a

correct LQ approximate problem can be derived.

2.1 Naive LQ Approximation

By “naive” LQ approximation we mean an approach that would simply compute a

second-order Taylor series expansion of the utility function around the steady-state

allocation, and maximize this quadratic objective (or minimize the corresponding

quadratic loss function) subject to the linear constraints obtained by log-linearizing

the requirements for a rational-expectations equilibrium around that same steady-

state allocation.13 In general, the solution to the LQ problem defined in this way

will not be a correct linear approximation to optimal policy, even in the case of small

enough shocks and initial conditions close enough to consistency with the steady

state around which the Taylor series expansions are computed, for reasons discussed

in Judd (1995, 1999), Kim and Henderson (2004, appendix), Kim and Kim (2003),

Kim et al. (2003), Woodford (2002; 2003, chap. 6), and Benigno and Woodford

(2005b).

Suppose that we compute a second-order Taylor series expansion to the utility

function (1.1), expanding in powers of log deviations of consumption and hours14

their different constraint on initial policy. However, their equilibrium would asymptotically approach
a steady state of the kind characterized here, and we wish to calibrate our model so that its steady
state corresponds to the steady state to which the dynamics of Chari et al. asymptotically converge.
For this reason, we calibrate our model (including the initial commitment) on the basis of the
asymptotic dynamics reported by Chari et al., rather than the initial conditions that they assume.
Since they discuss the asymptotic average labor tax rate, and not the asymptotic average level of
public debt, we use the former statistic to determine the steady state around which we consider
small fluctuations.

13This is the approach recommended, for example, by McGrattan (1990).
14Our Taylor series expansion is in terms of the logs of consumption and hours, rather than

consumption and hours themselves, because we intend to log-linearize constraints.
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from the steady-state levels of these variables, in an optimal steady state of the kind

characterized in the previous section. The choice of the particular steady state around

which we compute our expansions is arbitrary; the local approximation to optimal

policy (if valid at all) will apply to initial conditions close enough to consistency with

that particular steady state. In our numerical work, we calibrate the steady state to

involve a tax rate on labor income that coincides with the long-run average value in

the simulations of Chari et al. (1994).

We show in the appendix that such an approximation takes the form

Ut0 = ūcc̄Et0

∞∑
t=t0

β̃
t−t0

{
ĉt − φĥt +

1

2
(1− σ−1)ĉ2

t −
1

2
φ(1 + ν)ĥ2

t + ψĉtĥt

}
+t.i.p.+O(||ξ||3),

(2.1)

where ĉt ≡ log(ct/c̄),
15 ĥt ≡ log(ht/h̄); the expression “t.i.p.” indicates terms that

are independent of policy (because they depend only on the exogenous state of the

world), and so irrelevant for welfare comparison of alternative policies; and the resid-

ual is of third or higher order in the bound ||ξ|| on the amplitude of the exogenous

disturbances, on the assumption that the log deviations ĉt and ĥt are at most of

order O(||ξ||), as will be true under optimal policy in the case of initial conditions

consistent with the steady state, or deviating from it by an amount that is only

of order O(||ξ||).16 In writing the coefficients of this expansion, we have defined

φ ≡ −ūhh̄/ūcc̄, σ−1 ≡ −ūccc̄/ūc, ν ≡ ūhhh̄/ūh, and ψ ≡ ūchh̄/ūc.
17 Thus expected

utility Ut0 varies inversely, in the case of small enough disturbances, with a quadratic

loss function of the form

Et0

∞∑
t=t0

β̃
t−t0

Lt, (2.2)

where the period loss function is of the form

Lt =
1

2
[(σ−1 − 1)ĉ2

t − 2ψĉtĥt + φ(1 + ν)ĥ2
t ] + φĥt − ĉt. (2.3)

We can log-linearize the constraint (1.30) around the same steady state, obtaining

k̂t+1 = β̃
−1

k̂t − s−1
k [scĉt − (1− α)(ẑt + ĥt) + sgĝt], (2.4)

15It should be recalled that here and below ct actually refers to the detrended level of consumption
c̃t, kt refers to the detrended capital stock k̃t, and so on.

16It is important for this last conclusion to be correct that we have chosen an optimal steady state
around which to compute our Taylor series expansion.

17In the case of the form of preferences (1.24), these coefficients correspond to φ = (γ/1−γ)(h̄/1−
h̄), σ−1 = −[(1− γ)ϕ− 1], ν = (1− γϕ)(h̄/1− h̄), and ψ = −γϕ(h̄/1− h̄).
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where k̂t ≡ log(kt/k̄), ẑt ≡ log zt, and ĝt ≡ log(gt/ḡ), and in writing the coefficients

we define sk ≡ k̄/ȳ, sc ≡ c̄/ȳ, and sg ≡ ḡ/ȳ. A similar log-linearization of (1.31)

yields

W̃t0 = Et0

∞∑
T=t0

β̃
T−t0{dcĉT + dhĥT}, (2.5)

where W̃t0 ≡ (W t0 − W )/ūcc̄ is given as an initial condition, and we define the

coefficients dc ≡ 1 − σ−1 + ψ, dh ≡ ψ − φ(1 + ν). The naive LQ approximate

problem would then be to choose sequences {ĉt, ĥt, k̂t+1}∞t=t0
to minimize the loss

function defined by (2.2) – (2.3) subject to constraints (2.4) and (2.5), given the

initial conditions k̂t0 and W̃t0 .

The solution to this LQ problem is not generally a correct linear approximation

to the optimal policy defined in the previous section. It is especially easy to see

this in the case of preferences of the form (1.25), which corresponds to the baseline

calibration in Chari et al. (1994). In this case σ = 1, ψ = 0, and the naive loss

function (2.3) reduces to

Lt =
1

2
φ(1 + ν)ĥ2

t + φĥt − ĉt. (2.6)

This loss function would not penalize fluctuations in any endogenous variables other

than hours worked.

One can easily show that this LQ problem has a solution in which neither random

fluctuations in technology nor in government purchases should be allowed to have

any effect on equilibrium hours worked. (If we assume that W t0 = W and that

there are no deviations of either gt or zt from their trend values that are forecastable

as of date t0, then the solution involves ĥt = 0 for all dates t ≥ t0.) This is clearly

possible to achieve through a suitable tax policy, since absolutely any linear responses

of the endogenous variables {ĉt, ĥt} to unexpected shocks at dates after t0 will be

consistent with (2.5), and there will exist paths for {ĉt, k̂t+1} consistent with (2.4)

under the assumption that ĥt = 0 at all dates. Indeed, there will exist an infinity

of bounded processes of this kind, for any bounded fluctuations in the disturbances

{ẑt, ĝt}, including ones in which consumption and capital accumulation respond to

arbitrary random events (“sunspots”); and according to the objective defined by (2.2)

and (2.6), these processes are all equally optimal.

But it is not hard to show that these are not correct conclusions about the solution

to the optimization problem stated in the previous section. For example, consider
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allocations in which ht = h̄ at all dates, and ask whether it is really true that the

introduction of random variations in the paths of capital and consumption, of a kind

consistent with the feasibility constraint (1.30), in response to sunspot events not

forecastable at date t0, will have no effect on expected utility, considering only effects

of second order in the amplitude of the disturbances. The conclusion is obviously

wrong: any such response to sunspot events (even if both the capital stock and

consumption remain within intervals of a width that is O(||ξ||)) will lower expected

utility, and by an amount that is of second order, owing both to the concavity of

utility in consumption and to the concavity of the production function in capital. One

can similarly show, by substituting a constant number of hours into the first-order

conditions for Ramsey policy presented in section 1.4 above, that these conditions

cannot be jointly satisfied by any policy that keeps hours constant; and furthermore

one or more equations must have a discrepancy that is of order O(||ξ||), so that this

is not even a correct first-order approximation to the optimal labor allocation.

The problem with the naive LQ analysis is that while (2.1) does give a correct

approximation to expected utility, that is accurate to second order if all terms are

evaluated under a candidate policy in a way that is accurate to second order, a solution

for the paths {ĉt, ĥt} under a given policy that is accurate only to first order will not

suffice to allow a sufficiently accurate evaluation of the linear terms in (2.1). And

while the log-linearized constraint (2.4) correctly indicates to first order the available

tradeoffs between fluctuations in consumption, hours, and capital, it omits second-

order terms. For example, in the case that {kt+1} varies in response to unforecastable

sunspot events while ht remains constant, as in the thought experiment of the previous

paragraph, the path {ĉt} implied by (2.4) omits negative second-order effects on the

expected level of log consumption that occur as a result of the concavity of both utility

(i.e., of the log function) and of the production function. But these omitted second-

order effects may affect expected utility as much as do the included Et0ĥ
2
t terms, even

if the amplitude of the fluctuations is made arbitrarily small. Thus the LQ analysis

gives an incorrect welfare ranking of alternative possible patterns of response of the

endogenous variables to random disturbances, even when the disturbances are small.
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2.2 An Alternative Quadratic Objective

One way of correcting the problem just illustrated would be to approximate the con-

straints to an accuracy that is at least second order in the amplitude of departures

from the steady-state allocation. This can be done, for example, using a higher-order

Taylor series expansion of the exact conditions; but this would mean abandoning the

convenience of an LQ framework for the approximate policy problem. Alternatively,

we can replace the quadratic objective derived in the previous section by an alter-

native function, that also approximates expected utility to second order,18 and that

involves no linear terms of the kind present in (2.1).19 It is then possible to evaluate

the quadratic objective to second order using only a characterization of equilibrium

fluctuations that is accurate to first order. In Benigno and Woodford (2005b), we

show that it is quite generally possible to derive a quadratic approximation to utility

with this property, as long as the steady state around which one expands is itself

optimal — i.e., it represents optimal policy in the case that there are no random

disturbances, as is the case in our example. Here we illustrate how this is possible in

the present problem.

We begin with the second-order Taylor series expansion for utility (2.1), which

can be written in a more compact way as

Ut0 = ūcc̄Et0

∞∑
t=t0

β̃
t−t0

{
a′xxt − 1

2
x′tAxxt

}
+ t.i.p. +O(||ξ||3) (2.7)

where the vector xt is defined as x′t ≡ [ct ht] and

ax ≡
[

1

−φ

]
,

Ax ≡
[
−(1− σ−1) −ψ

−ψ φ(1 + ν)

]
.

18Of course, since the functions are different, they are not equal to second order in the case of all
possible paths for the endogenous variables. However, they may be equal in the case of all paths
that represent possible equilibria. The representation (2.1) is the unique approximation that would
be accurate to second order in the case of arbitrary small departures from the steady state, even
those that are not possible under any tax policy — but that property is stronger than is necessary
for our purposes.

19Magill (1977) provides an early illustration of this possibility, in the context of a stochastic
optimal growth model.
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We now take a second-order approximation of equation (1.30). As shown in the

appendix we obtain

0 =
∞∑

t=t0

β̃
t−t0{scĉt − (1− α)ĥt +

1

2
scĉ

2
t +

1

2
α(1− α)ˆ̃k2

t +

−1

2
(1− α)(ĥ2

t + 2ẑtĥt)}+ t.i.p. +O(||ξ||3), (2.8)

where we have defined ˆ̃kt ≡ k̂t − ĥt − ẑt. We can write (2.8) as

0 =
∞∑

t=t0

β̃
t−t0

{
b′xxt +

1

2
x′tBxxt + x′tBξξt +

1

2
α(1− α)ˆ̃k2

t

}
+ t.i.p. +O(||ξ||3), (2.9)

where now

bx ≡
[

sc

−(1− α)

]
,

Bx ≡
[

sc 0

0 −(1− α)

]
,

Bξ ≡
[

0 0

−(1− α) 0

]
,

where we have used the definition ξ′t = [ẑt ĝt ].

The final expression that we need to approximate is (1.31). As is shown in the

appendix a second-order approximation leads to

W̃t0 = Et0

∞∑
t=t0

β̃
t−t0{(1− σ−1 + ψ)ĉt + (ψ − φ− φν)ĥt

+
1

2
(ψ + ψψ1 − φ− φν − φνν1 − 2φν)ĥ2

t +

+
1

2
(1− σ−1 + ψ − σ−1σ−1

1 − σ−1ψ2 − 2σ−1)ĉ2
t +

+(ψψ1 − σ−1ψ2 + 2ψ)ĉtĥt}
+t.i.p. +O(||ξ||3). (2.10)

where we have defined σ−1
1 ≡ ūcccc̄/ūcc, ψ1 ≡ ūchhh̄/ūch, ψ2 ≡ ūcchh̄/ūcc, ν1 ≡

ūhhhh̄/ūhh and W̃t ≡ (Wt0 −W )/ūcc̄. Finally we can write (2.10) as

W̃t0 = Et0

∞∑
t=t0

β̃
t−t0

{
c′xxt +

1

2
x′tCxxt + x′tCξξt

}
+ t.i.p. +O(||ξ||3), (2.11)
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where now

cx ≡
[

(1− σ−1 + ψ)

(ψ − φ− φν)

]
,

Cx ≡
[

(1− σ−1 + ψ − σ−1σ−1
1 − σ−1ψ2 − 2σ−1) (ψψ1 − σ−1ψ2 + 2ψ)

(ψψ1 − σ−1ψ2 + 2ψ) (ψ + ψψ1 − φ− φν − φνν1 − 2φν)

]
,

Cξ ≡
[

0 0

0 0

]
.

We can now use an appropriate linear combination of (2.9) and (2.11) to obtain an

expression with linear terms that exactly cancel those in (2.7). Using this expression

to subsitute for the linear terms in (2.7), we obtain

Ut0 = −ūcc̄Et0

∞∑
t=t0

β̃
t−t0

{
1

2
x′tQxxt + x′tQξξt +

1

2
qk

ˆ̃k2
t

}
+ ūcc̄ϑ2W̃t0 + t.i.p. +O(||ξ||3)

where

Qx ≡ Ax + ϑ1Bx + ϑ2Cx

Qξ ≡ ϑ1Bξ + ϑ2Cξ

qk ≡ α(1− α)ϑ1

and

ϑ1 =
−φ(σ−1 + ν) + ψ(φ + 1)

ψ[(1− α) + sc] + τ̄h(1− α)(1 + ν)− (1− α)(σ−1 + ν)
,

ϑ2 =
τ̄h(1− α)

ψ[(1− α) + sc] + τ̄h(1− α)(1 + ν)− (1− α)(σ−1 + ν)
.

We note that for low values of ψ and τ̄h, it is likely that ϑ1 > 0 and ϑ2 < 0. We also

note that the term ϑ2W̃t0 is independent of policy, because of the initial commitment

regarding the value of W̃t0 .

It then follows that maximization of expected utility is equivalent, to second order,

to the minimization of an objective of the form (2.2), where the period loss function

is now of the form

Lt =
1

2
x′tQxxt + x′tQξξt +

1

2
qk

ˆ̃k2
t ,

where we define
ˆ̃kt = k̂t − (ẑt + ĥt), (2.12)
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and the coefficients are given by

Qx =

[
qx,11 qx,12

qx,21 qx,22

]
,

Qξ =

[
0 0

qξ,21 0

]
.

This can be written more extensively as

Lt =
1

2
{qx,11ĉ

2
t + 2qx,12ĉtĥt + qx,22ĥ

2
t + 2ĥtqξ,21ẑt + qk

ˆ̃k2
t },

or alternatively as

Lt =
1

2

{
qc(ĉt − θĥt)

2 + qh(ĥt − h∗t )
2 + qk

ˆ̃k2
t

}
, (2.13)

where we have defined qc ≡ qx,11, θ ≡ −qx,12/qx,11, qh ≡ qx,22 − q2
x,12/qx,11, and

h∗t ≡ θz ẑt, in which expression θz ≡ −q−1
h qξ,21.

Expression (2.13) is now a quadratic loss function with no linear terms, as de-

sired. In the appendix, we present the general conditions under which this function

is convex, at least on the linear subspace of sequences consistent with our log-linear

constraints. (Convexity in this sense ensures that the first-order conditions for the

LQ problem defined in the next section characterize a loss minimum, and hence a

welfare maximum.) Here it suffices to note that sufficient conditions for convexity are

that the coefficients qc, qh, qk all be positive; in the numerical examples considered in

the next section, this is always the case.

It follows that the objective of policy can be understood as a combination of

three distinct stabilization goals. The first is stabilization of a linear combination

of consumption and hours; the second is stabilization of hours around a level that

depends on the current state of productivity; and the third is stabilization of the

capital stock per unit of effective labor supply (i.e., labor supply in efficiency units).

Optimal policy will generally involve some tradeoff among these three goals. Note that

the quadratic loss function obtained in this way is quite different from the function

(2.3) obtained from a simple Taylor series expansion of the utility function.

2.3 A Correct LQ Approximation

Because (2.13) contains no linear terms, this loss function can be evaluated to sec-

ond order using only a log-linear approximation to the equilibrium evolution of the
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endogenous variables under a given policy. It follows that we may represent the

constraints upon the outcomes achievable under alternative policies, to a sufficient

degree of accuracy, using only log-linear approximations to the structural equations

that must be satisfied in a rational-expectations equilibrium.

Our approximate LQ problem is then to choose sequences {ĉt, ĥt, k̂t+1}∞t=t0
to min-

imize the loss function defined by (2.2) and (2.13) subject to the constraints (2.4)

and (2.5), given the initial conditions k̂t0 and W̃t0 . The solution to this problem will

be given by a set of time-invariant policy rules if W̃t0 is chosen in a suitable way as a

function of the values of the economy’s state at date t0 (by which we mean the value

of k̂t0 and the history of exogenous disturbances through date t0) — specifically, if

the initial commitment is the same function of the initial state as the corresponding

commitments made at later dates will be of the economy’s state at those later dates.

One simple way to ensure this is to specify W̃t0 to take the value such that the con-

straint (2.5) does not bind — i.e., such that the solution processes {ĉt, ĥt, k̂t+1} are

the same as if this constraint were omitted. This is the specification of W̃t0 that we

shall choose.

Note that a specification of W̃t0 so that the constraint does not bind does not

correspond to a specification of the initial commitment (1.22) in the original problem

so that this commitment is not a binding constraint. Rather, this corresponds to

a choice of initial commitment such that the Lagrange multiplier associated with

constraint (1.22) is independent of the state of the world at date t0. As noted at the

end of section 1.2, the initial commitment must have this property if the time-invariant

decision rules that solve our constrained optimization problem are to correspond to

the asymptotic fluctuations under a Ramsey policy of the kind considered by Chari

et al.

The approximate LQ problem can then be stated more simply as the choice of

sequences {ĉt, ĥt, k̂t+1}∞t=t0
to minimize the loss function defined by (2.2) and (2.13)

subject to the constraint (2.4), given the initial condition k̂t0 . Once we have solved

for the optimal allocation {ĉt, ĥt, k̂t+1}, the implied path for the state-contingent

commitments W̃t ≡ (W t −W )/ūcc̄ each period is given by

W̃t = Et

∞∑
T=t

β̃
T−t0{dcĉT + dhĥT}, (2.14)

which represents a log-linear approximation to (1.19). (The coefficients are the same
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as in (2.5), which is a special case of this equation.) This indicates the desired self-

consistent way of choosing W̃t0 as a function of the values of k̂t0 , ẑt0 , and ĝt0 .

The implied value of the public debt b̂s
t ≡ log(bs

t/b̄) each period can then be

obtained by solving

β̃
−1

sk[k̂t+1+Et(−σ−1ĉt+1+ψĥt+1)] = scEtW̃t+1−sb[b̂
s
t+Et(−σ−1ĉt+1+ψĥt+1)], (2.15)

which represents a log-linear approximation to (1.21), where sb ≡ b̄/ȳ. The implied

capital income tax rate τ̂ k
t ≡ − log(1−τ k

t ) each period is similarly obtained by solving

scW̃t = sbb̂
s
t−1 − bcĉt + bhĥt + bkk̂t + s−1

c α(1− α)ẑt − bττ
k
t , (2.16)

a log-linear approximation to (1.18), where we define the coefficients bc ≡ sbσ
−1 +

β̃
−1

skσ
−1, bh ≡ sbψ+β̃

−1
skψ+α(1−α), bk ≡ β̃

−1
sk−α(1−α), and bτ ≡ sk(β̃

−1−ρ−1).

Finally, we can obtain the optimal path of the tax on labor income by using a

log-linear approximation of (1.8) in which (1.11) is used to substitute for wt. This

yields

τ̂h
t = ẑt + αˆ̃kt − (σ−1 − φ−1ψ)ĉt − (ν − ψ)ĥt. (2.17)

In this way, we obtain log-linear equations for the optimal responses of both tax rates

to exogenous disturbances.

3 Optimal Policy: Numerical Results

We now illustrate the results that we obtain from a numerical application of the above

method, when the model is parameterized as in Chari et al. (1994). Comparing our

results to those that they obtain using an alternative numerical method will provide

one way of judging the numerical accuracy of the LQ approximation.

3.1 Parameter Values

Following Chari et al. (1994), we assign the parameters α, β̃, γ, δ̃, ρ, and ḡ the values

listed in Table 1.20 Chari et al. consider the effects of alternative values for the

20The exact values used for α , δ̃ and ḡ are actually longer decimals, supplied by Larry Christiano,
but rounded to three digits in the table. The same is true of the values given below for σg and σz.

The value here used for ḡ assumes a supply of hours (to be used either for work or leisure) that
is normalized to equal 1, and a steady-state value for the detrended productivity factor z̄ that is
normalized to equal 1.
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preference parameter ϕ (their ψ); like them, we give primary emphasis to the two

cases ϕ = 0 (the “baseline” case) and ϕ = −8 (the “high risk-aversion” case). As

shown in the second panel of Table 1, we obtain different steady-state values for a

number of variables in the two cases.

We have shown above that an optimal steady state necessarily involves τ̄ k = 0;

however, given the model parameters, there is a continuum of steady states with

different steady-state tax rates on labor income, corresponding to different choices

for the value of initial private wealth W t0 (and correspondingly different steady-

state levels of public debt). We specify W in the case of each choice of the preference

parameter ϕ so that the resulting optimal steady state corresponds to the steady state

around which the dynamics fluctuate asymptotically in the “baseline” and “high risk-

aversion” simulations of Chari et al. (1994) respectively.21 In our calculations, we

do this by specifying the steady-state labor tax rate τ̄h to equal the long-run average

labor tax rate reported by Chari et al. (1994, Table 2) for those two simulations, and

then inferring the steady-state values k̄, ȳ, W , b̄s, and so on implied by these choices.

The steady-state values of several variables that are important for the derivation of

our LQ approximate policy problem are shown in the second panel of Table 2, in the

two columns corresponding to the two alternative specifications of ϕ and τ̄h.

These values are obtained as follows. The steady-state relations (1.37) and (1.38)

imply respectively that the shares sc, sg, sk must satisfy the two relations

(1− δ̃) + αs−1
k = β̃

−1
, (3.1)

sc + sg + δ̃sk = 1. (3.2)

Steady-state relation (1.41) implies that

φ = (1− τ̄h)(1− α)s−1
c , (3.3)

while our assumed form for the utility function implies that

φ =
γ

1− γ

h̄

1− h̄
. (3.4)

21Because Chari et al. do not impose an initial constraint of a kind that makes their optimal policy
problem recursive, and do not start from initial conditions consistent with the long-run steady state,
their simulations eventually fluctuate around a steady state with a level of public debt different from
the level that they assume as an initial condition, and the extent to which this is true depends on
the preference parameter ϕ. Because we wish to characterize the asymptotic fluctuations and to
compare our results to those that they report, we assume a different steady-state public debt in the
two cases.
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Finally, the production function (1.26) implies that

ȳ

h̄
= (ρ−1sk)

α
1−α , (3.5)

using the normalization z̄ = 1. Combining equations (3.2) – (3.5), we can solve for

the steady-state output level

ȳ =

γ
1−γ

1
(1−τ̄h)(1−α)

ḡ + (ρ−1sk)
α

1−α

(
1 + γ

1−γ
(1−δ̃sk)

(1−τ̄h)(1−α)

) . (3.6)

Given the calibrated parameter values from the first panel of Table 1, (3.1) allows

us to determine the implied value for sk. This value, together with the assumed value

of τ̄h (which varies for the two cases considered in the second panel of the table),

allows us to solve for steady-state output ȳ, and hence for sg. We can then solve

(3.2) for the implied value of sc, (3.3) for the implied value of φ, and then (3.4) for

the implied value of h̄. Once we have determined the steady-state values of these

variables, we can similarly solve for the implied values of variables such as W and b̄s,

though these do not matter for the calculations reported below.

We specify each of the two exogenous disturbance processes x = ẑ, ĝ as a station-

ary AR(1) process

xt = ρxxt−1 + εx
t , (3.7)

where 0 ≤ ρx < 1 and {εx
t } is an i.i.d. random variable with bounded support; the

two innovation processes are furthermore assumed to be independent of one another.

Like Chari et al. (1994, 1995), we parameterize the disturbance processes so as to

match both the standard deviation σx and the coefficient of autocorrelation ρx of the

empirical measures of these disturbances discussed in Christiano and Eichenbaum

(1992); the values of these moments that we match are given in the third panel of

Table 1. Unlike Chari et al., we do not use a numerical method that requires us to

discretize our disturbance processes (they assume two-state Markov chains for each

disturbance), and so we adopt a convenient AR(1) specification.22 To be specific, in

22This has no consequences at all for the computation of first and second moments implied by our
LQ approximation, or alternatively by log-linearization of the conditions that characterize Ramsey
policy. The exact law of motion of the disturbances may affect our second-order perturbation
calculations, but we find in any event that the second-order corrections are small. The assumed
disturbance processes (3.7) allow our model to fall within the class of models treated by Schmitt-
Grohé and Uribe (2004a), so that we can employ their computer code to compute the second-order
approximate solution discussed below.
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our numerical simulations we assume that εx
t takes each period either the value +δx

or the value −δx, with equal probability, where δx ≡ ((1− ρ2
x)σ

2
x)

1/2.

It might appear from the above that our method cannot be applied without first

performing the calculations undertaken by Chari et al., which are used as the source

of the steady-state values for τ̄h. But we choose this parameter in this way because we

wish to examine the extent to which our method results in a similar characterization

of the optimal stationary (asymptotic) fluctuations in tax rates as does theirs, in

the case that the initial commitment in our policy problem is defined so as to imply

the same long-run steady state (in the absence of shocks) as in the policy problem

that they consider. (This last qualification is necessary because the present model —

unlike the one considered in Benigno and Woodford, 2005a, for example — allows a

continuum of optimal steady states, to different ones of which the optimal dynamics

converge in the case of different initial conditions W t0 .
23) If we were simply interested

in characterizing optimal tax policy for an economy such as the U.S., starting from

historically given initial conditions, this way of determining τ̄h would not be necessary.

We could, for example, assign W̄ the value that would correspond to the value that

private wealth would be expected to have if current U.S. policy were to continue,

and determine the optimal steady state consistent with this. This would correspond

to somewhat higher values for τ̄h than those reported in Table 1 and used in the

calculations below.

3.2 Optimal Fluctuations in Tax Rates

The parameter values reported in Table 1 allow us to compute both the coefficients of

the quadratic loss function (2.13) and the coefficients of the log-linearized constraints.

The coefficients of the loss function for each of the two cases considered in the middle

panel of Table 1 are given in Table 2. We note that in each case, qc, qh, qk > 0, so

that the loss function is obviously convex and the second-order conditions for loss

minimization are satisfied.

23For a given initial state (gt0 , zt0), different initial commitments W t0 result in optimal dynamics
that converge to different long-run steady states (with different long-run tax rates on labor income).
This is not apparent from our LQ approximation, because we consider only the variations in the
initial commitment W̃t0 that are required for convergence to a given steady state in the case of
alternative initial states; we do not consider the optimal dynamics in the case of initial commitments
that are not consistent with that particular steady state.

27



It is then straightforward to characterize the optimal linear decision rules for this

problem (though we omit the algebra here). We obtain a linear equation of the form

k̂t+1 = Γkvt, where vt is the state vector [k̂t ẑt ĝt]
′. This equation together with the

specification (3.7) for the disturbance processes then completely defines the law of

motion of the state vector {vt}. We also obtain linear equations ĉt = Γcvt, ĥt = Γhvt for

the rest of the optimal resource allocation, so that the dynamics of consumption and

hours are also completely described. Substitution of these solutions into equations

(2.14) – (2.17) then allows us to obtain linear solutions of the form

τ̂h
t = Γh

τvt, τ̂ k
t = Γk

τ (0)vt + Γk
τ (1)vt−1 (3.8)

for the optimal dynamics of the tax rates.

¿From the log-linear dynamics implied by these equations, we can compute the

implied first and second moments of the tax-rate processes reported by Chari et al.

(1994, Table 2), which we present in Table 3. As in the table of Chari et al., the

columns of our table refer to five separate cases. The first column is the baseline

case, in which ϕ = 0 and the two disturbance processes are parameterized in the

way described in Table 1. The second column is the high risk-aversion case, in which

instead ϕ = −8. In the third column, we again assume ϕ = 0, but now that there

are no variations in government purchases (i.e., we set σg = 0); in the fourth column,

assumptions are again as in the baseline case, except that there are no variations in

the rate of technical progress (i.e., we set σz = 0). Finally, in the fifth column, ϕ = 0,

and both kinds of random disturbances exist, but we assume that neither disturbance

is serially correlated (i.e., we assume the values given in Table 1 for σz and σg, but

we set ρz = ρg = 0).24

Like Chari et al., we report statistics regarding the optimal fluctuations in the

labor income tax rate τh
t , the ex post capital income rate τ k

t , and an “ex ante tax

24In simulations 3 through 5, we choose the same value for τ̄h as in the baseline case, though the
average labor tax rates reported by Chari et al. in these cases are slightly different (see Table 4
below). Because the long-run steady state should have been the same in these cases as in the first
column, in the absence of disturbances, we have computed our local expansions around the same
steady state in these cases.
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rate for capital income” defined as25

θe
t ≡

Et[uc(ct+1, ht+1)τ
k
t+1(fk(kt+1, zt+1ht+1)− δρ−1)]

Et[uc(ct+1, ht+1)(fk(kt+1, zt+1ht+1)− δρ−1)]
. (3.9)

The means and standard deviations of all tax rates are reported in percentage points

(i.e., we actually report 100E(τh
t ), etc.). Given the linearity of the policy rules

that solve the LQ problem, we are able to obtain analytical results for these mo-

ments as functions of model parameters (including the parameters of the disturbance

processes), rather than computing sample statistics from a stochastic simulation, as

in Chari et al.

Most of our statistics are quite similar to those reported by Chari et al. (1994),

which we reproduce in Table 4.26 The most visible difference is in the average level

of the tax rate on capital income; while our method and theirs give quite similar

results regarding the mean “ex ante tax rate” defined in (3.9), the ex post tax rate

varies so much that even modest non-linearities in its response to shocks do have a

non-negligible effect on the mean ex post rate.27 Our conclusions about the degree

of optimal variation in capital and labor income tax rates, and the degree to which

they should co-vary with each of the disturbances are essentially the same as those

obtained by Chari et al., and so we do not discuss them further.

We note, however, that there are a number of advantages of our approach to

calculations of this kind. One is that our LQ formulation makes it easy to check

the second-order conditions for optimality of the policy that satisfies our first-order

conditions; this is not addressed by Chari et al., who simply compute an approximate

solution to the first-order conditions that characterize Ramsey policy. Another is that

our approach is easily extended to deal with more complex specifications, with little

25This definition follows Chari et al. (1994, p. 627). In our expression of the formula here, ct

refers to the detrended consumption level c̃t, and so on.
26We suspect a sign error in their table in the case of one entry.
27We also note that the ex post tax rate on income from capital varies so much that the mean of

the distribution is not well estimated by the sample mean of a stochastic simulation as short as the
ones reported in Table 2 of Chari et al. (1994). Simulations of our log-linear policy rules of only that
length resulted in sample means for the ex post capital income tax rate ranging between +1 and -1
percent, even though we know on analytical grounds that the mean tax rate is zero, as reported in
Table 3. Thus it is hard to tell, based on sample means from stochastic simulations as short as those
reported by Chari et al., how much of a difference there really is between the moments implied by
the approximation method used by Chari et al. and those implied by our LQ approximation.
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increase in computational complexity. For example, allowing for higher-order auto-

correlation of the disturbances would be easy in the context of our LQ methodology,

and our specification of the disturbances as linear autoregressive processes also makes

it straightforward to parameterize these processes on the basis of empirical estimates.

3.3 Accuracy of the LQ Approximation

As we have explained (on the basis of more detailed discussion in Benigno and Wood-

ford, 2005b), the solution to the LQ approximate problem derived here yields a correct

local linear approximation to the exact decision rules that characterize optimal policy,

that should allow a computation of statistics like those presented in Table 3 that is of

arbitrary accuracy in the case that the disturbances are small enough in amplitude.

However, it may nonetheless be wondered how accurate such an approximation is in

the case of disturbances of the size typically experienced by the U.S. economy. In-

deed, Chari et al. (1994) adopt a minimum-weighted residual method for computing

approximations to the optimal decision rules because they report having found that

a “log-linearization method” led to a substantially less accurate characterization of

the optimal dynamics of the tax rates (1995, pp. 383-390). This suggests that we

should be concerned about the numerical accuracy of our log-linear approximation to

the optimal tax rules.

As shown above, however, our results obtained using the LQ approximation (Table

3) are quite similar to those reported by Chari et al. (1994) on the basis of their

nonlinear solution method. Of course, the sample moments reported in our table

are not identical to theirs; but they are much more similar than are the results that

Chari et al. (1995) report having obtained through “log-linearization”. For example,

in their Figure 12.3, Chari et al. (1995) report having obtained a higher standard

deviation of the labor tax rate under the log-linearization approach for all values of ϕ,

and a vastly higher variance in the case of values of ϕ near a critical value (between

-3 and -4) where the optimal variability of the labor tax rate falls essentially to

zero according to their nonlinear computations, but remains high according to the

log-linearization. But we also find with our LQ approximation28 that the optimal

variability of the labor income tax falls nearly to zero for a critical value of ϕ,29 while

28In considering the effects of variation in ϕ in Figures 1 and 2, we assume a value of τ̄h as a
function of ϕ that linearly interpolates between the two values specified in Table 1.
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it rises sharply for values of ϕ on either side of these values (see Figure 1), just as in

the figure of Chari et al.

Similarly, in their Figure 12.4A, they report that their log-linearization implies

that the mean ex-ante capital tax rate should be positive for all values of ϕ, and

substantially so (more than 3 percent) for large negative values of ϕ, while their

nonlinear method indicates that the mean rate should be zero for the case ϕ = 0,

and slightly negative in the case of ϕ < 0. But we find with our LQ approximation

that the mean ex ante capital tax rate is zero for all values of ϕ, rather than being

positive at all.

Finally, in their Figure 12.4B, they report that their log-linearization implies that

the standard deviation of the ex ante capital tax rate remains above 2 percent for

all ϕ ≤ 0, while their nonlinear method shows that it falls to zero when ϕ = 0. But

we also find with our LQ approximation that the standard deviation falls to zero

when ϕ = 0 (see Figure 2). The LQ approximation proposed here clearly leads to

quite different, and much more accurate, results than the log-linearization method

employed by Chari et al. (1995).30

A measure of the accuracy of the LQ approximate solution that does not depend

on comparison with the results of Chari et al. can be obtained by considering how

29In our computations, the critical value of ϕ is between -4 and -5, as is also reported in Chari
et al. (1994, Figure 3, panel (a)). Note that we assign parameter values as in Chari et al. (1994),
which uses a slightly different calibration than the one in Chari et al. (1995). Our Figure 1 still
differs somewhat from Figure 3(a) in Chari et al. (1994), mainly because our assumption of a simple
linear relation between τ̄h and ϕ does not exactly capture the way in which the steady state varies
with ϕ in their simulations, as shown by Figure 2(a) of their paper.

30Chari et al. report that their log-linearization method yielded fairly accurate results regarding
the optimal allocation of resources, but much less accurate results for the dynamics of the tax rates.
They propose that this is because “the policies depend on ratios of the derivatives of the utility
function and small errors in computing the allocations can lead to large errors in computing the
policies” (1995, p. 383). We doubt that this is a correct explanation of their results. For example,
given the optimal allocation, the optimal labor tax rate is given by solving (1.8), substituting (1.11)
for the real wage. But the resulting mapping from allocations to the tax rate is exactly linear in
τh

t , ĉt, k̂t, and ẑt; it is only the non-linearity of the dependence on ĥt that can possibly be a source
of error in our log-linear approximation to this relation, and even the dependence on that variable
is not more severely nonlinear than other equations involved in the determination of the optimal
allocation. Judd (1996, sec. 4) suggests that the inaccurate results reported by Chari et al. result
from their using an “ad hoc” method that does not result in a correct linear approximation to the
optimal policy rules, unlike our corrected LQ method.
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closely the log-linear dynamics that solve the LQ problem come to satisfying the exact

nonlinear first-order conditions that characterize optimal Ramsey policy (discussed

above in section 1.4). Here we do not treat this issue in detail (as it is unclear how

large a discrepancy should be regarded as acceptable), but consider, for purposes of

illustration, the degree to which our log-linear dynamics fit the Euler equation for

optimality of the rate of investment.31

As shown in the appendix, the stochastic version of Euler equation (1.34), after

using (1.32) to substitute for the Lagrange multiplier λ1t, can be written in the form

Rt = 0, (3.10)

where Rt is the value of the left-hand side of (the stochastic version of) equation

(1.34). In the case of the log-linear dynamics that solve the LQ problem, the (exact)

value of the residual Rt each period depends only on the state vector vt at that time;

in particular, we can write

Rt = R(vt) ≡ m(vt)− E[n(vt+1)|vt],

where vt is the same state vector as in (3.8), and m(v) and n(v) are explicit, nonlinear

functions defined in the appendix. The functions m(v) and n(v) can be computed

given numerical values for the model parameters, and the steady-state values h̄ and

λ0, that are computed in the manner explained earlier. The simulations provide

sequences {vt} for the state variables, that allow m(vt) to be evaluated for each

period. They also provide a value for k̂t+1 that (as a predetermined state variable)

should be known with certainty as of period t. Since we also know, given the state vt

in any period t, the probabilities of each of the finite number of possible values of ẑt+1

and ĝt+1 in the following period, we therefore have a complete conditional probability

distribution for the possible values of vt+1, allowing E[n(vt+1)|vt] to be evaluated for

each period of the simulation. This allows us to compute a residual sequence {Rt}
associated with the simulation; the size of these residuals provides a measure of the

accuracy of the approximate policy rules.

Figure 3 shows the histograms of these residuals for simulations of the log-linear

approximate policy rules obtained for each of the five cases in Table 3.32 One observes

31This is also the sole optimality condition for which Chari et al. (1995) discuss the size of the
Euler-equation residuals associated with their alternative numerical solutions.

32The simulations are the same ones that generate the sample moments reported in Table 5 below.
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that the residuals are quite small. In the case of log utility (the baseline preference

assumption) and serially correlated disturbances, the typical residual is on the order

of -.0001, meaning that the current marginal utility of consumption is smaller than the

level implied by the Euler equation by amount that is only .01 percent of the steady-

state marginal utility of consumption. The residuals are an order of magnitude smaller

in the case of serially uncorrelated disturbances (case 5), though they are three to

four times as large in the high-risk-aversion case as in the baseline case.33

Another way of assessing the accuracy of the LQ approximation is comparing

the results obtained using this approximation to those that would be obtained by

simulating second-order Taylor series approximations to the optimal policy rules,

rather than the first-order approximations yielded by the LQ approximation.34 We

compute the coefficients of the second-order approximations to the optimal policy

rules (i.e., to the solution to the nonlinear first-order conditions characterizing Ramsey

policy) using the computer code for implementing perturbation calculations described

in Schmitt-Grohé and Uribe (2004), and then determine the implied moments of the

dynamics of the tax rate through Monte Carlo simulation. In order to distinguish

differences in the moments due to simulation (i.e., to sampling error) from differences

due to the inclusion of second-order terms in the policy rules, we first present (in

Table 5) the moments implied by the log-linearized policy rules,35 using Monte Carlo

simulation to estimate the moments, rather than calculation of the exact moments

as in Table 3.36 (The numbers are similar, but not identical to the ones reported in

33We are unable to compare this degree of accuracy to that reported for the log-linearization
approach used in Chari et al. (1995), as the units in which the residuals are reported in their figures
are unclear.

34Second-order perturbation methods of this kind have been widely advocated in the recent lit-
erature as a way of ensuring that welfare is correctly evaluated to second order in the amplitude of
the disturbances; see, e.g., Jin and Judd (2002), Kim et al. (2003), and Schmitt-Grohé and Uribe
(2004a, 2004b).

35Here the exact coefficients of the log-linear policy rules are also those computed using the algo-
rithm of Schmitt-Grohé and Uribe, i.e., direct log-linearization of the nonlinear first-order conditions
that characterize Ramsey policy, rather than solution of the LQ problem defined above. This al-
ternative approach to the computation of the log-linearized policy rules results in small numerical
differences from the policy rules used to generate the statistics reported in Table 3, though one can
show analytically that the two approaches should yield identical coefficients.

36The statistics reported in both Tables 5 and 6 are based on stochastic simulation of the ap-
proximate optimal policy rules for 500,000 periods, with the first 60,000 periods of each simulation
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Table 3, mainly as a result of sampling error.) Here we report the various statistics

to three decimal places, rather than only two as in Table 3,37 to allow the small

differences that are made by a second-order approximation more evident.

Table 6 then displays the same moments, in the case that quadratic approxima-

tions to the optimal policy rules are used in the stochastic simulation, rather than the

linear rules. (We use exactly the same sequences for the exogenous disturbances in

the two cases, so that sampling error does not exaggerate the difference made by the

second-order terms.) We find that the inclusion of second-order terms in the various

equations used to derive our approximation to the optimal dynamics of the tax rates

has only very small effects on the moments reported in Table 5. This is true despite

the fact that the second-order corrections to the policy rules do substantially reduce

the size of the Euler equation residuals, and thus do represent a better approximation

to the true nonlinear optimal policy rules.38 This suggests that a log-linear approxi-

mation to the optimal policy functions is fairly accurate, in the case of disturbances

of the size assumed in the exercise of Chari et al. (1994).39

4 Conclusion

We have shown, in the context of a familiar dynamic optimal taxation problem, that a

naive approach to linear-quadratic approximation of the problem would yield results

that are quite incorrect. At the same time, we have shown that it is possible to

define an alternative quadratic objective — one that also corresponds to expected

utility of the representative household, up to second order in the amplitude of the

disturbances, in the case of any possible equilibrium, but that involves variables other

than the arguments of the utility function itself — such that the LQ problem with

discarded to eliminate the effects of the arbitrary initial conditions.
37The degree of precision in Table 3 is chosen to match that of the results reported in Table 2 of

Chari et al. (1994).
38The root-mean-square size of the Euler equation residuals corresponding to those shown in

Figure 3 is reduced by a factor greater than 35 in the baseline case (case 1) when the second-order
corrections are used; similarly dramatic reductions occur in the other cases. The Euler equation
residuals are also now nearly zero on average, rather than being almost always negative as shown in
Figure 3.

39Schmitt-Grohé and Uribe (2004b) reach a similar conclusion in the context of a calibrated
sticky-price model.
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this objective yields a correct local log-linear approximation to optimal policy in the

case of small enough disturbances. We have also shown that the error involved in

such a local log-linear approximation to the optimal policy appears not to be large,

in the case of disturbances of the size that occur in a model calibrated to match

features of U.S. time series. This suggests that LQ approximation methods of the

kind illustrated here can usefully be employed in the analysis of optimal tax policy,

both as a simple approach to computation and as a source of insight into the nature

of optimal policy rules.
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Appendix

Derivation of equation (2.1).

Starting from (1.1), we note that a second-order Taylor series expansion of u(ct, ht)

takes the form

u(ct, ht) = ū + ūc(ct − c̄) + ūh(ht − h̄) +
1

2
ūcc(ct − c̄)2 +

+
1

2
ūhh(ht − h̄)2 + ūch(ct − c̄)(ht − h̄) +O(||ξ||3),

where partial derivatives are all evaluated at the steady state values (c̄, h̄) of the

arguments of u.

We wish instead to expand in powers of the log deviations of consumption and

hours from their steady-state levels. We note that in general,

xt − x̄ = x̄

(
1 + x̂ +

x̂2

2

)
+O(||ξ||3),

where x̂ ≡ ln xt/x̄. Using this to substitute for ct−c̄ and ht−h̄ in the above expression,

and suppressing terms of higher than second order in the log deviations, we obtain

(2.1).

Derivation of equation (2.8).

We begin by taking a second-order approximation of equation (1.15) in terms

of log deviations from the steady-state values of the various endogenous variables.

Rewriting the equation as

yt − ȳ = (ct − c̄) + (gt − ḡ) + (kt+1 − k̄)− (1− δ̃)(kt − k̄),

we then obtain

ŷt = scĉt+sgĝt+sk(k̂t+1−(1−δ̃)k̂t)+
1

2
scĉ

2
t +

1

2
sgĝ

2
t +

1

2
sk(k̂

2
t+1−(1−δ̃)k̂2

t )−
1

2
ŷ2

t +O(||ξ||3),
(4.1)

where ĝt ≡ log(gt/ḡ) and sc ≡ c̄/ȳ, sg ≡ ḡ/ȳ, and sk ≡ k̄/ȳ.

We similarly take a second-order approximation to the production function yt =

f(kt, ztht), which can be written as

yt − ȳ = f̄k(kt − k̄) + z̄f̄h(ht − h̄) + h̄f̄h(zt − z̄) +
1

2
fkk(kt − k̄)2 +

1

2
z̄2f̄hh(ht − h̄)2 +

+z̄fkh(kt − k̄)(ht − h̄) + h̄f̄kh(kt − k̄)(zt − z̄) + f̄h(ht − h̄)(zt − z̄)

+h̄z̄f̄hh(ht − h̄)(zt − z̄) + s.o.t.i.p.+O(||ξ||3).
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This can be expressed in terms of log deviations as

ŷt +
1

2
ŷ2

t = α(k̂t +
1

2
k̂2

t ) + (1− α)(ĥt + ẑt +
1

2
ĥ2

t ) + (1− α)ĥtẑt − 1

2
α(1− α)k̂2

t +

+
1

2
α(1− α)ĥ2

t − α(1− α)k̂tĥt + α(1− α)k̂tẑt − α(1− α)ĥtẑt + s.o.t.i.p.+O(||ξ||3),

which can be finally written as

ŷt +
1

2
ŷ2

t = α(k̂t +
1

2
k̂2

t ) + (1− α)(ĥt + ẑt +
1

2
ĥ2

t ) + (1− α)ĥtẑt +

−1

2
α(1− α)(k̂t − ẑt − ĥt)

2 + s.o.t.i.p.+O(||ξ||3).

We can substitute in (4.1) to obtain

0 = scĉt − (1− α)(ẑt + ĥt) + sgĝt + sk(k̂t+1 − (1− δ̃)k̂t)− αk̂t +
1

2
scĉ

2
t +

1

2
sk(k̂

2
t+1 − (1− δ̃)k̂2

t )

−1

2
αk̂2

t +
1

2
α(1− α)k̃2

t −
1

2
(1− α)(ĥ2

t + 2ẑtĥt) + s.o.t.i.p. +O(||ξ||3).

Integrating forward, we finally obtain

0 =
∞∑

t=t0

β̃
t−t0{sc(ĉt +

1

2
ĉ2
t )− (1−α)(ĥt +

1

2
ĥ2

t + ĥtẑt)+
1

2
α(1−α)ˆ̃k2

t }+t.i.p.+O(||ξ||3).

Derivation of equation (2.10)

Starting from (1.19), we first note that

uc(ct, ht)ct + uh(ct, ht)ht = ūcc̄ + ūhh̄ + ūc(ct − c̄) +

c̄[ūcc(ct − c̄) + ūch(ht − h̄) +
1

2
ūccc(ct − c̄)2 +

1

2
ūchh(ht − h̄)2 + ūcch(ct − c̄)(ht − h̄)] + ūcc(ct − c̄)2

+ūch(ct − c̄)(ht − h̄) + ūh(ht − h̄) +

+h̄[ūhc(ct − c̄) + ūhh(ht − h̄) +
1

2
ūhhh(ht − h̄)2 +

+
1

2
ūhcc(ct − c̄)2 + ūhhc(ht − h̄)(ct − c̄)] +

ūhh(ht − h̄)2 + ūhc(ht − h̄)(ct − c̄) +O(||ξ||3)
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and then obtain

uc(ct, ht)ct + uh(ct, ht)ht = ūcc̄[ĉt +
1

2
ĉ2
t ] + c̄[ūccc̄(ĉt +

1

2
ĉ2
t ) + ūchh̄(ĥt +

ĥ2
t

2
)

+
1

2
ūcccc̄

2ĉ2
t +

1

2
ūchhh̄

2ĥ2
t + ūcchc̄h̄ĉtĥt] + ūhh̄(ĥt +

ĥ2
t

2
) +

+ūccc̄
2ĉ2

t + ūchc̄h̄ĉtĥt

+h̄[ūhcc̄(ĉt +
1

2
ĉ2
t ) + ūhhh̄(ĥt +

ĥ2
t

2
) +

1

2
ūhhhh̄

2ĥ2
t +

+
1

2
ūhccc̄

2ĉ2
t + ūhhcc̄h̄ĉtĥt] + ūhhh̄

2ĥ2
t +

+ūchc̄h̄ĉtĥt + t.i.p. +O(||ξ||3).

We can simplify the above expression to

uc(ct, ht)ct + uh(ct, ht)ht = ūcc̄{(1− σ−1)(ĉt +
1

2
ĉ2
t ) + ψ(ĥt +

ĥ2
t

2
)

−1

2
σ−1σ−1

1 ĉ2
t +

1

2
ψψ1ĥ

2
t − σ−1ψ2ĉtĥt − φ(ĥt +

ĥ2
t

2
) +

−σ−1ĉ2
t + ψĥtĉt + ψ(ĉt +

1

2
ĉ2
t )

−φν(ĥt +
ĥ2

t

2
)− 1

2
φνν1ĥ

2
t −

1

2
σ−1ψ2ĉ

2
t

+ψψ1ĉtĥt − φνĥ2
t + ψĥtĉt}+ t.i.p. +O(||ξ||3),

where σ−1
1 ≡ ūcccc̄/ūcc, ψ1 ≡ ūchhh̄/ūch, ψ2 ≡ ūcchh̄/ūcc, ν1 ≡ ūhhhh̄/ūhh. Plugging

the above equation into (1.19), we obtain that

Wt0 −W

ūcc̄
= Et0

∞∑
t=t0

β̃
t−t0{(1− σ−1 + ψ)ĉt + (ψ − φ− φν)ĥt

+
1

2
(ψ + ψψ1 − φ− φν − φνν1 − 2φν)ĥ2

t +

+
1

2
(1− σ−1 + ψ − σ−1σ−1

1 − σ−1ψ2 − 2σ−1)ĉ2
t +

+(ψψ1 − σ−1ψ2 + 2ψ)ĉtĥt}
+s.o.t.i.p. +O(||ξ||3). (4.2)

We further note that

Wt ≡ bs
t−1uc(ct, ht) + uc(ct, ht)kt[(1− δ̃) + (1− τ k

t )fk(ztht, kt) + δρ−1τ k
t ],
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where

δρ−1 = ρ−1 − (1− δ̃).

We then have as a first-order expansion of the constraint that

Wt −W ≡ ūc(bt−1 − b̄) + b̄[ūcc(ct − c̄) + ūch(ht − h̄)] +

+
1

β̃
[ūc(kt − k̄) + k̄ūcc(ct − c̄) + k̄ūch(ht − h̄)] +

+ūck̄{[f̄kk(kt − k̄) + h̄f̄kh(zt − z̄) + z̄f̄kh(ht − h̄)]− (f̄k − δρ−1)τ k
t }+O(||ξ||2),

which can be written as

Wt −W = ūcb̄b̂t−1 − ūcb̄[σ
−1ĉt − ψĥt] +

ūck̄

β̃
(k̂t − σ−1ĉt + ψĥt) +

+ūck̄
2f̄kk(k̂t − ẑt − ĥt)− ūck̄(f̄k − δρ−1)τ k

t +O(||ξ||2).

Hence

scW̃t = sbb̂t−1 − sb[σ
−1ĉt − ψĥt] + β̃

−1
sk(k̂t − σ−1ĉt + ψĥt)

−α(1− α)(k̂t − ẑt − ĥt)− (α− skδρ
−1)τ k

t +O(||ξ||2),

where sb ≡ b̄/ȳ and W̃t ≡ (W̃t −W )/ūcc̄.

We finally note that

(α− skδρ
−1) = sk(αs−1

k − ρ−1 + (1− δ̃)) = sk(β̃
−1 − ρ−1).

We have then that

W̃t = Et

∞∑
T=t

β̃
T−t0{dcĉT + dhĥT},

scW̃t = sbb̂
s
t−1 − bcĉt + bhĥt + bkk̂t + s−1

c α(1− α)ẑt − bττ
k
t ,

where we have defined bc ≡ sbσ
−1 + β̃

−1
skσ

−1, bh ≡ sbψ + β̃
−1

skψ + α(1 − α),

bk ≡ β̃
−1

sk−α(1−α), dc ≡ (1−σ−1 +ψ), dh ≡ (ψ−φ−φν) and bτ ≡ sk(β̃
−1−ρ−1).

Second-order conditions

The optimal solution to the linear-quadratic problem minimize the following loss

function

Lt0 =
1

2
Et0

∞∑
t=t0

β̃
t−t0

{
qc(ĉt − θĥt)

2 + qh(ĥt − h∗t )
2 + qk[k̂t − (ẑt + ĥt)]

2
}

(4.3)
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under the constraint

k̂t+1 = β̃
−1

k̂t − s−1
k scĉt + s−1

k (1− αk)(ẑt + ĥt)− s−1
k sgĝt (4.4)

for each t ≥ t0 and the constraint

W̃t0 = Et0

∞∑
T=t0

β̃
T−t0{dcĉT + dhĥT} (4.5)

at time t0 given the initial conditions k̂t0 and W̃t0 = W̄t0 .

We study under which conditions the solution to the above optimization problem

corresponds indeed to a minimum, i.e. under which conditions second order condi-

tions are satisfied. This analysis boils down to study under which restrictions the

quadratic form (4.3) is positive definite under the sequence of constraints (4.4) and

the constraint (4.5). Let us assume that {ĉt, ĥt, k̂t+1}∞t=t0
is an optimal plan for the

above problem and define the sequences

ĉ†t = ĉt + ψc,t,

ĥ†t = ĥt + ψh,t,

k̂†t+1 = k̂t+1 + ψk,t

where the processes {ψc,t, ψh,t, ψk,t}∞t=t0
are real valued and satisfy

Et0

∞∑
T=t0

β̃
T−t0

ψ2
j,t < ∞ for j = c, h, k, (4.6)

plus the sequence of constraints

ψk,t = β̃
−1

ψk,t−1 − s−1
k scψc,t + s−1

k (1− α)ψh,t (4.7)

for each t ≥ t0 and

Et0

∞∑
T=t0

β̃
T−t0{dcψc,T + dhψh,T} = 0 (4.8)

at time t0 with initial condition ψk,t0−1 = 0. It follows that the process {ĉ†t , ĥ†t ,

k̂†t+1}∞t=t0
is a feasible perturbation to the optimal plan and achieves a loss given by

Lt0(ĉ
†, ĥ†, k̂†) = Lt0(ĉ, ĥ, k̂) + Et0

∞∑
t=t0

β̃
t−t0

[qc(ĉt − θĥt)(ψc,t − θψh,t) + qhψh,t(ĥt − h∗t ) +

+qk((k̂t − (ẑt + ĥt))(ψk,t−1 − ψh,t)] +

+Et0

∞∑
t=t0

β̃
t−t0

[qc(ψc,t − θψh,t)
2 + qhψ

2
h,t + qk(ψk,t−1 − ψh,t)

2].
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Since the sequences {ĉt, ĥt, k̂t+1}∞t=t0
satisfy necessary conditions for an optimal plan,

then the second term on the RHS of the above equation is zero, i.e.

Et0

∞∑
t=t0

β̃
t−t0

[qc(ĉt−θĥt)(ψc,t−θψh,t)+qhψh,t(ĥt−h∗t )+qk((k̂t−(ẑt+ĥt))(ψk,t−1−ψh,t)] = 0.

It follows that the sequences {ĉt, ĥt, k̂t+1}∞t=t0
will be a minimum if and only

Et0

∞∑
t=t0

β̃
t−t0

[qc(ψc,t − θψh,t)
2 + qhψ

2
h,t + qk(ψk,t−1 − ψh,t)

2] > 0 (4.9)

for all processes {ψc,t, ψh,t, ψk,t}∞t=t0
satisfying (4.6), (4.7) and (4.8) given ψk,t0−1 = 0.

First we show that we can disregard constraint (4.8) from the analysis. Let us

define ψt ≡ (ψc,t, ψh,t, ψk,t). Given a process {ψt}∞t=t0
that satisfies only the constraints

(4.6) and (4.7) given ψk,t0−1 = 0 and such that (4.9) is negative, we can construct

a process {ψ̄t}∞t=t0
with ψ̄t0 = 0 and ψ̄t+1 = σt0+1ψt for each t > t0, where σt0+1

is a sunspot variable known at time t0 + 1 which takes either value 1 or −1 with

probability 1/2. The constructed process {ψ̄t}∞t=t0
still satisfies (4.6), (4.7) and in

addition it satisfies the constraint (4.8) while achieving a negative value for the loss

function (4.9).

It follows that {ĉt, ĥt, k̂t+1}∞t=t0
will be a minimum if and only (4.9) is positive for

all processes {ψt}∞t=t0
that satisfy only the constraints (4.6), (4.7) and ψk,t0−1 = 0.

In Benigno and Woodford (2005b), we further show that this stochastic problem can

be reconnected to a deterministic problem of the kind analyzed by Telser and Graves

(1972), in which the sequence {ψt}∞t=t0
can be complex valued.

To make this parallel, we can write the problem in a more compact way by rewrit-

ing the deterministic version of (4.9) as

∞∑
t=0

β̃
t
x̃‡tB(L)x̃t

where we have defined

x̃t =




ψx,t

ψh,t

ψk,t



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with ψx,t ≡ ψc,t − θψh,t and the matrix B(L) as

B(L) =




qc 0 0

0 qh + qk −2qkL

0 0 qk


 .

Here x̃‡t denotes the conjugate transpose of x̃t. We can also write the constraint (4.7)

as

A(L)x̃t = 0

where

A(L) =
[

s−1
k sc s−1

k scθ − s−1
k (1− α) 1

]
+

[
0 0 −β̃

−1
]
L.

The process {xt} now satisfies a bound of the form

Et0

∞∑
T=t0

β̃
T−t0

x̃‡t x̃t < ∞ (4.10)

Following Telser and Graves (1972), we can make the following transformation of

variables by defining xt as xt ≡ β̃
t
2 x̃t. Second-order conditions of the original problem

are satisfied if and only if the following quadratic objective function

1

2

∞∑
t=0

x‡tB(β̃
1
2 L)xt

is positive definite for sequences {xt} that satisfies (4.10) and the sequence of con-

straints A(β̃
1
2 L)xt = 0 at each t ≥ 0 given ψk,−1 = 0.

Since the harmonic matrix

1

2
[B(β̃

1
2 e−iϑ) + B′(β̃

1
2 eiϑ)] =




qc 0 0

0 qh + qk −β̃
1
2 qke

−iϑ

0 −β̃
1
2 qke

iϑ β̃qk




is non-singular for all −π ≤ ϑ ≤ π provided qc, qh, qk are all different from zero and

since the matrix A(β̃
1
2 e−iϑ) is of rank 1 for all −π ≤ ϑ ≤ π, we can then use theorem

5.2 in Telser and Graves (1972) which allow to study second-order conditions in terms

of the determinants of the following bordered Hessian

H(ϑ) =




0 A(β̃
1
2 e−iϑ)

A′(β̃
1
2 eiϑ) 1

2

(
B(β̃

1
2 e−iϑ) + B′(β̃

1
2 eiϑ)

)


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where in our case

H(ϑ) =




0 s−1
k sc s−1

k scθ − s−1
k (1− α) 1− β̃

1
2 e−iϑ

s−1
k sc qc 0 0

s−1
k scθ − s−1

k (1− α) 0 qh + qk −β̃
1
2 qke

−iϑ

1− β̃
1
2 eiϑ 0 −β̃

1
2 qke

iϑ β̃qk




.

Since m = 1, the second-order conditions are satisfied if and only the northwest

principal minors of order p > 2 have all the same sign as (−1)m = −1. For the case

p = 3, we are interested in the matrix

H1 =




0 s−1
k sc s−1

k scθ − s−1
k (1− α)

s−1
k sc qc 0

s−1
k scθ − s−1

k (1− α) 0 qh + qk


 .

The determinant of H1is negative if and only if (i) the inequality

s2
c(qh + qk) + qc[(1− α)− θsc]

2 > 0 (4.11)

is satisfied.

For the case p = 4, we must also require the determinant of the bordered Hessian

H(ϑ) to be negative for all −π ≤ ϑ ≤ π. This determinant is equal to

det H(ϑ) = −β̃s−2
k s2

cqkqh + qc{−s−1
k [scθ − (1− α)][s−1

k (scθ − (1− α))β̃qk

+qkβ̃
1
2 e−iϑ(1− β̃

1
2 eiϑ)]}+ qc{(1− β̃

1
2 e−iϑ)[−β̃

1
2 qke

iϑs−1
k (scθ − (1− α)) +

−(1− β̃
1
2 eiϑ)(qh + qk)]

= −β̃s−2
k s2

cqkqh − β̃s−2
k qkqc[(1− α)− θsc]

2 − s−1
k qcqk[scθ − (1− α)]β̃

1
2 e−iϑ(1− β̃

1
2 eiϑ)

−s−1
k qcqk[scθ − (1− α)]β̃

1
2 eiϑ(1− β̃

1
2 e−iϑ)− qc(qh + qk)(1− β̃

1
2 eiϑ)(1− β̃

1
2 e−iϑ)

= −β̃s−2
k s2

cqkqh − β̃s−2
k qkqc[(1− α)− θsc]

2 + β̃
1
2 (2β̃

1
2 − 2 cos ϑ)[(1− α)− θsc]s

−1
k qcqk

−qc(qh + qk)[1 + β̃ − 2 cos ϑβ̃
1
2 ]

It follows that

det H(ϑ) < 0 for all − π ≤ ϑ ≤ π

if and only if (ii) the inequality

β̃s−2
k s2

cqkqh + β̃s−2
k qkqc[(1− α)− θsc]

2 − 2β̃
1
2 (β̃

1
2 − cos ϑ)[(1− α)− θsc]s

−1
k qcqk

+qc(qh + qk)[1 + β̃ − 2β̃
1
2 cos ϑ] > 0
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holds for all −π ≤ ϑ ≤ π. Hence the second-order conditions are satisfied if and

only if both (i) and (ii) hold. (We can further reduce condition (ii) to a finite

set of inequalities by considering the value of ϑ that minimizes the left-hand side

expression.)

We note that when qh, qc and qk are positive, as in the numerical examples con-

sidered in the text, then (i) and (ii) are always satisfied for all −π ≤ ϑ ≤ π. The

left-hand side of (ii) can be equivalently written as

β̃s−2
k s2

cqkqh + qcqh(β̃
1
2 − cos ϑ)2 + qc(qh + qk) sin2 ϑ

+qkqc[β̃
1
2 s−1

k ((1− α)− θsc)− (β̃
1
2 − cos ϑ)]2,

and each of these terms is necessarily positive when qh, qc and qk are positive.

Euler Equation Residuals

In the stochastic case, the exact Euler equations that characterize Ramsey op-

timal policy, corresponding to equations (1.32) and (1.34) of section 1.4, are given

respectively by

uc(ct, ht)− [uc(ct, ht) + ucc(ct, ht)ct + uhc(ct, ht)ht]λ0 − λ1,t = 0

and

λ1,t − βEt{[fk(kt+1, zt+1ht+1) + (1− δ)]λ1,t+1} = 0,

for each t ≥ t0. In terms of the detrended variables, these conditions can be rewritten

as

uc(c̃t, ht)− [uc(c̃t, ht) + ucc(c̃t, ht)c̃t + uhc(c̃t, ht)ht]λ0 − λ̃1,t = 0 (4.12)

and

λ̃1,t − β̃Et{[f̃k(k̃t+1, z̃t+1ht+1) + (1− δ̃)]λ̃1,t+1} = 0 (4.13)

respectively, where

λ̃1t ≡ λ1tρ
[1−ϕ(1−γ)]t,

and the other detrended variables are defined as in section 1.3.40

40Note that equations (1.32) and (1.34) of section 1.4 are already written in terms of the detrended
variables.
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Using (4.12) to eliminate λ̃1t in (4.13), and again dropping the tildes from the de-

trended variables (that are henceforth to be understood), we obtain an Euler equation

of the form

Λ(ct, ht) = β̃Et[Λ(ct+1, ht+1)r(kt+1/zt+1ht+1)], (4.14)

where we define

Λ(c, h) ≡ uc(c, h)− λ0[uc(c, h) + ucc(c, h)c + uhc(c, h)h],

r(κ) ≡ f̃k(κ, 1) + (1− δ̃).

This condition is equivalent to Rt = 0, where we define the residual Rt as the left-hand

side of (4.14) minus the right-hand side, divided by uc(c̄, h̄). The normalization implies

that a value of .01 for the residual means that λ̃1t exceeds β̃Et[(f̃k +(1− δ̃))λ̃1,t+1] by

an amount equal to one percent of the steady-state marginal utility of consumption.

The residual Rt each period is given by a function R(vt) of the state vector vt ≡
(k̂t, ẑt, ĝt) for that period of the simulation, where

R(vt) ≡ m(vt)− E[n(vt+1)|vt]

= m(vt)−
∑

s′
π(s′|s(vt))n(k̂′(vt), s

′).

In this formula, s(vt) denotes the exogenous state st ≡ (ẑt, ĝt) implied by the state

vector vt (just the last two elements of the vector); π(s′|s) is the probability that the

exogenous state st+1 = s′ given that st = s; the summation is over the possible values

s′ for the exogenous state st+1; and k̂′(vt) is the log-linear policy rule that gives the

value of k̂t+1 as a function of vt, in the solution to the LQ policy problem.41

Using the functional forms for preferences given in the text, the functions m(v)

and n(v) are defined as

m(v) ≡
[
1− λ̄0ϕ

(
1− γ

1− h̄ exp[ĥ]

)]
· exp[(ϕ(1− γ)ĉ] ·

(
1− h̄ exp[ĥ]

1− h̄

)ϕγ

,

n(v) ≡ β̃m(v)r(v),

41In computing the corresponding residuals in the case of the second-order perturbation solution,
we define the function R(v) in the same way, except that the function k̂′(v) is now a quadratic
approximation to the optimal policy rule.

45



where

r(v) ≡ [β̃
−1 − (1− δ̃)] · exp[(1− α)(ẑ + ĥ− k̂)] + (1− δ̃).

In each of these last expressions, ĉ, ĥ, ẑ and k̂ should be understood to be functions

of v (ĉ(v), etc.), in which the argument has been suppressed. The functions ẑ(v) and

k̂(v) select particular elements of the state vector (ẑt and k̂t respectively), while the

functions ĉ(v) and ĥ(v) represent the log-linear policy rules that specify the optimal

values for ĉt and ĥt as functions of vt.
42 Note that computation of the functions m(v)

and n(v), and hence computation of the function R(v), requires only numerical values

for the model parameters ϕ, γ, β̃, δ̃, and α, and steady-state values for h̄ and λ̄0.

42Again, in the case of the residuals for the second-order solution, the functions ĉ(v) and ĥ(v) are
quadratic approximations to the optimal policy rules.
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Table 1: Parameter values used in the numerical examples, following Chari et al.

(1994).

Calibrated Parameters

α 0.344

β̃ 0.98

γ 0.75

δ̃ 0.095

ρ 1.016

ḡ 0.069

Steady-State Values

ϕ 0 -8

τ̄h 0.2387 0.2069

τ̄ k 0 0

sc .550 .554

sg .167 .163

sk 2.992 2.992

h̄ .232 .238

ȳ .410 .420

φ .908 .939

AR(1) Shock Processes

ẑt : ρz = 0.81 σz = 0.041

ĝt : ρg = 0.89 σg = 0.070
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Table 2: Coefficients of the quadratic loss function, for each of two alternative para-

meterizations.

ϕ 0 -8

qc 1 2.93

qh 0.45 1.23

qk 0.41 0.40

θ 0 0.79

θz 2.67 0.94
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Table 3: Statistics on optimal tax rates according to the LQ approximation.

baseline high r.a. only z only g IID

Tax Rate on Labor Income

E(τ) 23.87 20.69 23.87 23.87 23.87

s.d.(τ) .10 .03 .07 .06 .15

ρ(τ) .77 .81 .69 .90 -.07

corr(τ , ĝ) .62 -.55 NA 1.00 .10

corr(τ , ẑ) .49 -.80 .63 NA .95

Ex Ante Tax Rate on Capital Income

E(τ) 0 0 0 0 0

s.d.(τ) 0 3.29 0 0 0

ρ(τ) NA .80 NA NA NA

corr(τ , ĝ) NA .25 NA NA NA

corr(τ , ẑ) NA .97 NA NA NA

Ex Post Tax Rate on Capital Income

E(τ) 0 0 0 0 0

s.d.(τ) 36.13 30.56 15.77 32.51 10.81

ρ(τ) 0 -.00 0 0 0

corr(τ , ĝ) .41 .44 NA .46 0.91

corr(τ , ẑ) -.26 -.13 -.59 NA -.41
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Table 4: Statistics on optimal tax rates reported by Chari et al. (1994, Table 2).

baseline high r.a. only z only g IID

Tax Rate on Labor Income

E(τ) 23.87 20.69 23.80 23.87 23.84

s.d.(τ) .10 .04 .08 .06 .15

ρ(τ) .80 .85 .71 .90 -.04

corr(τ , ĝ) .65 -.59 NA 1.00 .10

corr(τ , ẑ) .55 -.84 .64 NA .95

Ex Ante Tax Rate on Capital Income

E(τ) 0 -.06 0 0 0

s.d.(τ) 0 4.06 0 0 0

ρ(τ) NA .83 NA NA NA

corr(τ , ĝ) NA .33 NA NA NA

corr(τ , ẑ) NA .96 NA NA NA

Ex Post Tax Rate on Capital Income

E(τ) .55 -.42 1.19 -.59 .23

s.d.(τ) 40.93 30.35 17.67 36.22 12.03

ρ(τ) -.01 .02 .01 .01 -.02

corr(τ , ĝ) .40 .47 NA .46 .94

corr(τ , ẑ) -.24 -.02 -.56 NA .33∗

∗We suspect this entry may be reported with a sign error.
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Figure 1: Variability of optimal tax rate on labor income for alternative values of ϕ,

according to our LQ approximation.
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Figure 2: Variability of optimal ex ante tax rate on capital income for alternative

values of ϕ, according to our LQ approximation.
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Figure 3: Distributions of Euler-equation residuals in the simulation of the log-linear

dynamics that solve the LQ problem, for each of the 5 cases treated in Table 5. The

caption for each panel indicates the root-mean-square residual size in that simulation.
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Table 5: Statistics on optimal tax rates from Monte Carlo simulation of log-linearized

optimal policy rules.

baseline high r.a. only z only g IID

Tax Rate on Labor Income

E(τ) 23.870 20.690 23.870 23.870 23.870

s.d.(τ) .095 .034 .074 .059 .147

ρ(τ) .766 .811 .685 .895 -.068

corr(τ , ĝ) .620 -.550 NA .999 .099

corr(τ , ẑ) .496 -.802 .632 NA .954

Ex Ante Tax Rate on Capital Income

E(τ) 0 .002 0 0 0

s.d.(τ) 0 3.289 0 0 0

ρ(τ) NA .804 NA NA NA

corr(τ , ĝ) NA .252 NA NA NA

corr(τ , ẑ) NA .965 NA NA NA

Ex Post Tax Rate on Capital Income

E(τ) .001 .003 -.003 .004 .001

s.d.(τ) 36.155 30.581 15.769 32.512 10.818

ρ(τ) -.000 -.003 -.002 -.000 -.000

corr(τ , ĝ) .410 .444 NA .456 0.913

corr(τ , ẑ) -.255 -.132 -.586 NA -.409
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Table 6: Statistics on optimal tax rates from a second-order approximation to the

policy rules.

baseline high r.a. only z only g IID

Tax Rate on Labor Income

E(τ) 23.873 20.687 23.870 23.873 23.871

s.d.(τ) .095 .034 .074 .059 .147

ρ(τ) .766 .811 .685 .895 -.068

corr(τ , ĝ) .621 -.550 NA 1.000 .099

corr(τ , ẑ) .496 -.802 .632 NA .954

Ex Ante Tax Rate on Capital Income

E(τ) 0 .027 0 0 0

s.d.(τ) 0 3.316 0 0 0

ρ(τ) NA .803 NA NA NA

corr(τ , ĝ) NA .250 NA NA NA

corr(τ , ẑ) NA .957 NA NA NA

Ex Post Tax Rate on Capital Income

E(τ) .529 .030 .953 -.435 .503

s.d.(τ) 36.302 30.770 15.801 32.513 10.914

ρ(τ) -.001 -.004 -.002 -.000 -.000

corr(τ , ĝ) .409 .442 NA .456 0.905

corr(τ , ẑ) -.254 -.132 -.585 NA -.406
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