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One of the most important properties of competitive equilibrium,
in the familiar model with a finite number of agents and a finite number
of commodities, is that under generically valid conditions, equilibrium
will be locally unique. This property is necessary in order for it to
be possible to compute the comparative statics properties of such
equilibria. It is also relied upon in arguments for the desirability of
the competitive system that make use of the second welfare theorem.

When one argues that any efficient allocation (and hence, the state of
affairs that maximizes one's social welfare function) can be supported
as a competitive equilibrium for an appropriate initial distribution of
endowments, and from this that there would be no need for interference
with the working of the market if the assumptions of the Walrasian model
were true and lump-sum taxation were possible, one assumes implicitly
that a correct distribution of initial claims to resources would suffice
to pick out the desired equilibrium allocation. For this it is
necessary that the competitive equilibrium associated with that
particular distribution of endowments be at least locally unique.

It is therefore of no small importance to the theory of
competitive economies that when the number of agents and the number of
commodities both become infinite, this local uniqueness property need no

longer hold. In particular, in the case of an infinite-~horizon dynamic
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compet itive economy with overlapping generations of finite-lived agents,
there may be an uncountably infinite set of competitive equilibria
arbitrarily near (in any of the familiar topologies used in treatments
of such models) a given equilibriﬁm. This indeterminacy does not result
from any missing markets, and the examples characterized by indetermi-
nacy are robust in the sense that small pertubations of agents'
preferences or endowments or of the production technologies available
will not resolve the indeterminacy.

It follows that preferences, endowments, and technology alone may
not suffice to determine the allocation of resources in a dynamic
economy, even when perfectly competitive markets exist for all goods.,
There may be an independent role for the beliefs of agents in the
determination of economic outcomes, even if one restricts one's
attention to equilibria in which the expectations of all agents are
correct. This means, for example, that "speculative bubbles" in asset
markets need not indicate either irrational behavior or incorrect
expectations on the part of any traders. (The problem, however, is not
simply one of asset valuation. Equilibrium may be indeterminate even in
the absence of infinite-lived assets, and even in the case of economies
in which all goods are perishable.)

It also follows that there may be a role for active government
policy (other than to obtain a correct initial distribution of
endowments), even in the case of competitive economies for which the
first and second welfare theorems hold. Even if endowments are such

that the desired allocation can be supported as a competitive




equilibrium, equilibrium may be indeterminate in the absence of active
policy, so that market forces cannot be relied upon to produce the
desired result. Furthermore, active stabilization policies may exist
which render the desired allocation a locally unique competitive
equilibrium.

The plan of the survey is as follows. In Section I, a series of
simple examples are presented, which are intended to demonstrate that
the problem of indeterminate equilibrium is not simply an artifact
associated with the overlapping generations model of money. These
examples show that there is no general connection between indeterminacy
of equilibrium and Pareto inefficiency; that equilibrium may be
indeterminate in models without valued fiat money; and that equilibrium
mey be indeterminate in models in which various kinds of non-monetary
assets exist. In Section II, the problem of indeterminate perfect
foresight equilibrium is considered more generally, and existing results
on the general conditions necessary for indeterminacy to be possible are
summarized. The three important general results are that the dimension
of indeterminacy can be as large as, but no larger than, the number of
goods traded per period; that a sufficient number of the agents alive at
each point in time mst be finite-lived in order for indeterminacy to be
possible; and that income effects must be sufficiently important, in the
response of the consumption demands of the finite lived agents to price
variations, in order for a Pareto optimal equilibrium to be indetermi-
nate. In Section III, the relation between indeterminacy and the

existence of equilibrium cycles is discussed, and in Section IV it is



argued that there is a close relationship between indeterminary of
perfect foresight equilibrium and the existence of stationary rational
expectations equilibria in which "sunspots matter". Section V discusses
possible responses to the problem of indeterminate equilibrium, and
considers the possibility of stabilization policy to render equilibrium

determinate.

I. Indeterminacy of Perfect Foresight Equilibrium: Examples

In this section, a series of simple examples is presented. These
illustrate the possible indeterminacy of perfect foresight equilibrium
in the overlapping generations model. They will also give some
indication of the variety of models in which this problem may occur, as
wéll as showing that it does not occur in the case of all overlapping

generations economies.

Example 1: This example is one analyzed by Gale [1973], what he
calls the "Samuelson case". In this economy, there is one perishable
consumption good per period. All agents live for two periods, and an
equal number belong to each generation; the agents who live in periods
t and t+l will be called generation t (for t =1,2,...). All
agents have identical preferences with respect to consumption in the two
periods of life, and identical lifetime patterns of endowment of the
consumption good (e; in the first period of life, e, in the second).
There is no production, but intergenerational exchange of the consump-
tion good is possible using fiat money. In period one, in addition to

the young members of generation one, there exists a group of agents who




live only in period one, referred to as generation zero; these agents
hold a certain quantity M > O of fiat money at the beginning of period
one. The stock of fiat money in circulation is never altered. The
money is spent each period by the old in that period, for some of the
endowvment of the current young, who acquire money in order to spend it
the fbllowing period. Fiat money is the only asset in this economy, and
so provides the only means by which agents can save,

The perfect foresight equilibria of the model may be displayed
using a diagram like Figure 1. (This method of exposition, which is
also used for the examples to follow, is taken from Cass, Okuno, and
Zilcha [1979].) Let ¥y be the excess demand of the young for the
consumption good in period t, and 2z, be the excess demand of the old
in period t. Let us assume that Yy, and z are both continuous

t+1

functions of the relative price Py (Here Py 1is the money price

IPgaq
of the consumption good in period t, so that pt/Pt+1 is the gross

rate of return on savings for the members of generation t.) The way

these excess demands vary with pt can be represented by an offer

/P41

curve in the Ye~2e41 plane, shown in Figure 1. The offer curve passes
through the origin, and remains always in the first and third

quadrants. (The part of the offer curve with ¥, >0, z 0

ta1 <
corresponds to demands that would only be made if it were possible to
borrow, which has not been allowed for here; but that part of the offer
curve is not used in the constructions below.) The offer curve also
remains above the line 2 = -e2, and to the left of the line yt = -el,

t+1

since no relative price can induce the agents to supply more than their
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endowment in either period. Let us further assume that the offer curve
passes through the origin with a slope less than 45°. This assumption,
which distinguishes Gale's "Samuelson case" from his "classical case",
is necessary and sufficient for the existence of an equilibrium with
positive valued fiat money. As a final assumption, let first and second
period consumption be gross substitutes in the excess demands of all

agents, so that gz is an increasing function, and Yy 1is a

t+1

decreasing function, of Pt/pt+1'

A perfect foresight equilibrium is then a sequence {zt}, for

t =1,2,..., with 2z >0 for all t, such that for each t, ('zt’zt+1)

is a point on the offer curve. In each period, z, = M/pt, so that

t

there is a one-to-one correspondence between sequences of prices and

}. The requirement that gz

L 2 0 1is simply the

sequences {zt
requirement that the value of money be non-negative in all periods; the
second half of the definition simply states that at equilibrium prices,
one will have Yy + zZ, = 0 in each period--total excess demand is
zero. Perfect foresight is assumed, insofar as it is assumed that the
supply decision of the young is made in each period with a correct
understanding of the value of money in the following period.

In a case like that shown in Figure 1, it is apparent that there
are two possible steady state equilibria, i.e., perfect foresight
equilibria in which z¢ is constant for all t. These are the two
intersections of the offer curve with the 45° line. One is at the
origin; in this equilibrium, Ve =2 < 0 in all periods. Money is

never valued, and all agents consume exactly their endowments. In the
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other steady state, Y, =z, = z* > 0 in all periods. This is the
monetary steady state. Samuelson [1958] compared these two steady
states, noting that the non-monetary steady state does not achieve a
Pareto optimal allocation of resources, and is Pareto dominated by the
monetary steady state; from this comparison he concluded that there is
an important function served by valued fiat money in such a model.
Gale's analysis, however, showed that there are many other perfect
foresight equilibria for this economy. One such is illustrated in
Figure 1. Beginning with a positive value for money somewhat less than
obtains in the monetary steady state (zl < z*), it is possible to

construct successive values of 2z so that is always a

t (252047

point on the offer curve. Since it is possible to continue this

construction forever, with zt > 0 in each case, one has found another

perfect foresight equilibrium. In this equilibrium money is valued, but

its value decreases over time, and asymptotically approaches zero

(zt

asymptotically approaching 7%, where 1/(1 + 1*) is the slope of the

+0 as t + =), The rate of price inflation increases over time,

offer curve through the origin. As this asymptotic limit is approached,
the allocation of resources approaches that of the non-monetary steady
state (autarchy). The existence of "hyperinflationary" monetary
equilibria of this kind indicates that inflationary expectations may
have a self-fulfilling character,

The point of interest to us here is that the point z7 chosen in
Figure 1 is arbitrary. For any choice of 2z, between zero and z% a

similar construction is possible; hence to each such choice of 2z,




(alternatively, choice of the initial price level pl) there
corresponds a perfect foresight equilibrium. There is thus an
uncountably infinite set of distinct equilibria. Furthermore, for any
e > 0, there is an uncountably infinite set of equilibria in which
Izt| < ¢ for all +t, i.e., of equilibria which are uniformly close to
the non-monetary steady state. We therefore say that the non-monetary

steady state is an indeterminate equilibrium. The monetary steady

state, on the other hand, is determinate in the terminology of this

paper, because there are no other equilibria arbitrarily close to it, in
1/

the sense that [zt -

There exist topologies under which one could say that there do exist

- z¥| < ¢ for all t, for arbitrarily small .

other equilibria "arbitrarily closeﬁ to the monetary steady state. For
example, if one used the product topology on the set of sequences {zt}
satisfying the bounds 0 < zt < z¥, then any neighborhood of the
monetary steady state contains an uncountable number of other
equilibria. For open sets in the product topology place bounds on only
a finite nunber of the zt's, so that what happens to a sequence
asymptotically does not prevent it from being considered "close" to the
monetary steady state, as long as all the early elements in the sequence
are close to z¥%,

There are, however, advantages to the terminology used here. For
one thing, it makes the determinacy or indeterminacy of a given
equilibrium a local property of the perfect foresight dynamics near that

equilibrium. One needs only to check whether other perfect foresight

trajectories which start near the equilibrium converge to it
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asymptotically, or diverge from it, to settle whether or not it is
determinate in the proposed sense. This will allow purely local methods
to be used in determining general conditions for determinacy of steady
states in Section II. OFf course, the multiplicity of perfect foresight
equilibria possessed by a given model is not changed by any such choice
of definition. However, when it is possible to demonstrate the
existence of indeterminacy in the sense proposed here, one has surely
discovered a multiplicity of a very disturbing sort; the possible
existence of even larger miltiplicities neglected in our consideration
of indeterminacy in the sensed proposed here would only mean that the
problem is worseﬁg/ Furthermore, there is something of particular
interest about the type of indeterminacy which involves a continuum of
equilibria all converging asymptotically to the same steady state. It
will be suggested in Section IV that it is in exactly these cases that
stationary "sunspot equilibria" exist near the steady state. Such
mltiplicities of stationary equilibria are arguably of more interest
than non-stationary equilibria of the sort displayed above, on the
ground that perfect foresight or rational expectations may only be
plausibly assumed in a stationary equilibrium.

The large multiplicity of equilibria in this example has been
known for some time. However, many have noticed that the indeterminacy
of equilibrium in this example is closeiy related to certain very
special, and rather unsatisfactory, aspects of the model. For example,
the "hyperinflationary" equilibria exist because the econony in question

possesses pure fiat money, which is valued only as an asset. Plainly, a
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family of equilibria of this sort would not exist in a dynamic model
without fiat money, or in a model in which money is needed for other
reasons. Thus Brock and Scheinkman [1980] propose that indeterminacy
will not exist if money must be held to pay taxes, or if it is required
by a transactions technology.

Similarly, the "hyperinflationary" equilibria are all character-
ized by a fall in the real rate of return to some negative level (how
far negative depends upon the slope of the offer curve through the
origin in Figure 1). It is therefore evident that if g storage
technology existed (for each unit of consumption good stored, one has
8 units the following period, where 1/(1 + 1*) < s < 1), or some other
production technology that would place a sufficiently high lower bound
on the equilibrium real rate of return, equilibria tending to autarchy
would not exist. (However, there can still exist a continuum of
equilibria in the case of a storage technology. Total saving is
constant over time in these equilibria, but the share of saving which
consists of money balances decreases over time, approaching zero
asymptotically, while the share of saving which consists of storage
increases to compensate for the decline in the value of money.) This
has led some to suppose that indeterminacy of equilibrium is not
possible in production economies or in the presence of durable goods.

It is also evident that the indeterminacy of the non-monetary
steady state in this example depends upon the Pareto inefficiency of
that steady state (and likewise of the "hyperinflationary" equilibria

converging to it). If one assumes that the offer curve passes through
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the origin with a slope greater than 45° (Gale's "classical case"), the
non-monetary steady state becomes Pareto optimal--and it ceases to be
indeterminate. ©Some have therefore concluded that the problem of
indeterminacy is intimately bound up with the other well-known pathology
of overlapping generations economies, the failure of the first welfare
theorem. Since it is known that the inefficient equilibria can be ruled
out by various modifications of the overlapping generations model, such
as adding even a small amount of non-depreciating "land" or even a very
small number of infinite-horizon maximizersé/, which modifications
arguably make the model more realistic, it might be supposed that these
modifications would also rule out indeterminacy of equilibrium.

These are good reasons not to be very interested in the
"hyperinflationary" equilibria in Example 1, and other reasons will be
offered below. But none of these arguments suffice to dispose of the
problem of indeterminate equilibria. In fact, equilibrium may be
indeterminate in models without fiat money; monetary equilibrium may be
indeterminate even when real balances remain bounded away from zero;
equilibrium may be indeterminate in models with production or with
storage; and equilibrium may be indeterminate in models with land or
infinite lived agents. All of these propositions will be established by

the examples to follow.

Example 2: This exampie was first discussed by Cass, Okuno, and
Zilcha [1979]; the equilibria of this model are discussed in great
detail in Grandmont [1983b]. The economy is identical to that of

Example 1, except that the assumption of gross substitutes is dropped.
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If one continues to assume that both first and second period consumption
are normal goods and that all agents have identical preferences, then
Zi 41 must be an increasing function of Py

but y; need not be a monotonically decreasing function in that

/pt+1 in the first quadrant,
quadrant. Hence one may have a backward-bending offer curve of the sort
shown in Figure 2. Let us assume further that the offer curve is so
sharply backward-bending that at the point where it crosses the 45° line
(the monetary steady state), its slope is between zero and minus one.

Perfect foresight equilibria are defined as before. As shown in
Figure 2, if the offer curve bends back sharply enough, the monetary
steady state is indeterminate. That is, there will exist an entire
interval of values for 29 (including the monetary steady state value,
z*) vwhich may be continued into perfect foresight equilibria that
converge to z* in the long run.

This example answers some of the objections to Example 1. For
example, the indeterminacy of monetary equilibrium has nothing to do
with money losing its wvalue asymptotically; in all of these equilibria,
real balances remain bounded away from zero. Hence the Brock-Scheinkman
suggestion, that a certain amount of real balances be required each
period for payment of.taxes (which are then given back as transfers),
would not rule out the indeterminacy in this case. Nor would the
existence of storage, or some other arbitrage possibility placing a
lower bound on the real rate of return, rule ocut the existence of a
continuum of equilibria converging to the monetary steady state, as long

as that lower bound satisfies s < 1. And the set of equilibria
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converging to the monetary steady state are all Pareto optimal, as is
the steady state itself. Hence this example shows that there is no
general connection bétween indeterminacy and inefficiency. (It will
also be seen that Pareto optimal non-monetary equilibria can be
indeterminate. See Example 7 in Section II.) This should suggest that
the sorts of modifications which suffice to rule out inefficient
competitive equilibria will not rule out indeterminacy. The next pair

of examples shows that this is the case,

Example 3: Let us suppose that in a stationary overlapping
generations exchange econonmy of the sort considered in Example 1 there
exists a certain amount of "land". By "land" we mean an asset that
yields a constant stream of the consumption good, forever,E/ Let us
suppose that this asset is initially owned by the members of generation
zero, and let a > 0 be the yield of the land each periocd. The members
of generation zero consume the yield of the land in period one, and then
sell the land to the young members of generation one for part of their
first period endowment. The members of generation one hold the land as
a means of saving; they consume the yield in period two, then sell the
land to the young members of generation two. Thus the land passes from
each generation to the next, exactly as did the fiat money in Examples 1
and 2. There is assumed to be no fiat money in this economy. 1In fact,
if the members of generation zero also held a stock of fiat money, there
would exist no perfect foresight equilibria in which the money was
valued .2/

A perfect foresight equilibrium for this economy is a sequence
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{Zt} of excess demands by the old in each period, satisfying z, >a

for all t, and such that for each t, (a - ) is a point on the

Ze 22641

offer curve. This is because the goods market equilibrium condition in

period t is Yy + Z,

the land at the end of the period, so the requirement z, >a is Just a

requirement that the land always trade at a non-negative price. Hence

= a, In each period, Yy will be the value of

the equilibria of this economy can be constructed using the offer curve
diagram as above, only the 45° line mst be replaced by a vertical
translation (of distance a) of the 45° line, as shown in Figure 3.
Steady state equilibria of this economy will be points of
intersection of the offer curve and the translated 45° line, with
2 > a, In Figure 3, there is only one such intersection, the point
labeled z¥*., It is also easily verified that this steady state is the
only equilibrium. If one were to start with a value Z, < z¥, as was

possible in Example 1, one finds that the sequence {zt} necessary for

(a - 2 ) to be always a point on the offer curve leads in a

t? Zg41
finite number of steps to a value of Zy less than a, as shown in
Figure 3.

Thus if one perturbs the economy in Example 1 by adding even a
tiny amount of land, the entire uncountably infinite set of inefficient
equilibria disappear, while there continues to be an equilibrium alloca-
tion close to the monetary steady state of Example 1. (In the new
steady state, the title to land plays the role of fiat money in Example

1.) This result gives one a reason to consider the "hyperinflationary”

equilibria in Example 1 not to be a robust property of the model.
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Indeed, none of the inefficient equilibria of stationary overlapping
generations models are robust, under this criterion.fy However, the
next example shows that indeterminacy is still possible in the presence

of land.

Example 4: In this example, there exists "land" yielding a
units of the consumption good each period, as in Example 3, but agents'
preferences are as in Example 2. Perfect foresight equilibrium is
defined as in Example 3. As shown in Figure L4, there will in this case
exist an uncountably infinite set of perfect foresight equilibria, all
converging asymptotically to the unique steady state. Hence
indeterminacy is possible even when land exists. This example also
shows that indeterminacy is possible in a non-monetary economy.
(However, this result may still suggest that indeterminacy is intrinsi-
cally related to the problem of pricing a non-depreciating asset. For a
demonstration that indeterminacy is possible in a non-monetary economy
when all goods are perishable, see Example T in Section II.)

This result should lead the reader to suspect that the mere
presence of a small number of infinite lived agents need not rule out
indeterminacy either. For Example 4 may be interpreted as an economy in
which there exists an infinite lived agent. Suppose that instead of
there existing "land" initially in the possession of generation zero,
there exists an infinite lived agent with an endowment of a each
period. Suppose further that the preferences of the infinite lived
agent are such that he desires consumption only in period one. Then the

infinite lived consumer will consume his endowment in period one, and
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sell the rights to his entire future endowment stream to the young of
generation one. These agents consume the infinite lived agent's
endowment in period two, and sell the residual rights to the young of
generation two. Thus the rights to the endowment stream of the infinite
lived agent are traded in exactly the same manner as the land in the
above interpretation. The definition of perfect foresight equilibrium
will be the same, except that now 27 will represent, not the excess
demand of the members of generation zero, but instead the period one
consumption of the infinite lived agent. And thus, as shown in Figure
L, perfect foresight equilibrium is indeterminate.

Note that the addition of an infinite lived agent, even with a
very small endowment, has a far from trivial effect on the set of
equilibria. All inefficient equilibria are ruled out (assuming that the
endowment of the infinite lived aéent is stationary), for the real rate
of return cannot be persistently non-positive in the long run if the
budget set of the infinite lived agent is to be defined. But this does
not affect the possibility of indeterminacy. Once this is seen, it
should be evident that even if the infinite lived agent desires consump~
tion in all periods, as long as he discounts future consumption at a
sufficiently high rate the perfect fbresight dynamics will be close to
those of Example 4, and hence equilibrium will be indeterminate. (For a
demonstration that indeterminacy is possible even when the rate of time
preference of the infinite lived agent is very low, and when the
consumption of the infinite lived agent in equilibrium remains bounded

away from zero forever, see Example 8 in Section II.)
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Example 5: This example is due to Sargent [1984].1/ Suppose that
agents, commodities, preferences and endowments are as in Example 1.
Suppose that in addition there exists a government that is able to
finance its expenditures (within limits) by printing new fiat money.
Suppose that the government's policy is to consume a quantity g > 0
each period of the consumption good; the amount of new fiat money issued
is whatever amount is necessary to purchase this quantity of consumption
in each period.

This economy is very similar to that considered in Example 3. For
Example 3 may be reinterpreted in the following manner. Instead of the
land being owned at all times by a finite lived agent, and held at the
beginning of period one by the members of generation zero, let the land
be owned for all time by the government, and let the members of
generation zero hold a quantity M of fiat money at the beginning of
period one. Let the government's policy be to sell the yield of the
land each period for money, which it then retires from circulation. The
equilibrium allocation is then exactly as in Example 3, with the fiat
money functioning in the same way as the title to land, since in the
present interpretation a given fraction of the existing fiat money gives
one a claim to that fraction of the current and future yield of the
government land.

This reinterpretation has the advantage that one immediately sees
that a constant rate of government consumption financed by new money
creation is like Example 3 with a negative quantity of land. Thus a

perfect foresight equilibrium is a sequence {Zt} with z, > 0 for
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all t, such that for each t, (-g - 2 ) is a point on the offer

t° Zt+1
curve. The equilibria can be examined by means of the same diagram as
before, but now the 45° line must be translated downward by a distance
g, as shown in Figure 5,

Steady states are intersections of the offer curve with this
translated 45° line, with z > 0. For a sufficiently sﬁall level of g,
there will be two steady states, labeled z* and 2z%* ip Figure 5.
These correspond to the two rates of money creation that yield the same
level of government revenue, a situation familiar from the literature on
seignorage revenue. (See, e.g., Bailey [1956], Calvo and Peel [1983].)
The steady state with the lower level of real balances (z%*%)
corresponds to the higher rate of money growth and hence of inflation.
There also exist an uncountably infinite set of non-stationary perfect
foresight equilibria of this economy. For any z1 between z** and
z¥*, it is possible to construct an equilibrium, as shown in Figure 5.
Note that for all z1 < z¥%, zt must asymptotically approach z*¥*, Thus
the higher-inflation steady state is indeterminate.S8/

This example shows that it is not necessary that income effects be
very strong compared to substitution effects, as in Example 2, in order
for an indeterminate monetary equilibrium to occurng The conditions on
preferences necessary for the indeterminacy to occur in this example are
quite weak--if any monetary equilibrium is possible, then for suffi-

ciently small g > O there must exist an indeterminate monetary steady

state.




offer

~23-

Figure 5




2

Example 6: This example is a variant of one presented by
Geanakoplos and Polemarchakis [1983]. Thus far we have not considered
any economies with production. It might be wondered in particular if
the possibility of capital accumulation restricts the possible perfect
foresight dynamics in some way that could guarantee determinacy.
Furthermore, in all the examples of indeterminacy presented thus far,
agents have had to price some nondepreciating asset (money or land).
The present example shows that indeterminacy is also possible when the
only asset consists of capital goods that are used up entirely in the
following period's production.

Because a non-trivial model with production must involve more than
one good per period, the simple diagrams used thus far cannot be
extended to this case. Hence very special functional forms are chosen
for the utility function and production function, which allow the
complete set of perfect foresight equilibria to be solved explicitly.
It might be wondered, then, if the results for this example do not
represent merely a degenerate case. The considerations advanced in
Section II, however, show that similar results would be obtained for any
other smooth functions close to these ones, at least as far as the
question of local indeterminacy is concerned.

Suppose that agents live two periods, work in the first period of
life, and consume in the second. Let the utility of a member of

generation t Dbe

1-y
t+1

R
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where ng is his labor supply, Ct41 his consumption, and y > 0. The
single consumption good is produced using a Cobb-Douglas production

technology

_.La l-g
Yy = kg ong

where k. is the capital stock in period t and 0 < q < 1. Capital
goods are produced from consumption goods set aside as investment the
period before; one unit of consumption good foregone in period t
produces one unit of capital for use in production in period t+1.
There is no fiat money;lgf investment in the production of capital is
the only means agents have of saving.

It follows from the Cobb-Douglas technology that the competitive
rewards to factors in each period will be in the proportions

- [s 3
Reke = 15 "l

where Rt is the rental rate on capital and V. 1is the wage, both in
units of the consumption good. Furthermore, in each period the entire

wage bill will be spent on investment, so that

Kpal = %7y
It follows then that
=1 -a
(1.1) kool = T Rekg

Since each generation's consumption is always given by
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the first order condition for optimal labor supply is

I-y _ v, v-1
(1.2) Rt+1 = n;v,
=xY w1
ke 1¥y

The factor-price frontier for the Cobb-Douglas technology is

a
1-
% = (- o))

Substituting this and (1.1) into (1.2) yields

R Iga
1- -1,"%
(1.3) Rt_._]Y. = (1 - q)Y (a—) th

A perfect foresight equilibrium is then a sequence {kt’Rt}’ for
t =1,2,¢.., with kt > 0 and Rt >0 for all t, with kl given as
an initial condition, and such that (1.1) and (1.3) hold for all +t.
The above derivation shows that these conditions are necessary for a
competitive equilibrium. It is easily seen that they are sufficient as
well, since from any {kt,Rt} sequences it is possible to construct
unique values for n_, Vis yt,ct consistent with equilibrium and then
to verify that all markets are indeed in equilibrium.

The unique steady state for this economy is given by

R* =

<[
<|1

a
1 G

k* = (1 - a)
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It is an equilibrium, of course, only if the initial capital stock is
consistent with it; i.e., only if kl = k¥, Let us suppose that this is
the case. Is the steady state the only equilibrium? No. 1In fact, it
is clear that for any value of R1 > 0 that one might choose, one can
use (1.1) and (1.3) to calculate k2 and R2, and they will satisfy
k2 > 0, R2 > 0. Hence the process may be repeated indefinitely, and
thus there corresponds a distinct prerfect foresight equilibrium to each
possible value Rl > 0. And this is not only true when kl = k¥, For
any kl > 0, there is a distinct equilibrium corresponding to each
possible Rl > 0. Hence there always exists an uncountably infinite set
of equilibria.

If, however, these equilibria all diverge from one another, none
of them are indeterminate in the sense defined above. In order to

determine the asymptotic behavior of the equilibria, a coordinate

transformation is useful. Let

" - - *
kt log kt log k

R

log Rt - log R¥

Then (1.1) and (1.3) become

12t.+1 1 1 K,
(1.4) =

Re

Y Y a 1 R
+1 T-y T-x*'T-oT-% R

The asymptotic behavior of the equilibria obviously depends upon the

eigenvalues of the matrix in (1.4). One eigenvalue is always between
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zero and one. For 0 < y < 1, the other eigenvalue is greater than 1;
for 1 < y< 2/(1 - @), it is less than -1; and for vy > 2/{1 - q), it
is between zero and -1. (Singular cases will not be discussed. )

Hence, when vy > 2/(1 - a), the steady state is indeterminate, in the

sense defined above. When 1y < 2/(1 - o), the steady state is exactly
determinate, in the sense that for any given initial capital stock

kl’ there is a unique initial rental Ry consistent with a perfect
foresight equilibrium that converges asymptotically to the steady
state. This steady state thus possesses the "saddle point" property
often discussed in the rational expectations macroeconomics literature.
Note, however, that this unique initiai rental Ry is not demanded by
the assumption of perfect foresight equilibrium. There is still a
perfect foresight equilibrium for each possible initial rental rate

Rl >0, even when y < 2/(1 - 4). It is true that the divergent
equilibrium paths eventually involve extreme behavior--arbitrarily large
values of labor supply per capita, for example--but they are perfect
foresight equilibria nonetheless.

This example illustrates several points. It shows that indetermi-
nacy is possible in a production economy. It shows that determinacy has
no necessary connection with efficiency. For the steady state of the
economy is Pareto optimal if and only if o > 1/2 (i.e., R* » 1), while
it is determinate if and only if y < 2/(1 - a). Thus one can have a
Pareto optimal steady state that is indeterminate, or an inefficient
steady state that is determinate, or any of the other combinations of

these attributes. Finally, it shows that indeterminate steady states,
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such as mainly have been discussed thus far and will be our exclusive
concern in the following section, are not the only kind of large
mltiplicities of perfect foresight equilibria that my occur. Even
when none of the steady states of a given economy are indeterminate,
there may exist an uncountaﬁle infinity of perfect foresight equilibria,
which may well be considered a problem for equilibrium analysis.
However, the difficulties posed by an indeterminate steady state aré of
particular importance; it is shown in Section IV, for the example Jjust
discussed, that stationary "sunspot equilibria" exist exactly in the

case that vy > 2/(1 - q).

II. Indeterminacy of Perfect Foresight Equilibrium: General Results

Let us now consider the problem of indeterminate perfect foresight
equilibrium more generally. It is worth recalling first why competitive
equilibrium is generically locally unique, in a Walrasian model with a
finite number of agents and commodities, and smooth excess demand
functions. In such a model, a competitive equilibrium is a price vector
p* satisfying Z(p*) = 0, where Z(p) is the vector of excess demand
functions. (For the sake of simplicity, we consider a pure exchange
economy.) If there are n commodities, then there are n -1
independent equilibrium conditions (one is implied by the others,
because of Walras' Law), for n - 1 relative prices (scalar mltipli-
cation of an equilibrium price vector gives one ancther equilibrium
price vector, because of the homogeneity of the excess demand

functions). If the regularity condition
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(2.1) Det [Dz(p*)] 2 0

is satisfied, then there exists an open neighborhood of p* in which no
other equilibria exist, by the inverse function theorem. Intuitively,
if one were to consider a small perturbation of one of the n - 1
relative prices, there would then be n - 1 independent equations for
the necessary perturbations of the remaining n - 2 relative prices,
which, for a small enough perturbation, certainly cannot all be
satisfied. An economy such that (2.1) holds for all equilibria is
called a "regular economy"; the property is known to be generic in the
class of smooth excess demand functions.

The above argument plainly depends upon the existence of a finite
number of commodites. (One cannot say that n - 1 equations is in
general too many to be satisfied by n - 2 relative prices, unless n
is finite.) However, a similar argument can be made, eveﬁ with an
infinite number of commodities, in the case that there are only a finite
number of agents. As long as there are only a finite number of agents,
the familiar proof of the first welfare theorem (involving addition of
the budget constraints of the agents) is still possible. Then all
competitive equilibria belong to the set of Pareto optimal allocations,
which set can be parameterized by the H - 1 relative weights on the
various agents' utility functions in the social welfare function
(wvhere H is the number of agents). The conditions for a compet itive
equilibrium can then be written as a set of H - 1 independent
equations for the H - 1 relative weights, and the inverse function

theorem can again be used to guarantee local uniqueness. (See Kehoe and
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Levine [1982] for this argument in more detail.)

If, however, there is both an infinite number of commodities, and
an infinite number of agents, as in any economy with an overlapping
generations structure, no argument of this sort is possible. Instead

one has the situation detailed in the following section.

1. The general n-good stationary exchange economy

The treatment to follow is based upon the work of Kehoe and
Levine [1982, 1983a, 1983b]. Consider an overlapping generations
exchange economy with n goods per period, and in which all agents live
for two consecutive periods. (The assumption of two period lives is not
restrictive, as long as the number of goods per period is arbitrary, for
the reasons discussed by Balasko, Cass and Shell [1980].) Let the
economy be stationary, in the sense that the same distribution of
preferences and endowments is repeated in each generation. Let
generation t, which trades and consumes in periods t and t+1, have

an aggregate excess demand vector y(pt ) for the n goods in

Pra1
period t, and an aggregate excess demand vector z(pt,pt+l) for the
n goods in period t+1, where Py 1is the vector of consumption goods
prices in period t. The excess demand functions are assumed to be

smooth, homogeneous of degree zero in (pt’pt+1)’ and to satisfy Walras'

Law:
' ' =
Py (pysPy ) + P 2(psp ) 20

Certain boundary conditions are also assumed, which have no bearing upon

the analysis of determinacy with which we are here concerned, These
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functions describe the consumption choices of generations t = 1,2,000
The members of generation zero consume only in period one, and have an
aggregate excess demand vector zo(pl) for the n goods in period

one. In the case of a non-monetary economy, the excess demands of
generation zero satisfy pizo(pl) 2 0; but in the case of a monetary
economy, the identity is instead PiZO(Pl) = M, where M is the total
nominal money stock in the hands of the members of generation zero at

the beginning of period one. A perfect foresight equilibrium is then a

sequence {pt} of non-negative prices, for ¢t 1,2,..., that satisfies

the sequence of market clearing conditions

(2.2.1) zo(pl) + y(pl,pe) =0
(2.2.2) z(pl,pz) + y(pg,p3) =0
(2.2.t) z(p, ;.2 ) + ¥(p, Py ) =0

It is evident that in the case of a sequence of equilibrium
conditions like this, equilibrium need not be locally unique. Suppose
that {pg} is an equilibriﬁm. The question is whether, for b, # pI
sufficiently close to pf, there can exist a sequence of prices,
beginning with Py and remaining always close to the {pg} sequence,
that is also an equilibrium. Simply counting equations and unknowns

does not indicate impossibility. Equations (2.2.1) give n conditions
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which should determine the prices Po consistent with P;, equations
(2.2.2) then give n conditions which should determine the prices P3
consistent with Py and Pp, and so on. Whether prices P, are
consistent with perfect foresight equilibrium depends upon whether or
not the infinite sequence of equilibrium conditions can be solved in
this manner. Examples 1 and 2 of Section I show that in some cases it
is possible,

As noted in Section I, we are especially interested in the
determinacy of perfect foresight equilibrium near a steady state
equilibrium. A steady state is an equilibrium of the form Py = Bt'lp,
where p is some positive vector and B >0 1is a scalar factor by
which prices are inflated or deflated as time progresses. The
Possibility of a scalar factor B #1 1is allowed because of the
homogeneity of the excess demand functions; even when B #1, the
allocation of resources will be the same in all periods. Thus a steady

state is a pair (p,B) which satisfy
(2.3) z(p,8p) + y(p,pp) = 0

It follows immediately from Walras's Law that any steady state will

satisfy
(1 - g)p'z(p,gp) = 0

Therefore either g = 1, or p'z(p,Bp) = 0, or both. It can be shown
that, for a generic smooth economy, both equalities do not hold for any

one steady state. (See Kehoe and Levine [1983b].) Hence we can treat
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separately steady states of two sorts: those in which g =1, and
p'z(p,Bp) # 0, and those in which g #1, and p'z(p,pp) = 0. Now
p'z(p,8p) = -p'y(p,8p) is just aggregate saving in each period in the
steady state; it is clear that in a monetary equilibrium, péz(pt_l,pt) =M
in each period, while in a non-monetary equilibrium, PéZ(pt-l’Pt) =0

in each period. So the former steady states are monetary steady states,

while the latter are non-monetary steady states. Only a steady state

with p'z(p,Bp) > O represents a steady state with valued fiat money,
of course; but economic interpretations might be given for solutions to
(2.3) with p'z(p,sp) < 0 as well (an infinite lived intermediary
exists that allows net borrowing each period, of a constant nominal
magnitude). Kehoe and Levine [1983b] prove that at least one monetary
and at least one non-monetary steady state exist under standard
assumptions on preferences; the monetary steady state may, however, be
one with p'z(p,gp) < O.

Suppose that (p,B) satisfies (2.3), and the initial conditions
are consistent with this equilibrium, i.e., zo(p) = z(p,Bgp). Then
P, = ét'lp, for t =1,2,..., is one perfect foresight equilibrium. We
wish to know whether, for an arbitrarily small neighborhood N of Py

there exist any other equilibria {pt} such that Bl‘tpt € N for all

t. Assuming that
(2.4) Det D y(p,gp)] #0

where D2y is the matrix of derivatives of y(pl,pz) with respect to

Pys then the implicit function theorem guarantees, for each p,
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sufficiently close to p, the existence of a unique Po such that

B'lp2 is near p and (2.2.1) is satisfied. The same regularity
condition (2.4) suffices for application of the implicit function
theorem again, to show the existence of a unique Py = 32¢(B'1p2,p1)
such that for every (3'1p2,p1) sufficiently close to (p,p), ¢ 1is
close to p and (2.2.2) is satisfied. Repeated application of the
implicit function theorem in this manner will allow the construction of
an entire sequence of equilibrium prices, beginning with any P; suffi-
ciently close to p,.iz_(2.h) holds, and the map ¢ has the property
that at each stage in the construction, B_tpt+l = ¢(31'tpt,32'tpt_l)

is sufficiently close to p for (B‘tpt+l,31'tpt) to be within the
domain of the map ¢ (and the neighborhood N x N) as well. In other

words, if the sequence {sl‘t

pt} constructed does not diverge from p,
it is possible to continue the construction using the map ¢, and a
perfect foresight equilibrium exists corresponding to every vector P
sufficiently close to p. (Even if all pl # p resulted in sequences
that diverge from p, it might nonetheless be possible to continue the
construction of a perfect foresight equilibrium, as in Example 6 for the
case v < 2/(1 - q). But as noted before, we are principally interested
in perfect foresight equilibria that remain uniformly close to the
steady state.)

Kehoe and Levine [1983b] show that the regularity condition (2.4)
holds for generic smooth economies; hence the only question is whether
the map ¢ results in the construction of convergent or divergent

sequences {sl_tpt}. The answer to this depends upon the eigenvalues of
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the matrixlg/

Di¢ Do
G =
1 0
-1, -1 -1, -
=Dy "(B "Dyy + Dyz) -Dy 1(s 1Dlz)
I 0

which is just the derivative of the map which gives (3'2p3,3'1p2) as a

function of (3'1p2,p1). Here D,z, D,z represent the derivatives of

2
Z(Pl’PQ) with respect to Pys Py respectively, and likewise for the
derivatives of y(pl,pz); all derivatives are evaluated at (p,gp). It
follows from the stable manifold theorem for diffeomorphisms (Irwin
[1980], Theorem 6.17) that if G has n° eigenvalues inside the unit
circle, there is an n°-dimensional local stable manifold. This is a
set of values of (3'1p2,p1), including (p,p), such that repeated
application of the mp ¢ to one of these initial values results in a
sequence of prices such that (B‘tpt+l,gl'tpt) belongs to the stable
manifold for all t, and converges to (p,p) asymptotically. If

n® = 2n, the stable manifold must include a neighborhood of (p,p), so
that this is a sufficient condition for the construction described above
to work for all (B-po’Pl) sufficiently close to (p,p), and hence for

all Py sufficiently close to p. In such a case, we say that the

dimension of indeterminacy is n. The set of p; values near p

consistent with perfect foresight equilibrium converging asymptotically

to the steady state has the structure of a local n-dimensional manifold;
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i.e., there are n independent possible directions of variation of Py,
all consistent with extension to a convergent perfect foresight
equilibrium. However, even if n° < 2n, the steady state may be
indeterminate, For‘it my be possible to continue the construction
indefinitely for Some p1 # P arbitrarily close to p, though not for
all p; arbitrarily close to p. All initial values (s"lpe,pl) that
belong to the stable manifold and are consistent with the initial
conditions (2.2.1) correspond to convergent equilibria. The set of such
initial values will thus be the intersection of the stable manifold with
the manifold defined by (2.2.1), and will be itself a manifold; the
dimension of this manifold we call the dimension of indeterminacy. We
turn now to the question of the constraints placed by economic theofy on
the dimension of the stable manifold.

The homogeneity degree zero of the demand functions implies that

¢ 1is homogeneous degree one. Therefore

b P

p P

and one eigenvalue of G must be exactly one. Kehoe and Levine prove
that, generically, no other eigenvalues have modulus exactly equal to
one. Thus G has n® stable eigenvalues, one eigenvalue exactly equal
to one, and 2n - n° - 1 unstable eigenvalues. The homogeneity of

(2.2.t) implies that for any (3'1p2,pl) belonging to the stable

manifold, (as'lpz,qpl) will represent initial values which, under
repeated application of the map $, extend to a perfect foresight

equilibrium converging to (ap,ap), for any positive scalar . There
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is therefore an ns

+ 1 dimensional local manifold of initial values
(ﬂ-lpe,pl) which do not diverge from (p,p); all initial values near
(p,p) not on this manifold diverge from (p,p) eventually. Note also
that (ap,qp), for some positive scalar g, represents the same steady
state allocation as (p,p). It represents simply an alternative
normalization of prices in the case of a non-monetary steady state, or a
different nominal money stock in the case of a monetary steady state.
Another property of the map ¢ 1is that along all perfect

foresight equilibrium paths, pé +1z(pt ) 1is the same in all periods;

Prl

it is equal to the nominal money stock, as noted previously. This

implies the existence of a left eigenvector for G: f'G = (1/3)1",

where f' is the derivative of the functional F(B'tpt +1,31"tpt)
B-tpt!.HZ(Pt ,pt+l). Hence one eigenvalue of G is always 1/g. Kehoe
and Levine show that this proposition, and the existence of an
eigenvalue equal to one, exhaust the restrictions on the eigenvalues
of G that follow from the assumption that the excess demands derive
from utility maximization. (The proof relies upon the Sonnenschein-
Debreu-Mantel result that essentially any smooth function satisfying
Walras' Law and the homogeneity requirement can be derived as an excess
demand function for some finite set of agents with well-behaved
preferences.) Hence the only propositions about the eigenvalues of G
that hold generally are:

- In the case of a non-monetary steady state, one eigenvalue is 1

and another is 1/g.
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- In the case of a Pareto optimal non-monetary steady state (i.e.,
13/ .
one with g< 1) , 0<n® ¢<2n -~ 2.
- In the case of an inefficient non-monetary steady state
(g>1), 1 <n° <2n - 1.
- In the case of a monetary steady state, one eigenvalue is 1, so

that 0 < n®

< 2n -1,

Kehoe and Levine [1983b] show that open sets of smooth economies exist
for which n® takes any of the values consistent with the above
inequalities.,

It must next be determined how many of the initial values
belonging to the non-divergent manifold are consistent with the period
one equilibrium conditions (2.2.1). Consider first the case of a
monetary steady state. All initial values consistent with (2.2.1) must
be such that F(s-lpe,pl) = B'lM; other initial values would correspond
to nominal money stocks other than the quantity M in existence at the
beginning of period one. Thus all initial values consistent with
(2.2.1) must correspond to price sequences that converge to (p,p),
rather than to (ap,op) for some o # 1; therefore they must belong to
the n®-dimensional stable manifold. Equation (2.2.1) places n - 1
additional restrictions upon the initial values, besides the one stated
above, which hold for all points of the stable manifold. Since there
need be, in general, no relations of dependence between these initial
conditions and the equations that define the stable manifold, the
dimension of the local manifold of initial wvalues corresponding to

: s
perfect foresight equilibria will be max(O,ns-n+1). Since n- can
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vtake any value in the range 0 < n° < 2n - 1, the dimension of
indeterminacy can be as large as n. If nS = n - 1, the steady state
is exactly determinate. This means not only that perfect foresight
equilibrium is locally unique, for the initial conditions consistent
with the steady state equilibrium, but that a unique equilibrium
converging to the steady state will continue to exist under perturba-
tions of the initial conditions. (An instance of exact determinacy is
Example 6 in the case that y<2/(1- a); for each value of ky, not
Just kl = k¥, there exists a unique equilibrium converging to the
steady state.) If n® < n - 1, the steady state is unstable, in the
sense that for almost all small perturbations of the initial conditions
there ceases to exist any eqﬁilibrium converging to the steady state.

Consider next the case of a Pareto optimal (g < 1) non-monetary
steady state. In this case (2.2.1) is homogeneous degree zero in
(3'lp2,pl), as are the conditions defining the non-divergent manifold.
Thus for every (B_lpz,pl) that corresponds to an equilibrium
converging to (p,p), (as-lpz,qpl) will correspond to an equilibrium
converging to (ap,ap), for any a > 0. These will be the same
equilibria in all respects except the normalization of prices.
Therefore we may choose, as a price level normalization, to consider
only perfect foresight equilibria converging to (p,p). Then we again
restrict our attention to the nS-dimensional stable manifold, One of
the n restrictions implied by (2.2.1) is that F(B'lpz,pl) = 0.

However, this condition holds for all points of the stable manifold.

This is because the tangent space of the stable manifold at the steady
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state is a linear space spanned by a set of right eigenvectors v such
that f'v = 0, (Note that f'v=0 for all right eigenvectors except
the eigenvector whose eigenvalue is lls.ékj The latter eigenvector is
not part of the subspace in question, because 1/g > 1.) 1In addition to
this, (2.2.1) implies n - 1 further restrictions, which will in
general be independent of the conditions that define the stable
manifold. Again the dimension of indeterminacy (neglecting price level
renormalizations) is max(0,n%-n+1). But since in this case n® only
takes values in the range 0 < n° < 2n - 2, the maximum possible
dimension of indeterminacy is n - 1. Note that this implies that a
Pareto optimal non-monetary steady state cannot be indeterminate, in the
case of a one~-good model.

Consider finally the case of an inefficient (g > 1) non-monetary
steady state. As above, one may restrict one's attention to the
n®-dimensional stable manifold, and equation (2.2.1) constitutes n - 1
additional restrictions, besides the requirement that F(s‘lpz,pl) = 0.
But in this case one of the stable eigenvalues of G is 1/8. The
ns—dimensional tangent space to the stable menifold at the steady state
can be decomposed into an n° - 1 dimensional subspace, spanned by the
n® -1 stable right eigenvectors of G other than the eigenvector
corresponding to the eigenvalue 1/8, and a one-dimensional subspace
spanned by the right eigenvector whose eigenvalue is 1/g. Let V be
the invariant submanifold (under the map ¢) whose tangent space of the
steady state is the n° -~ 1 dimensional subspace just defined. Then

the only points in the stable manifold consistent with (2.2.1) will have
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to be points of the submanifold V, since (2.2.1) implies F(B'lpa,pl) = 0;
other points of the stable manifold, with F(B-1p2’pl) # 0, imply the
existence of valued fiat money. Equation (2.2.1) places n - 1 further
restrictions upon the points of V, so that the dimension of inaetermi-
nacy of non-monetary equilibrium is in this case max(0,n%-n). Since
n® may take any value in the range 1 < n° < 2n - 1, the dimension of
indeterminacy of non-monetary equilibrium can be as large as n - 1,

The above considerations assume that in the case of a non-monetary
steady state, the initial conditions (2.2.1) involve excess demands
zo(pl) satisfying Pizo(pl) =z 0, i.e., there is no valued fiat money.
But one might also consider initial conditions in which pizo(pl) =M>0.
That is, one might assume that the members of generation zero start out
with a positive quantity of fiat money, and ask if there exist
equilibria which nonetheless approach the non-monetary steady state as
the money loses its value. Example 1 of the previous section shows that
this is possible. It is clear, however, that this could only happen in
the case of an inefficient (g > 1) non-monetary steady state. This is

because pé*_lz(pt ) remains constant over time, so that

Pra1
F(Bitpt+1,sl°tpt) must explode at a rate 1/g8 > 1 1in a steady state
vith §< 1. But if §> 1 in the steady state, F(g™'p , 8" 'p,)
must shrink at a rate 1/8 < 1, so that it is possible for F to
approach zero as the equilibrium approaches the steady state, even
though stF =M>0 for all time. If we assume initial conditions of

this sort, then the equilibrium conditions are no longer homogeneous in

prices, so that we must consider the entire non-divergent manifold
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rather than simply the stable manifold. Equation (2.2.1) then
constitutes n restrictions, so that one obtains in this case g
dimension of indeterminacy of max(0,n°-n+1), of which one dimension (if
one or more exist) will correspond to monetary equilibria that converge
asymptotically to the non-monetary steady state.
To summarize, Kehoe and Levine show that in the case of a
stationary exchange economy with n goods per period:
- & mnifold of dimension up to n of monetary equilibria may
converge to a monetary steady state;
- a manifold of dimension up to n -1 of non-monetary equilibria
may converge to a Pareto optimal non-monetary steady state;
- a manifold of dimension up to n of equilibria may converge to
an inefficient non-monetary steady state; if such a steady state
has dimension of indeterminacy 4 » l,thena 4 -1
dimensional submanifold of the convergent egquilibria are non-
monetary equilibria, while the rest are monetary equilibria in
vhich money asymptotically loses its value.
These results show to what extent the results of Gale [1973] generalize
to an n-good economy. They show that the one-good case is very special:
in that case one never has local non-uniqueness of non-monetary
equilibrium, and a non-monetary steady state is indeterminate if and
only if it is inefficient. But for n > 1, it is possible to have &
continuum of non-monetary equilibria converging to a non-monetary steady
state, whether it is efficient or not. 1In particular, when n > 1, it

is possible to have a Pareto optimal non-monetary steady state that is
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nonetheless indeterminate. This is illustrated by the following

example.

Example 7: (From Kehoe and Levine [1983a].) Let there be one
good per period, but let agents live three periods. As shown by
Balasko, Cass and Shell [1980], this is equivalent to a model with two
goods per period and two-period lives; hence it is possible for
equilibrium to be indeterminate in the absence of fiat money. Let all
agents in each generation have preferences described by a constant
elasticity of substitution utility function u(cl,cz,c3) =
2th + 2c5h + cgh, vhere c, c,, and ¢y are consumption in the first,
second, and third periods of life respectively. Let the endowment
pattern be 3 units of the good in the first period of life, 15 in the
second, and 2 in the third., The non-monetary steady states of this
model are not autarchic. Agents borrow in the first period of life from
middle-aged members of the generation before their own, repaying in the
second period (when their creditors are old); they lend in the second
period of life to young members of the generation after their own, and
are repaid in the third period (when their debtors are middle-aged). It
is easily verified that this economy has three non-monetary steady
states, corresponding to g = .04, g = .93, and g = 53.81, and one
monetary steady state (g = 1). The g = .93 non-monetary steady state
is Pareto optimal, since g < 1. Evaluated at this steady state, the
eigenvalues of the matrix G are 1, 1/8, and a complex pair with

modulus less than one. It follows that n° = 2, and there is one

dimension of indeterminacy.
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2. Land and Infinite Lived Agents

A similar analysis is Possible in the case that land exists,
as is shown by Muller and Woodford (1983, 1984]. Suppose that land
exists yielding a vector a of perishable consumption goods each
period. Let pt be the vector of consumption goods prices in period
t, and 9 the vector of land Prices; q 1is an n-vector, one price for
each type of land, on the supposition that the claims to flows of the
different consumption goods may be separately traded. Then a

competitive equilibrium is a sequence {pt,qt}, for t =1,2,..., such

that

(2.5.1) zO(ql’Pl) + y(pl,pel) =a
(2.5.2) Z(Pl’Pz) + y(pz,p3) =a
(2.5.t) z(p,_,.p,) + ¥(p, Dp,q) =a
(2.6) QY TPt s t=1,2,..,

Note that Q; enters as an argument of the excess demand function of
generation zero, because the members of generation zero own the land at
the beginning of period one. Walras' Law for the generation zero
demands is in this case pizo(ql,pl) = qia. Land prices are not
arguments of the excess demand functions of any other generations, as
members of subsequent generations are neither net suppliers nor net

consumers of land; the land they purchase in one period they sell the next.
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A steady state of this economy is an equilibrium of the form

p, = Bt°lp, qt = Bt'lq, for some positive vectors P and q and some

positive scalar g. Thus a steady state is a triple (pyq,8)

satisfying
(2.7) z(p,gp) + y(p,pp) = a
(2.8) a(l -8 =p

For both p and q to be positive, it is plainly necessary that
B < l. So a steady state exists if and only if there exist (p,8)
satisfying (2.7) with g < 1. Muller and Woodford [1983] prove the
existence of a steady state under standard assumptions on preferences.
The determinacy or indeterminacy of a steady state with land
depends upon the dimension of its stable manifold, i.e., the set of
(3'1p2,p1,q1) that may be extended to a perfect foresight equilibrium
(Bitpt+l,sl‘tpt,31-tqt) converging to (p,p,q). Since (2.5.t) does not
involve land prices at all, the question of which (B—1p2,pl) may be
extended to a perfect foresight equilibrium (B'tpt+1,31'tpt)
converging to (p,p) can be answered without reference to the land
prices. And for any {pt} sequence with that property, there is a

unique {qt} sequence consistent with it, since (2.6) implies

Hence the dimension of the stable manifold is equal to nS, the number

of eigenvalues within the unit circle possessed by the matrix G,
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defined as before. As before, the equilibrium conditions are homoge-
neous in prices, so that one eigenvalue of G is one, and the non-
divergent manifold is of dimension n°S + 1. The initial conditions
(2.5.1) are also homogeneocus degree zero in (3'1p2,pl,ql), so that for
any {Pt’qt} constituting a perfect foresight equilibrium, {qpt,aqt}
constitutes one as well, for any positive 4. Since {qpt,aqt}
represents the same allocation as‘ {pt,qt}, the additional dimension of
the non—convergentbmanifold my be suppressed by a price level
normalization choice. Initial conditions (2.5.1) provide only n - 1
additional restrictions upon the values of (3°lp2,pl,ql), since any

(B—lp2,pl,ql) belonging to the stable manifold must satisfy

1] - - r _ L} '
= 48 - ppen, py) = 0

(Equation (2.5.t) implies that g e - Péz(Pt-l’Pt) has the same value
in all periods t » 2, and since qQ'a - p'z(p,Bp) = 0 in a steady
state, qéa - péz(pl,pz) = 0 for any perfect foresight equilibrium
converging to a steady state.léj) Hence, in the generic case, the
dimension of indeterminacy will be max(0,n%-n+1).

Equilibrium conditions (2.2.t) are just a special case of (2.5.t),
with a = 0, Hence for a small enough, the eigenvalues of ¢
evaluated at the steady state with land will be close to the eigenvalues
of G evaluated at the corresponding steady state of the economy
without land. Hence the range of possible values of n® mst be as

great as in the case of Pareto optimal non-monetary steady states
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without land or monetary steady states. So the range is
0<n®<on - 1; it follows that the degree of indeterminacy may be as
large as n.

Examples of indeterminate perfect foresight equilibrium with land
can be constructed by adding a sufficiently small amount of land to an
exchange economy with either a Pareto optimal non-monetary steady state,
or a monetary steady state with positively valued fiat money. (A steady
state with land cannot be obtained through a small perturbation of a
non-monetary steady state with B8 > 1, since any small perturbation of
such a steady state must still have g > 1; nor through a small
perturbation of a monetary steady state with p'z(p,gp) < 0, since any
small perturbation of such a steady state must still have a negative
supply of savings.) An example of the latter possibility is the way
Example 4 was constructed by adding land to Example 2. An example of
the former possibility would be the economy of Example T, with a
sufficiently small amount of land added.

Muller and Woodford also show how a similar analysis 1is possible
in the case of economies with an arbitrary number of smooth constant
return to scale production technologies which allow the transfer of
resources from one period to the next. Since the results are
essentially identical to those in the case of an exchange economy;lé/
this extension will not be treated here. Of somewhat more interest is
an extension of the analysis to allow for infinite lived as well as
finite lived agents. We will consider here only the case of a single

infinite lived agent with a stationary endowment, who consumes a
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constant non-zero vector of goods in the steady state under consider-
ation. (As noted in Sectiom I, the case of a steady state in which the
infinite lived agent does not consume, because his rate of time discount
is higher than the real rate of return in the steady state, is
essentially the same as a steady state with land.) Complications
arising from the existence of several infinite lived agents, with either
the same or different rates of time discount, are treated by Muller and
Woodford.

Let the infinite lived agent's preferences be stationary and
additively separable over time; i.e., let him maximize a utility

function of the form

oo
.t
V= Vg lu(ct)
t=1
where ¢, 1s his consumption vector in period t, 0 < g< 1 is a
discount factor, and u(c) is a monotone, strictly concave, twice
continuously differentiable function satisfyihg standard boundary

conditions. Let the infinite lived agent have a positive endowment

vector a each period. His lifetime budget constraint is then

Yple < ) pla+ plw
=1 tt £=1 t 1

vhere w represents the vector of goods owed the infinite lived agent
by the members of generation zero, at the beginning of period one.
(Negative elements of w represent debts of the infinite lived agent at

the beginning of period one. One supposes that period one does not
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represent the first period of life for either the infinite lived agent
or the members of generation zero; since the finite lived agents will
generally borrow from or lend to the infinite lived agent in an
equilibrium, it is reasonable to suppose that some such debts will
already exist at the beginning of period one. It is assumed that debts
are specified in terms of a vector of goods, rather than a nominal
aggregate, so as to eliminate the possibility of a trivial indeterminacy
having to do with the arbitrary real value of initial debts specified in
nominal terms, )

Let us assume that a steady state exists in which the infinite
lived agent consumes a constant positive vector of goods ¢ each
period.llj In such a steady state, equilibrium prices must be of the
form P, = Bt'lp, for some positive vector p, where B 1is the discount
factor of the infinite lived agent. Furthermore, the vector P mst be

such that

(2.9) Du(e) = ap

for some positive scalar ). Finally, in each period, supply of the

good must equal demand:
(2.10) z(p,8p) + y(p,gp) +c = a

Thus a steady state is a triple (p,c,)) such that (2.9) and (2.10) are
satisfied. (Note that may be chosen arbitrarily; different choices
of A simply amount to alternative price level normalizations. We do

not suppress the }, however, for the sake of the treatment below of
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equilibrium outside of a steady state.)

It might be thought that some additional restriction is necessary,
relating the value of steady state consumption by the infinite lived
agent to the size of his endowment. This is not so. By the time the
economy has settled into a steady state, the infinite lived agent may
have accumulated debts that he rolls over every period (borrowing from
the young in each period to repay the o0ld); or he may have accumulated
wealth in addition to his endowment (claims against the old in each
period, part of the proceeds of which he lends the young, against whom
he then has claims at the beginning of the following period). 1In fact,
in a generic steady state p'c # p'a. When this is true, the infinite
lived agent mist hold net claims against the current old, at the

beginning of each period, of nominal value Bt"lp'w, where

(2.11) (1 - g)p'w =p'c - p'a

Thus, in order for the steady state to be an equilibrium from period one
onward, rather than being only the asymptotic limit of an equilibrium,
the infinite lived agent must start out with a vector of claims w
satisfying (2.11) at the beginning of period one.

Strict concavity of u implies that D2u(c) is negative
definite, and hence that Det Dgu(c) # 0. It follows that (2.9) can be
inverted in a neighborhood of the steady state, to yield a unique smooth

s(xp) for 1ip in some neighborhood of the steady state

function ¢

value. Now in any perfect foresight equilibrium, the consumption demand

of the infinite lived agent in each period will satisfy Du(ct) = APy >
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for some A It follows that in any perfect foresight equilibrium

t.

sufficiently close to the steady state, ¢, = s(Atp ) each period.

t t

Furthermore, the Lagrange multipliers in consecutive periods must

satisfy Xt = B Hence a perfect foresight equilibrium is a

t+1°
sequence {pt,kt), with Atpt always in the domain for which s(Ap) is

defined, satisfying

(2.12.1) z2o(py) + ¥(py.p,) + s(X;py) =
(2.12.2) Z(Pl’Pz) + y(p2,p3) + S(Aape) =a
(2.12.t) 2(py_15P) *+ ¥(papy ) +s(Ap,) = a
(2.13) Ay = B t=1,2

. 't+l £ N sl g0 e e .

Note that this system of equations is homogeneous degree zero in
{pt,A;l}, so that either one price or one Lagrange multiplier may be
chosen arbitrarily as a price level normalization.

Equilibrium conditions (2.12) and (2.13) embody all of the first
order conditions for optimal consumption on the part of the infinite
lived agent, but it might be supposed that an additional condition is
necessary, representing the budget constraint of the infinite lived
agent. This is not true when there is only one infinite level agent.
In any solution to (2.12) and (2.13), the budget constraints of all

other agents are satisfied; hence the budget constraint of the infinite
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lived agent must be satisfied as well. Hence (2.12) and (2.13) are the
complete set of equilibrium conditions.l§/

Assuming that the vector of initial claims w satisfies (2.11),
the steady state P, = Bt_lp, A, = Bl-tk, is one solution to (2.12) and
(2.13). Are there other solutions arbitrarily close to this one? The
answer depends upon the dimension of the stable manifold of the steady
state, i.e., the set of (B-lp2,pl,kl) that may be extended to a
perfect foresight equilibrium cowverging to the steady state. It is
apparent from (2.13) that Bt-lxt does not comverge to A unless
Al = A. Hence we need only look for sequences {Pt} that satisfy
(2.12) with A = gl -ta. The dimension of the stable manifold is thus
equal to ns, the number of eigerwalues within the unit circle possessed
by the matrix G, defined as before, except that the expression

(B_lbly + D2z) in the upper left block of the previous definition mst

-1 -1
be replaced by (g Dly + D2z + B "A), where the matrix A is defined by
2 =1
A = ADs(xp) = A[D%u(c)]

Note that G need no longer have an eigenvalue equal to one when this
term is add;d; although equations (2.12) and {2.13) are homogeneous
degree zero in {pt,kgl}, equations (2.12) with At = Bl-tk are not
homogeneous in {pt}. Because of this, ns may vary orer the range
0<n® < 2n. Initial conditions (2.12.1) impose n independent
additional constraints, so that the dimension of indeterminacy is
max(0,n°-n). Tt follows that there may be as many as n dimensions of

indeterminacy.
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Examples of indeterminate steady states with infinite lived agents
can be constructed by a perturbation method like that discussed in the
case of land. Starting with a stationary orerlapping generations
economy with an indeterminate steady state which is either non-monetary
and Pareto optimal or monetary with positive valued fiat money, one adds
a small positive vector of land a. The resulting economy has an
indeterminate steady state (p*,B*), with B8* < 1, as discussed above.
If one replaces the land by an infinite lived agent with a stationary
endowment a and discount factor B = B¥*, the resulting economy has a
steady state in which the consumption of the infinite lived agent is
zero (i.e., (2.10) is satisfied with ¢ = 0). Now consider the smooth
function c(p,B), defined as that vector ¢ which solves (2.10). We
know that c(p*,8¥) = 0. Assuming a generically valid transversality
condition, there exist points (p,B) arbitrarily close to (p*,g*)
where the sign pattern of c(p,B) takes on each of the 2n possible
values. Let (p,8) be values very close to (p*,8*%) such that all
components of c(p,B) are positive. Then it is possible to choose a
utility function wuf(e) such that Dulc(p,B)) is a scalar miltiple of
p. Now let the infinite lived agent hare utility function

v=} Bt-lu(ct)
t=0

where B8 1is the value near B* just chosen, and ufec) is the function
Just chosen. The resulting economy has a steady state in which the
infinite lived agent consumes c(p,B8) > 0. The matrix G for this

economy will be close to the matrix G for the original orerlapping
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generations economy, and so its eigerwalues will be close as well.
However, one is no longer an eigenvalue, after the infinite lived
consumer is added; there will still be a real eigervalue near one, but
it may be greater or less than one. Hence the addition of the infinite
lived agent either increases n° by one, or leaves it unchanged. Since
with the addition of the infinite lived agent, the dimension of
indeterminacy becomes ns - n, rather than ns -n+ 1, it follows that
the addition of the infinite lived agent either leares the dimension of
indeterminacy unchanged, or decreases it by one. (The condition that
determines which occurs is discussed in Muller and Woodford [1984].)

It follows from the above analysis that it is possible to have an
indeterminate Pareto optimal non-monetary steady state with only one
perishable good per period and no assets other than the IOU's of agents,
if an infinite lived agent is added to the model. The following example

shows that this is the case.

Example 8: Let the DPreferences of the finite lived agents be as
in Example 6, but suppose that there is no capital; labor power is
directly comverted into the consumption good. This is then equivalent
to a one good model (the labor endowment being effectively just an
endowment of the consumption good) with utility function u(y,z) =
y + zl-Y/(l -Y), for y <0, z >0. Let there also be an infinite

©
lived agent with utility function V = Z Bt-l log ¢

t=1
and with a stationary endowment a > O.

4> Vith 0 <B <1,

The excess demand functions for the finite lived agents are
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1-y
Y
y(p, »p,,4) = = 7t )
t° t+1 Pry1
1
P, Y

)

2(pysPpay) = (Pt+1

In order for there to be a steady state in which the infinite lived
agent consumes, pt+l/pt mist equal B, and from (2.10) the steady

state consumption of the infinite lived agent must be

1 _1
c =8 LA 8 L a
This quantity is only positive if
1
(2.14) a>pg (1 -23g)

If (2.14) is satisfied, such a steady state exists. Note that in the
steady state c¢ < a each period. This is because the infinite lived
agent maintains a constant level of debt in the steady state, upon which
he must pay interest at the rate (1/8) - 1 each period. Since there
is no outside money in this economy, all saving by the young of each

finite lived generation is achieved by holding the debt of the infinite

(y=1)/v

lived agent. ZEach period, then, the young lend -y = B to the

infinite lived agent, who must repay them 1/8 times this amount, or

-1
g /Y

in the following period. Because the infinite lived agent's

1/y

repayments each period, B~ , are greater than his new borrowing,

-1
B(Y )/Y, his consumption ¢ 1is less than a. In this model, then, the
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steady state level of claims against the current old with which the

-1
infinite lived agent begins each period is w = -8 /Y, in accordance

with (2.11).

Writing Rt+1 = pt/Pt+1 for the gross real rate of interest, the
first order conditions for the consumption demands of the infinite lived

agent are

(2.15) c

g+1 = BR

t+1%
The market clearing relations for Periods t » 2 are

1 1y

Y Y -
(2.16) Rt - Rt+1 te =a

The initial condition (market clearing in period one) is

1y
-w - R =
(2.17) W - R0+ c; =a
since Zy = =W. A perfect foresight equilibrium is then a sequence

{ct} for t =1,2,..., and a sequence {Rt} for t = 2,3,...,
satisfying (2.15), (2.16), and (2.17). If w = -3'1/7 in (2.17), the
steady state is one solution.

Linearizing (2.15) and (2.16) around the steady state yields

R, . -1} 1 1 X g(1-2y)/y R _1

t+1 B 1-vy8R l-y t B
‘ _ v c Y (1-y) /v

ct+1 c 1T -y 1+ 1-y B ct -c

The eigenvalues of this matrix are the solutions to
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1 1 yc
= +
l1-y8 1-%

(1"Y)/Y]A L1

B

(2.18) (1er)
= 12 1 1, ya  (1-v)/y 1 1_
A° - [l =3 i » 8 ] A+ -7 8 0

In the case that vy < 1, one root lies between zero and one, while the
other is greater than one. So the stable manifold is of dimension one,
the initial condition (2.17) imposes one restriction, and the steady
state is exactly determinate. On the other hand, in the case that

Y > 1, one root lies between zero and one, while the other root lies

between zero and -1 if
1

(2.19) a<(1+8)8 Y(l—\'(—?-)

but is less than -1 if the inequality in (2.19) is reversed. Hence
the steady state is indeterminate if and only if (2.19) holds. Note
that the interval for a established by (2.14) and (2.19) is nonempty

if and only if

1+ 8

(2.20) Y > 8

Thus no matter what the value of B 1is, a value of ¥y greater than two
is always necessary for existence of an indeterminate steady state in

which the infinite lived agent consumes.

3. Conditions Guaranteeing Determinacy

Muller and Woodford [198k4] establish some additional general
conditions for the possibility of indeterminacy, in addition to the
bounds on the dimension of indeterminacy given by the number of goods

per period. One of these is that the consumption demands of infinite
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lived agents cannot play too large a role in the determination of
equilibrium, if indeterminacy is to be possible. It has already been
mentioned that indeterminacy is impossible if the economy consists only
of a finite number of infinite lived consumers. But it can also be
shown for a hybrid model (i.e., both infinite lived agents and
overlapping generations of finite lived agents exist), that as the
endowment of the infinite lived agents is increased (or the population
of infinite lived agents with a given endowment per capita is
increased), for a given population of finite lived agents in each
generation, a point is eventually reached at which no steady state can
any longer be indeterminate. This is illustrated in Example 8. As the
parameter a is increased in that example (i.e., either the endowment,
and hence the steady state consumption level of a single infinite lived
agent is increased, or, equivalently, the population of infinite lived
agents is increased), eventually the bound (2.19) is reached, beyond
which the steady state becomes determinate.

This is true for the general n-good model as well, because the

eigenvalues of G are the 2n solutions to
2 -1 ' -1 -1
(2.21) Det[DyA” + (B Dy + Doz + 8 A)x + 8 D,z] =0

In the fully general model, A is a sum, over the infinite lived agents
who consume in the steady state, of individual terms Ah[Dzuh(ch)] for
each agent h. Thus as the number of infinite lived agents is made
larger, A comes to be a larger and larger negative definite matrix.

Suppose that all the eigenvalues of A are of order N, where N is a
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large number (some measure of the importance of the infinite lived
agents in the economy). Then (2.21) will have n solutions of order
N (and hence outside the unit circle),'approximately equal to the
eigenvalues of -B-lDzy_lA, and n solutions of order 1/N (and hence

inside the unit circle), approximately equal to the eigenvalues of

-Dle-l. Hence the steady state must be exactly determinate.lg/
Note that it is large elements in the matrix A that rule out
indeterminacy rather than a large population of infinite lived agents or
large consumption by them as such. What is important is the extent to
which the aggregate consumption demand of the infinite lived agents
responds to price changes. Even if the infinite lived agents consume a
sizeable fraction of the total product, if their consumption demands are
sufficiently inelastic their presence will not rule out indeterminacy of
equilibrium. For example, suppose thaﬁ in Example 8, the utility

(- -]
function of the infinite lived agent were V = § Bt_l(ct_al(l -6)),

t=1
for some § > 1. Then A = -c/§, and (2.18) becomes instead

iy
2 1 1 _1_yc Y 1
>‘-[1+1_YB 3 B ]>\+1_Y

™ |
[}
o

1-y

Following the same argument as before, one finds that the steady state
is indeterminate whenever y > 1 and
1

¢ < 288 ?[ﬁ(x —Yl) - 1]

But ¢ can be mde arbitrarily large, and still satisfy this

inequality, as long as & is made proportionately large. A large
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§, of course, means a very small elasticity of substitution of
consumption between periods on the vart of the infinite lived agent.
Another very general conclusion is that there must always be
significant income effects in the responses of the consumption demands
of the finite lived agents to price changes, if indeterminacy is to be
possible in the case of a Pareto optimal steady state. This also
follows from (2.21). Suppose one suppressed all income effects from the

derivatives of the excess demand functions Y and z. Then

would be a matrix of Slutsky substitution terms only, and hence would be
symmetric. But A is symmetric as well, from which it follows that if
A solves (2.21), 1/(BA) solves it as well. Thus half the eigenvalues
of G would be of modulus less than 6-1/2. In the case of a Pareto
optimal steady state (B < 1), this would imply that no more than n
eigenvalues have modulus less than or equal to one. Thus in the absence
of infinite lived agents, so that one must be one of the eigenvalues,

ns < n -1, and indeterminacy is impossible. On the other hand, in the
case that infinite lived agents exist that consume in the steady state,
the bound becomes nS < n, but indeterminacy is still impossible. Thus
in the case of an autarchic steady state (each agent consumes exactly
his endowment), where there are no income effect terms, it is not

possible that the steady state is both Pareto optimal and indeterminate.
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An autarchic steady state is a very special case, of course, once
one allows more than one good per period, introduces production, or
introduces an infinite lived agent. But because of the continuity of
the eigenvalues of G as functions of the demand derivatives, it will
also be the case that in any steady state at which the income effect
terms are small compared to the substitution effect terms, half the
eigenvalues are of modulus less than 3‘1/2, so that indeterminacy is
again incompatible with Pareto optimality. Hence examples characterized
by indeterminate Pareto optimal steady states must always involve
significant income effects. |

It would be desirable to be able to express quantitatively how
large the income effects must be for indeterminate Pareto optimal
equilibrium to be possible. In the examples with Pareto optimal steady
states presented in this paper, excess demands satisfying the "gross
substitutes" condition (excess demand for each good decreasing in its
own price, increasing in all other prices) suffice to rule out the
possibility of indeterminacy. Thus in Examples 2 and 4, gross
substitutes would mean an offer curve which is not backward bending;
this would prevent the existence of the indeterminate steady state. In
Examples 6 and 8, gross substitutes would mean Y<I1,but y>2 is
always required in those examples for indeterminacy. However, gross
substitutes does not seem to be a sufficient condition for determinacy
more generally. Calvo [1978] presents an example of an overlapping
generations model with two production technologies (producing

consumption goods and capital goods respectively) and two factors of
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production (capital and inelastically supplied labor) used in both
sectors. Consumers demand only the single consumption good each
period. Calvo shows that it is rossible for such a model to possess an
indeterminate Pareto optimal steady state, even when agents' preferences
over consumption in the two periods of life satisfy the gross substi-
tutes condition.

David Levine has suggested the following sufficient condition for
indeterminacy. Let the bound of a matrix M be defined as

IMI = sup IMxIl
Ixi=1

where lixll denotes the Euclidean norm of vector x. Then
-1 =1,,-1 -1
(2.22) iis D,y + Dyz + 8 Al (nDQyu + IB Dlzu) <1

is a sufficient condition for indeterminacy. For consider the
possibility of a sequence of vectors {xt}, t » 0, satisfying X, = 0,

xt +0 as t » =, and

-1 -1 -1 _
Do¥Xpyo + (87 D)y + Dyz + 8 Mgy + 87 Dyzx, =0

for t > 0. It follows from x =0 and (2.22) that X 0 < ax b <
Hx3u < .4+, so that X, * 0 as t + = is possible only if x, = 0 for
all t. Hence the stable manifold mst be of dimension no greater

than n. ¥Next consider the rossibility of a sequence of vectors {xt},
t < 0, satisfying X, = 0, X, * 0 as t + ==, This too is possible
only if xt = 0 for all +t; hence the stable manifold mast be of

dimension no smaller than n. It follows that the stable manifold is of
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dimension n, and equilibrium is exactly determinafe.

The Levine criterion provides a quantitative measure of how large
the effects of the demands of the infinite lived agents must be in order
to insure determinacy of equilibrium: <the terms contributed by . A must

be large enough to make the bound of [B_lDly + Dz + B-.'LA]-1 less than

2
a certain quantity. But it provides no quantitative measure of how
large income effects must be in order for indeterminacy to be possible,
at least none that is easily interpreted.

In summary, the present section has shown that the economies for
which equilibrium is indeterminate are not isolated cases. First, the
analysis of Kehoe and Levine shows that the property of having an
indeterminate steady state depends only upon certain inequalities being
satisfied by the derivatives of the excess demand functions. Hence
examples of economies with indeterminate steady states are robust in the
sense that small changes in preferences or endowments will not affect
the result. Second, the analysis of Muller and Woodford shows that many
such examples can even be perturbed by adding land or infinite lived
agents to the economy without changing the dimension of the indetermi-
nacy. This makes it clear that the problem does not arise only in the
case of models that are extremely special in some respect.

On the other hand, there are assumptions about the world that, if
one were willing to grant them, would suffice to rule out the
indeterminacy problem. Two have been discussed in particular. If one

believed that a sufficient number of agents behaved like infinite lived

agents (say, for the reasons given by Barro) for the responses of these
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agents' demands to constitute a large part of the response of aggregate
demand to price changes, then one could forget about indeterminacy.
Alternatively, if one believed that the preferences of finite lived
agents were such that substitution effects were always much stronger
than income effects, and one were interested only in Pareto optimal
equilibria, one would again be able to forget about indeterminacy. The
latter assumption in particular is one that many economists are willing
to make in other contexts, in order to insure the validity of
conclusions drawn from simple parables. Ideally, of course, one would

want to be able to empirically test the validity of such assumptions.

ITI. Indeterminacy and Equilibrium Cycles

The work of Jean-Michel Grandmont {1983b] has stimulated renewed
interest in the existence of equilibrium cycles for certain overlapping
generations economies. Grandmont shows that for a broad class of one-
good overlapping generations exchange economies of the sort considered
in Example 2 of Section I, there exists a detailed set of necessary
relationships between the existence and determinacy of periodic
equilibria of various periods. For example, in a special class of
models that he considers in detail, a 2-period monetary equilibrium
cycle exists if and only if the monetary steady state is indeterminate,
a l-period monetary equilibrium exists if and only if there exists an
indeterminate 2-period cycle, and so on.ggj It might be wondered,
therefore, if the connection observed in that case between indeterminacy

and the existence of cycles holds more generally.
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It is easily shown that in the case of a one-good overlapping
generations exchange economy of the sort considered in Example 2 of
Section I, indeterminacy of the monetary steady state is a sufficient
condition for the existence of a 2-period equilibrium cycle. The
following proof is given by Azariadis and Guesnerie [1984]. Figure 6a
shows the offer curve of Figure 2, and superimposed upon the same
diagram, the reflection of that offer curve about the 45° line. Any
intersection of the two curves represents an equilibrium that repeats
itself every two periods. Intersections on the 45° line represent
steady states; intersections off the 45° line represent 2-period
cycles. (Intersections of the latter sort come in pairs, since each
such intersection must have a reflection that is a point of intersection
as well. The two points in the pair represent the two phases of a
single 2-period cycle.) It follows from the geometry of the figure that
if the slope of the offer curve through the monetary steady state is
between +1 and -1 (the case of indeterminacy), the curves must
intersect somewhere off the U45° line.

On the other hand, the above proof allows one to see that
indeterminacy of the monetary steady state is not a necessary condition
for the existence of a 2-period cycle. Figure 6b shows how it is
possible to have 2-period cycles without an indeterminate steady
state. (The sort of offer curve displayed in Figure 6b does not satisfy
Grandmont's assumption of a "negative Schwarzian derivative.")
Furthermore, once one moves beyond the confines of this particﬁlar type

of economy, indeterminacy need not be sufficient for existence of an
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equilibrium cycle. Example 5 of Section I, for example, possesses an
indeterminate monetary steady state, but no equilibrium cycles. (The

requirement that (-g - ) be a point on the offer curve makes

g 0Bl
Zoy1 2 monotonically increasing function of z,, so that the only
possible kind of stationary equilibrium is a steady state.)

Outside the class of one-good overlapping generations models, it
is even clearer that there is no general relationship between indetermi-
nacy and the existence of cycles. Benhabib and Nishimura [198k]
demonstrate the possibility of a 2-period equilibrium cyecle in an
optimal growth model; but equilibrium is unique in that model. A
comparison may be instructive between the way equilibrium cycles arise
in their model and the way they arise in the model considered by
Grandmont. In both papers, a one-parameter family of economies is
considered. For low values of the parameters, the steady state
equilibrium is exactly determinate and there is no equilibrium cycle;
but at a critical parameter value, a "flip bifurcation" occurs (see
Guckenheimer and Holmes [1983], Chap. 3), and for parameter values
beyond this point a 2-period cycle exists in addition to the steady
state. The point at which the flip bifurcation occurs is always the
parameter value at which one of the eigenvalues controlling the
convergence or divergence of equilibrium paths near the steady state
changes stability by passing through the value -1, and this will
necessarily change the dimension of the stable manifold of the steady

state by one. But in Grandmont's case, the eigenvalue passes from less

than -1 +to greater than -1 (unstable to stable), so that the
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previously determinate steady state becomes indeterminate, while in the
Benhabib-Nishimura example, the eigenvalue passes from greater than

-1 to less than -1 (stable to unstable), so that the previously
exactly determinate steady state becomes unstable.

This indicates why, despite the generality of the flip bifurcation
theorem (it holds for mappings of an arbitrary number of dimensions),
one cannot expect there to be any general connection between
indeterminacy and cycles. Even if the only way that 2-period cycles
could arise under a continuous deformation of one econormy into another
were via a flip bifurcation (this is not so--two cycles may be created
at once in a "saddle-node bifurcation"), it would follow only that the
emergence of a 2-period cycle would always be associated with a change
in the dimension of the stable manifold of the steady state. 1In a
general multiple-good model, this could mean a transition from three
dimensions of indeterminacy to only two, or vice versa, or from exact
determinacy to instability, or many other things. The connection
between indeterminacy and cycles that appears in the special case
studied by Grandmont is a consequence, then, of the very special
geometry of that case.

Similar conclusions are reached in the case of continuous-time
dynamic models. There too one finds a connection between indeterminacy
and cycles in a special, low-dimensional case. Suppose that the perfect
foresight equilibrium conditions describe a dynamical system with one
state variable and one "jump variable" (control variable or price), so

that one quantity is given by the history of the economy up to the
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present, while the other is determined by expectations about the
future. In such a case, exact determinacy requires that a stationary
equilibrium have a one-dimensional stable manifold (the "saddle point"
property). It is easily shown in such a case that if an equilibrium
cycle exists, perfect foresight equilibrium is indeterminate. An
example of this is the Diamond [1982] search model of aggregate demand
fluctuations. In this model the single state variable is the fraction
of the population with inventories to trade (e), and the single control
variable is the reservation production cost (c*) which determines
which production opportunities will be accepted by the agents without
inventories. Diamond shows that perfect foresight equilibrium implies
certain dynamics in the e - c¢* phase plane. Diamond and Fudenberg
[1983] show that this model may possess an equilibrium cycle. It
follows that in that case perfect foresight equilibrium is indetermin-
ate. For either the perfect foresight &ynamics near the cycle spiral
toward it, or they spiral away from it. In the first case, the cycle is
indeterminate (see Figure 7a). That is, for a given initial value
e(o), there exists an entire interval of c¢*(o) values consistent with
perfect foresight equilibrium that converges asymptotically to the
cycle. In the second case, there must be some limit set in the interior
of the cycle that is indeterminate (such as the indeterminate steady
state shown in Figure Tb, or another equilibrium cycle).

This result, however, only applies in the case of a system with a
single state variable and a single control. With additional dimensions

it is possible to have a cycle without indeterminacy. Thus in the
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optimal growth example of Benhabib and Nishimura [1979], with two

capital stocks and two prices, there exists a continuous time

competitive equilibrium cycle, but perfect foresight equilibrium is

unique.

Iv. Indeterminacy and'Sunspot Equilibria

Some readers may not find the indeterminacy of perfect foresight
equilibrium demonstrated above a serious problem. For, they might
argue, perfect foresight equilibrium as a solution concept only makes
sense in the case of stationary equilib;ia, in which case one may expect
a rational agent to have learned what to expect. And in the generic
case, the stationary perfect foresight equilibria are locally
isolatedglj; indeterminacy only appears if one counts the non-stationary
equilibria as well. Others may agree fhat perfect foresight equilibrium
is the correct equilibrium notion, even outside of a stationary
equilibrium, but may feel that the indeterminacy is not troubling as
long as all of the possible equilibrium paths are Pareto optimal. And
there are various ways to insure this, such as assuming the existence of
a small amount of land or a single infinite lived consumer. Others may
regard indeterminacy as not greatly disturbing as long as the role that
self-fulfilling expectations can play in determining allocations is a
purely transient onergg/ Still others may hold that indeterminacy of a

steady state is a desirable state of affairs, calling it "stability" and

regarding it as a guarantee that the economy will eventually settle into
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a steady state equilibrium and return to it in the event of transient
disturbances.

All of these grounds for complacency are unsettled by the
observation that indeterminacy of perfect foresight equilibrium brings
with it the possibility of stationary "sunspot equilibria." By this is
meant stationary rational expectations equilibria in which prices and
allocations are affected by random variables which are observed by
agents but do not affect preferences, endowments or technology. It is
reasonable to consider these stochastic equilibria, if they exist, to be
additional equilibria of the non-stochastic model. And these equilibria
cannot be rejected on the ground that rational expectations are only
plausible in the case of a stationary equilibrium, for the sunspot
equilibria to be displayed below are all stationary. There are a very
large number of them; in the examples below, there are an uncountably
infinite mumber of such stationary equilibria that remain uniformly
close to the non-stochastic steady state equilibrium. Furthermore, all
of these equilibria are inefficient in an expected utility sense, even
if the non-stochastic steady state is Pareto optimal, since they involve
unnecessary randomization of the equilibrium allocation. (See Balasko
[1983] for a general argument to this effect.) And finally, the
existence of these equilibria shows that an indeterminate steady state
does not mean that the economy eventually reaches the steady state
allocation in every rational expectations equilibrium.

The connection asserted here between indeterminacy of perfect

foresight equilibrium and the existence of stationary sunspot equilibria
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can be illustrated in the case of the examples of indeterminacy given in
Section I. Example I, however, provides an exception to the general
result. It is possible to show the existence of a large number of non-
stationary sunspot'equilibria for such an economy. Early examples were
given by Shell [1977] and Azariadis {1981}, and Peck [1984] has shown
how to construct a large number of such equilibria for the general one-
good model, assuming that a monetary equilibrium exists. But these
equilibria are all transient, in the sense that the sunspot variable
ceases to affect allocations asymptotically. This results from the
"hyperinflationary" character of the non-stationary monetary equilibria
of this model. The situation is different in the case either of an
indeterminate monetary steady state, or of an indeterminate non-monetary
steady state with a miltiplicity of non-monetary equilibria converging
to it; in these cases, it 1is possible that sunspot variables could
produce equilibrium fluctuations around the steady state that are
stationary. This provides another reason to consider the
"hyperinflationary" indeterminacy of Example 1 less important than the

kinds of indeterminacy illustrated by the other examples.

Example 2 revisited: Azariadis [1981] showed, for the case of an

additively separable utility function, that stationary sunspot
equilibria can exist for an economy like that of Example 2, and that
indeterminacy of the monetary steady state is a sufficient condition for
the existence of such equilibria.géj The analysis of this example has

been further extended by Azaradis and Guesnerie {1982, 1984] and Spear

[1983], who show, among other things, that the result does not depend



upon additive separability. The presentation here is a generalization
of that of Azariadis [1981], since this approach is most easily
-generalized to allow treatment of Examples 4 and 5 as well.

Let the utility function of the two period lived agents be
uly,z), where Y and z are consumption in excess of endowment in the
first and second periods of life respectively; u is defined on the set
{y > -€1, 2 > -e2}. Let u be smooth, monotone, strictly concave, and
satisfy boundary conditions sufficient to insure that optimal consump-
tion demands are never completely specialized. Let u; and u, denote
partial derivatives of u with respect to its first and second
arguments respectively. Azariadis shows the existence of stationary
rational expectations equilibria in which
{Zt} follows a two-state stationary Markov process. (It follows that
the price level Pt follows such a process as well, since zt = M/pt
in all periods, but it is convenient to consider the dynamics of the
z, variable, as before.) Let the two values of z, be (za,zb) and

let

Prob(zt+l = zalzt = za) a

"
=4

i
(5]
N

1}
o]

St
I

P = =
rob(z, , =2z, £ %' T Ty

The question is under what circumstances there exist (na,nb,za,zb)

with 0 <n_ <1,0<n_<1,2 >0,z > 0, z_ # 2., such that this
a a a b

b b

brocess represents a rational expectations equilibrium.
It is clear that (na,nb,za,zb) constitutes an equilibrium if and

only if the following pair of first order conditions are satisfied:
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)

- + - -
nazaul( za,za) (1 na)zaul( Z, 52

b
(4.1)
nazau2(-za,za) + (1 - na)zbu2 —za,zb)
- -+ - - =
) nbzbul( zb,zb) (1 nb)zbul( zb,za)
(h.2
"bzbuQ(-zb’Zb) + (1 - nb)zauz(—zb,za)

(The first order conditions suffice to characterize optimal choice

because of the smouthness and strict concavity of u and the boundary

conditions.) For any 25 %y (O,el), it is possible to calculate the
values of T,» T, that would satisfy (4.1) and (4.2):
h.3) L ) Zbu2(-za’zb) - zaul(-za,zb)
1-m, zaul(—za,za) - zauz(—za,za)
() m i zaug(—zb,za) - zbul(—zb,za)
1-m zbul(-zb,zb) - Zbu2(_zb’zb)

assuming that the numerator and denominator are not both zero in the
case of either (L4.3) or (4.4); in such a case the probability is
indeterminate. If (4.3) and (L.4) indicate O < m, <1, 0<m <1, one
has found a stationary sunspot equilibrium. One's task is therefore to
find quantities 2,5 2, € (O,el) such that the numerator of (4.3) has

the same sign as the denominator, and likewise for (L.k).

The moneraty steady state is given by z* such that
u, (~2%,2%) = u,(-z%,2%)

One solution to (4.1) and (4.2) is therefore 2, =z, =z%, for

arbitrary ("a’“b)’ Now consider z_ = z* + me, z, = 2¥ + ne, for m
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and n nonzero. Substituting these into (L4.3), and taking the limit as

€ + 0 yields

) 2 S

a m
(k.5) -, Y51
where

* -

Y s T (u,) uy,)

(k.6) S -% W 2 u. —u
2 22 12)

is the slope of the offer curve through the steady state, and the
derivatives in (L4.6) are all evaluated at (-z*,2z%). Similarly, taking

the limit of (k.k4) yields

m
'nb ;-S
(4.7) 1 -7 *8S<-1
b

One has 0 < T, < 1, 0 < Ty < 1 in the limit if and only if both
expressions (4.5) and (4.7) are positive. It is possible to choose m
and n so that both expressions are positive if and only if
-1 <8 <1, i.e., exactly in the case that the monetary steady state is
indeterminate.

The sunspot equilibria that are guaranteed to exist by this
argument are close to the steady state allocation, in the sense that
za and zb are both near 2z¥*. And it is clear from the above that for

any neighborhood of z¥*, there exists a two dimensional manifold of

choices of (za,zb) both within that neighborhood that correspond to

two-state Markov process stationary equilibria. (It is only necessary
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that m/n 1lie within a certain interval, and for each m/n in that
interval, there will be an interval of me values close enough to zero
so that expressions (4.5) and (4.7) have the same sign as they do for

e + 0.) Nor do two-state Markov process equilibria exhaust the set of
stationary sunspot equilibria. The equilibrium conditions for a Markov
process with a larger number of states can be written in a form like
equations (4.1) and (4.2), and the two-state equilibria will be
particular solutions to those equations. Then, by elementary continuity
arguments, solutions to those equations will also exist that are not
reducible to a two-state process. Hence an uncountable numgﬁr of n-
state Markov process equilibria will exist, for all n > 2._—/ The
degree of indeterminacy is thus very severe, even when one restricts
one's attention to stationary equilibria.

While indeterminacy of the monetary steady state is a sufficient
condition for the existence of stationary sunspot equilibria, it is not
necessary. In the example depicted in Figure 6b, the monetary steady
state is determinate, yet two-state Markov process equilibria exist.
Let (zf,zg) be the two phases of one of the 2-period deterministic
cycles for the economy depicted in Figure 6b. Then one solution to
(4.1) and (L4.2) is z, = zf, z, = z%, L 0. A simple continuity
argument then guarantees the existence of solutions to (4.1) and (4.2)

with “a’ n, > 0, for "a and T sufficiently small. (See Azariadis

b b
and Guesnerie [1984].) There will therefore exist an uncountable number
of stationary sunspot equilibria near each of the 2-period deterministic

cycles.
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Example 4 revisited. Stationary sunspot equilibria can also be

shown to exist in an economy of this sort, by a simple extension of the
argument for Example 2. In this case, (wa,nb,za,zb) constitute an

equilibrium if and only if

'na(za - a)ul(a -z, za) + (1 - na)(za - a)ul(a -z, Zb)

- <+ - -
nazauz(a 2 za) (1 na)zbuz(a 2 zb)

nb(zb - a)ul(a -z, zb) + (1 - nb)(zb - a)ul(a -z, za)

- + - -
nbzbuz(a Z, » Zb) (1 "b)zauZ(a Zy zb)

One solution is again z, =z = z¥, for arbitrary (na,nb), where in

this case the steady state z¥ satisfies
(z% - a)ul(a - z% z¥) = z*u2(a - z¥, g¥%)
The slope of the offer curve through the steady state in Figure L is

+ + - 2%
u, bA (a - 2 )u11

-
+ (a - z )u12

With these modifications, the argument goes through as before.
Equations (4.5) and (4.7) hold as before, and so one again finds that
two-state Marlov process equilibria exist arbitrary close to the steady
state if and only if -1 < 8S < 1, i.e., exactly when the steady state is
indeterminate.

This example shows that the possibility of stationary sunspot
equilibria demonstrated by Azariadis does not depend upon peculiarities

of the overlapping generations model of fiat money. Stationary sunspot
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equilibria may exist in an economy without fiat money. (The discussion

of Example 6 below also illustrates this.) It also shows that the

existence of one or more infinite lived agents need not prevent the
existence of stationary sunspot equilibria. For Example 4 can be |
interpreted as describing an economy in which there exist infinite lived
agents with an aggregate stationary endowment of a per period, which

agents desire consumption only in period one.

Example 5 revisited. This case is exactly like that of Example L,

with the quantity a replaced by -g. OSince no part of the argument
above relied upon the restriction a > 0, the same argument goes through
in this case. 1In the case of Example 5, an indeterminate monetary
steady state exists even in the case of gross substitutes. It follows
that the failure of the gross substitutes condition to hold is not
necessary for the existence of stationary sunspot equilibria. An

alternative method for proving the existence of an uncountably infinite

- number of stationary sunspot equilibria for this example is demonstrated

in Farmer and Woodford [198k].

This example also indicates that stationary sunspot equilibria may
exist even when no deterministic cycles exist. This shows that the
characterization result of Azariadis and Guesnerie [1984]--that in the
case of the exchange economy with passive government policy of Example
2, two-state Markov process sunspot equilibria exist if and only if a
deterministic 2-period cycle exists--does not hold for more general
ecoﬁomies. The search for equilibrium business cycle models which allow

for stationary fluctuations in the absence of external shocks, initiated
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by Grandmont [1983], therefore ought not confine its attention to the
investigation of the conditions under which deterministic equilibrium
cycles are Possible, as these are not the only cases in which stationary

fluctuations driven purely by expectations are possible.

Example 1 revisited. It may seem puzzling that stationary

sunspot equilibria exist in the case of Example 5, but not in Example
1. Example 1, after all, is the limiting case of Example 5 as g
approaches zero. The problem arises from the requirement that

za, zb > 0. For g >0, z%* > 0, and so for & small enough,

z, = z**% + me and zZ, = z¥* + ne will both be positive. As g
approaches zero, z** approaches zero, and this ceases to be the case.
The above analysis would extend to the case g = 0 only if it were
possible to choose m > 0, n > 0 so as to make the expressions in (4.5)
and (4.7) both positive. But m > O, n > 0 means that either m/n

or n/m mst be greater than one, so that both (4.5) and (4.7) cannot
be positive; hence the construction used above does not continue to be
possible when the sign restrictions on m and n are added.

It follows that stationary sunspot equilibria would be possible in
the case of Example 1, if the condition zt > 0 were not a necessary
requirement for monetary exchange. One might imagine replacing money
with government borrowing and lending at a stochastic real interest
rate, where the interest rate is not revealed until the period in whiech
repayment is due. In a rational expectations equilibrium, all agents
would decide to save or borrow on the basis of correct knowledge of the

distribution of real interest rates, and the government would balance
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its budget each period. Then if gross real interest rates are allowed
to be either positive or negative (i.e., someone "lending" to the
government in period t might be paid by the government in period t +
1, or might have to pay the government an additional sum), stationary
rational expectations equilibria exist with consumption allocations
fluctuating with the realizations of a sunspot variable even in the case
of Example 1r22/

As an example, consider the utility function uly,z) =
z + (1/2)(y - y2), for consumption allocations satisfying y < 1/2. Any
stochastic process for the {zt} such that =z
) = 2

- . . . . {11ibrium.
Et(zt+l z, (l/2)zt, is then a rational expectations equilibrium

4 > -1/2 for all t, and
The monetary steady state for this economy is z* = 1/2; the non-
monetary steady state is zt =0 for all t. If, however, the
government enters into contracts of the sort described in the previous
paragraph, (ﬂa,nb,za,zb) will be a two-state Markov process equilibrium

whenever

2 + (l- )z
Za 2 1ra a

(1 - Tra)zb

2 1
(1 - nb)za =z, + (2 - nb)z

b

These equations may be combined to yield a quartic equation for -either

Z or 2. . One solution is z_ = z_ = 0, another is z = =1/2;
a b a b a

Zp

factoring these out leaves a quadratic equation for Za or Zb' It has

two real roots (so that additional two-state equilibria exist) if and

only if (1 - "a)(l - nb) < 1/16. The two additional equilibria are
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2 -_-(“a_%-)j/%g-(l—ﬂa)(l-"b)

2, = (m -13{') :/%g- (1 -7 =)

There is thus a two-dimensional manifold of sunspot equilibria of this

type, none of which satisfy Zos Zy » 0. For za, zb > 0 would require

that J%g - (1 - na)(l - nb) be no greater than either (na - 3/4) or

(w. - 3/4), which in turn would imply (1 - na), (1 - nb) < 1/4 and

b
%E -1 - na)(l - nb) < (na - %O(Hb - %)
= [F-@-n)lE- -]
=Tl -m) - Rl ) ¢ (1 -w ) -
Cfp-@-w)? - -n)? e -a )1 )
s e ) [ - -]
The latter inequalities imply = m , which rules out sunspot

equilibria. Note that it is possible to find sunspot equilibria that
satisfy Zgs Zy > -1/2, so that the equilibrium allocation remains in
the range in which there is no satiation in second period consumption.

This will be satisfied, for example, for all LIFLN <1 with both

"a and “b sufficiently close to 1, and for all LI Ty > 3/4 with

both «_ and = sufficiently close to 3/k.

b

Example 6 revisited. Different methods mst be employed for this

example, as it is easily shown that a two-state Markov process equili-
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brium is impossible. When a stochastic rental rate for capital is

allowed, the first order condition (1.2) becomes

I-yy o Y, 7-1
By[Rypq] = nywy

= kY 1
= KV

Equation (1.1) holds as before, and the factor-price frontier is the
same, so that a rational expectations equilibrium is a stochastic

process {kt’Rt} such that in each period

_(1 - a)
(4.8) Koy =5 Rk,
a
1-y y-1 R Mo Y
(5.9) Rl - T i
One type of solution is one in which
a
R, Y l-qa
(4.10) REY = (1 - o) kYx
) t+1 a t7t+1

where xt+1 is an independently, identically distributed random
variable, which always takes a positive value, and has mean one.
Equations (4.8) and (4.10) then describe a Markov process on the
continuous statebspace {kt >0, Rt > 0}. This will be a rational
expectations equilibrium in which the sunspot variable {xt} affects
allocations. It will be s stationary rational expectations equilibrium
if there exists an invariant distribution on the state space

{k, >0, R > 0}.
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Again taking logarithms, the equations for the Markov process

become
kt+l 1 1 kt 0
(4,11) = +
iy Y Y a 1 =~ 1 -
t41 1-y TIT-y*T-a1-y R | T -y Xt+1
where
i = log k, - log k¥ + l'E(log x)
t t Y
R = - *
Rt =z log Rt log R
X, = log x, - E(1log x)

and k* and R* are defined as in Section I. It is well known from
the theory of stochastic linear difference equations that the process is
stationary (an invariant distribution will exist, under weak
restrictions an the variable ;) if and only if the matrix in (k.11)
has both eigenvalues inside the unit circle. But this is Just the case
(v >2/(1 - @) in which the non-stochastic steady state is
indeterminate. Hence stationary sunspot equilibria exist in exactly the
case that perfect foresight equilibrium is indeterminate, in the sense
‘defined in Section I. (This provides a reason to be interested in
indeterminacy in that sense. For there exists a large miltiplicity of
perfect foresight equilibria even when Y < 2/(1 - a), but there are no

stationary sunspot equilibria in that case.)

Note that for s given sunspot variable {st+l} with mean zero and
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finite variance, equation (4.11) with x = As

£41 will be a

t+1
stationary sunspot equilibrium for any A. Hence for a given sunspot
variable, there exists at least a one-parameter family of stationary
sunspot equilibria, in the case that y > 2/(1 - a). Different values
of IAI will correspond to different degress of influence of the
sunspot variable on equilibrium allocations. Varying ]AI will affect
not only the variance of kt and Rt in the invariant distribution,

but their means as well. For in the invariant distribution,

E(kt) = E(Rt) = 0, but Jensen's inequality implies that
1 1
log E(k) = log E(k) + T loe E(x) > E(log k) + b E(log x) = log k¥
log E(R) > E(log R) = log R¥

so that the means of both k and R are increased when sunspots affect
the equilibrium.

We have seen that for each of the examples considered in Section
I, indeterminary of a steady state is a sufficient condition for the
existence of a large number of stationary sunspot equilibria. A reader
might wonder, however, if the correct inference is not that "stability"
of the forward perfect foresight dynamics (as discussed by Gale [1973],
among others) is what guarantees the existence of stationary sunspot
equilibria, rather than indeterminacy being sufficient/when the two
properties do not coincide. For in the examples of Section I, a steady
state is indeterminate if and only if it is "stable", but in the case of
dynamical systems with more than one "jump variable," steady states may

be indeterminate without being "stable".
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A consideration of a general first order linear system of
difference equations indicates that indeterminacy suffices for the
existence of stationary sunspot equilibria, rather than "stability"

being necessary. Let us consider the system

Xt41 t
E¥ia Ve

where Xy is an m-vector of state variables, and yt is an n-vector
of "jump variables". Let us assume that the eigenvalues of M are
distinct, and that none have modulus exactly equal to one. Let
n® be the number of eigenvalues of M that lie inside the unit circle,
and let V be the stable shbspace of M, i.e., the nS—dimensional
subspace of Rm+n such that v € V implies 1im Mtv = 0.
Then the dimension of indeterminacy of perfectt;:resight equilibrium is
mx(n® - m, o); the steady state (xt =¥, =0 for all t) is
indeterminate if n° > m, buy only "stable" if n° = m + n. Tt ic
evident that indeterminacy suffices for the existence of stationary

sunspot equilibria. Such equilibria will be stochastic processes

described by a stochastic difference equation of the form

xt+1 xt 0
= M +
Ye41 Yy Ete1
vhere €t+1 is an n-vector of mean-zero finite-variance random

variables, independent of €q for all s # t + 1, and drawn from the

same Joint distribution each period. The process described by this
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equation represents a stationary equilibrium if and only if

0
(4.12) € v

€e41

for all realizations of ¢ If n° > m, there will exist in general

t+1°
an n° - m dimensional space of n-vectors e satisfying (4.12), and so
{Et+1} can be any mean-zero finite-variance random variable taking
values in that linear space. On the other hand, if nS < m, there will
in general exist no vectors e # 0 satisfying (4.12), so that, for a
generic matrix M, indeterminacy is both necessary and sufficient for
the exiétence.of stationary sunspot equilibria.

We conjecture that a similar result holds for nonlinear systems as
well. It is evident that, in general, existence of an indeterminate
steady state is not necessary for the existence of stationary sunspot
equilibria; the case depicted in Figure 6b is a counterexamplecgéj But
in that case, all the two-state Markov process equilibria that exist are
bounded away from the monetary steady state allocation (see Azariadis
and Guesnerie [198L4]). Our conjecture is therefore the following:
under certain regularity conditions, stationary sunspot equilibria exist
that remain within an arbitrarily small neighborhood of a deterministic
steady state, if and only if that steady state is indeterminate.
(Qualifications must be made about the type of sunspot equilibria that
are possible in the case of a purely "hyperinflationary" indeterminacy,

as in the discussion of Example 1, above.) We expect this to be true on

the ground that the possible equilibria remaining within an arbitrarily
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small neighborhood of the steady state ought, in the case of g
hyperbolic steady state, to be determined entirely by the linearized
equilibrium conditions at the steady state. This is a subject of

continuing research.

V. Responses to the Problem

The previous sections have established that the problem of
indeterminate perfect foresight equilibrium, and the related problem of
indeterminate rational expectations equilibrium when "sunspot" variables
are introduced, is quite robust, and cannot be avoided by simply
objecting to one or another "pathological" feature of Example 1 of
Section 1. As noted in the introduction, this means that the method of
comparative statics cannot be used in all cases to investigate the
effects of various shocks or policy interventions, without supplementary
conditions being added to the theory of competitive equilibrium.

This section discusses possible responses of the economic theorist
to this problem. The first subsection considers the possibility of a
"technical" solution, i.e., one that merely reinterprets the equilibrium
conditions or supplements them with additional stipulations, while still
accepting rational expectations equilibrium as the correct solution
concept for all competitive economies. The second subsection considers
the alternative presented by "learning" theories and ad hoc expectation
functions. The final subsection presents the point of view of greatest
appeal to the author. This is that the determinacy or indeterminacy of

perfect foresight equilibrium in a particular institutional context or
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under a particular policy regime should be an important desideratum in
institutional design and policy selection.

1. Technical Solutions

To some, a purely formal restriction upon the set of
equilibria, that succeeds in rendering equilibrium unique or at least
locally unique, is much preferable to an admission that "arbitrary" or
"non-economic" factors such as history or custom might determine which
of a large set of possible equilibria actually occurs. Others,

observing the large multiplicity of equilibria that often exists in

strategic games without a competitive market structure, and the relative

fruitlessness of the many efforts by game theorists to devise a

satisfactory formal eriterion that would render equilibrium unique, have

long since ceased to find the problem unsettling. The present section
considers some purely "technical" solutions that might appeal to persons
with the first viewpoint.

It is sometimes suggested that the set of perfect foresight

equilibria should be restricted to those equilibria that not only may be

extended indefinitely into the future without contradiction of any
equilibrium conditions or constraints, but that also may be extended
indefinitely back into the past. The logic of the proposal is not
clear; but, in any event, it does not resolve the problem. In Example
1, all the perfect foresight equilibria that start with O < z, < z¥

may be extended backwards to t = —=; for all of them, z, * z*® as

t + —=, In Example 2, all the perfect foresight equilibria with

z1 # z*, such that zt +2¥ as t > o, can be extended backward to
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t = —»; all of them approach the deterministic 2-cycle (displayed in
Figure 6a) as t + -». The same is true of Example 4. In Example 5,
all tﬁe perfect foresight equilibria that start with z%* < z, < z¥ can
be extended backwards to t = —», and all have z, * z¥ as t + <, In
Example 6, the dynamical equations (1.1) and (1.3) can be inverted to
give kt and Rt as functions of (kt+1’Rt+1)’ and these functions
map (0,») x (0,») into itself. This makes it clear that all the
perfect foresight equilibria of that example can be extended indefini-
tely into the past.

This suggestion is doubtless related to another common argument,
namely, that indeterminacy is no problem for equilibrium analysis
because in any given period the economy is already on one perfect
foresight equilibrium path or another, and so the "correct" equilibrium
of any point in time is uniquely picked out by what has already
happenedcgzj This position has various drawbacks. One is ambiguity
about which perfect foresight equilibrium path "continues" the past. A
standard exercise for which non-stationary perfect foresight equilibria
are considered concerns the response of the econony to some unexpected
shock, not expected to be repeated. In such a case, none of the
possible perfect foresight equilibrium paths after the shock can
properly be regarded as a continuation of the equilibrium that agents
had anticipated before the shock. If, on the other hand, one supposes
that the agents knew in advance that the shock might occur (with some

low probability), and acted then on the basis of an expectation that a

particular perfect foresight equilibrium would occur following the




-92-

shock, then the correct continuation of the previous rational
expectations equilibrium is whichever perfect foresight equilibrium
agents expected to occur in the case of the shock. But that could be
any of the possible perfect foresight equilibria. If the shock in
question was expected to occur with a sufficiently low probability, the
particular equilibrium expected to occur following the shock would have
an insignificant effect oﬁ agents' actions prior to the shock, in which
case the particular post-shock equilibrium expected could not be deduced
from an observation of the economy's history prior to the shock.
Another objection is that in the case of an economy like that
described in Example 1, where the monetary steady state is determinate,
the initial price level (if it is assumed to be given by history) must
be exactly right, or the econony will never reach the monetary steady
state. That is, the monetary steady state must be regarded as
"unstable", so that it is virtually inevitable that money will
eventually lose all value. Many would find this interpretation of the
model unpalatable. Hahn [1982] accepts it, however, and indeed argues
that active policy should be implemented in order to render the monetary
steady state indeterminate (i.e., "stable"), as a means to insure price
level stabilityfggj If the conjecture of Section IV is correct, an
economy subjected to Hahn-style "stabilization policy" would possess a
large multiplicity of stationary sunspot equilibria, while the same
economy without intervention would have none. Perhaps this is not too
high a price, if one really believes that the economy is certain to

approach autarchy without such a policy; but to us it seems that
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"stability" in this sense is not desirable if one believes in rational
expectations equilibriummggj

There are further problems with the notion that history determines
an initial price level for the post-shock perfect foresight
equilibrium. What if a shift in endowments lowers the level of z¥* in
Figure 1, with the result that the initial price level determined by
history (the previous steady-state price level) is lower than the new
steady-state price level? Then there is no perfect foresight
equilibrium consistent with the initial price level given by history.
Presumably history does not pick out the initial price level in such a
case; then how is it that history picks out the initial price level in
other cases? Or consider the econory of Example 3. Here perfect
foresight equilibrium is unique, so that in the event of & shock, the
initial post-shock Price of land must not be given by history, but
rather by the forward-looking requirement that it be possible to
continue the equilibrium indefinitely into the future. But why should
the initial value of money be given by history in Example 1, if not the
initial value of land in Example 3? This is particularly puzzling if
one considers that Example 1 is a limiting case of Example 3, in which
the land becomes completely unproductive but the title to land is still
exchanged as a storable means of Payment. And in Example 4 one finds
again that the initial price of land must be given by history, if
equilibrium is to be unique; but why in the case of preferences like
those in Example L4 if not in the case of preferences like those in

Example 3°?
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Geanakoplos and Polemarchakis {1983] calculate the effects of
policy interventions, using the method of comparative statics, in the
case of an overlapping generations model for which perfect foresight
equilibrium is indeterminate (a more complicated version of Example
6). They resolve the indeterminacy by assuming that the initial
period's nominal wage is predetermined (allegedly a "Keynesian"
assumption); regardless of the policy intervention chosen, the perfect
foresight equilibrium that is selected is the one with initial nominal
vage W e However, they are sensitive to the objections raised here,
and note that while there exists a rational expectations equilibrium in
which this is true (and is expected by all agents to be true, in advance
of the policy intervention), there also exist many other rational
expectations equilibria in which other perfect foresight equilibria are
picked out after the intervention. (For example, other prices or
quantities might as well be predetermined, rather than the nominal
wage). They are also careful to note that such a rational expectations
equilibrium is only possible if there exist perfect foresight equilibria
consistent with the same initial nominal wage W, under all the
different possible interventions; thus, for example, the existence of an
uncountable set of perfect foresight equilibria is crucial in order for
them to be able to stipulate the "Keynesian" predetermined nominal
wage. With these qualifications, their analysis is correct. But it is
not a resolution of the indeterminacy problem, in the absence of an
explanation of why that particular rational expectations equilibrium is

the "correct" one, rather than any other member of an extremely large
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set of equilibria. (There can even be an extremely large set of
stationary rational expectations equilibria, in the case of stationary
government interventions, as is shown by Farmer and Woodford [1984].)
Hence policy evaluation is still not possible on the basis of a complete
description of preferences, endowments, and technology alone; there is
an additional role for the arbitrary expectations of agents, in picking
out which rational expectations equilibrium actually occurs. (Of
course, the predetermined nominal wage equilibrium considered by
Geanakoplos and Polemarchakis‘nay not represent a purely arbitrary
expectation on the part of agents; perhaps reasons having to do with
informational structure could be given that would explain why this
equilibrium is feasible while others aré not. But Geanakoplos and
Polemarchakis offer no suggestions of this sort; nor is it clear that
the introduction of "institutional detai;" of that sort into the model
would leave unchanged the perfect foresight equilibrium conditions that
they assume mst be satisfied.)

Another possible "technical solution would rule out indeterminate
equilibria by definition. That is, one might propose that equilibrium
be defined to include only those perfect foresight equilibria such that
no other perfect foresight equilibria exist which remain uniformly close
to the given equilibrium. The Justification might be a sort of
"stability" argument--a candidate perfect foresight equilibrium would be
considered "unstable" if a small perturbation in an expected price far
in the future implies a very large change in the period one prices and

allocations. (Perhaps a story about how agents come to have the common
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expectations required for a perfect foresight equilibrium could be told,
such that the process would not converge to an equilibrium that is
"unstable" in this sense.) This criterion would have the advantage of
making the monetary steady state the unique equilibrium in Example 1”39/
Such a criterion might have some appeal if there always existed a
unique determinate steady state, as in Example 1. But there need not
exist any determinate steady state, as in Examples 2 and 4, 1In these
cases, however, there exists a determinate 2-period cycle. (Or, if the
offer curve bends back so sharply that the 2-period cycle is
indeterminate, there exists a determinate 4-period cycle, and so on.)
It might be thought sufficient that there exist some determinate
equilibrium cycle, perhaps of a large period. The result of Grandmont
[1983}, that for a particular class of one-good models that he treats in
details, no more than one determinate equilibrium cycle an exist, would
seem encouraging.élj But there need not exist any determinate

equilibrium cycle, as is shown by the following example.

Example 9. This is a special case of Example 2. Let the utility
function be u(y,z) =y + az - (b/2)z2, for allocations satisfying
z € a/b. Then the perfect foresight equilibrium dynamics must satisfy

zZ, = az - b22

£ 41 £41° Consider the case a = 4. Then, using the change

of variable Xy = 2/7 arc sin /bzt ¥, the perfect foresight equilibrium

dynamics may be written
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. 1
2xt+1 if 0 g xt+1 < >

1
2 - 2xt+l if 5 < Xi 41 <1

It is easily verified that this economy possesses an infinite number of
equilibrium cycles, including equilibrium cycles of every period. For

example, the repeating sequence of values

2k-t(mod k)

27+ 1

is a k-period cycle, for any positive integer k. It is also easily
verified that every cycle is unstable in the backwards perfect foresight
dynamics (since the function which gives Xy 8as a function of X1
has slope 12 at all points except xt+l = 1/2). Therefore every one
of this infinite number of equilibrium cycles is indetermnate. Besides
showing that perfect foresight equilibrium can be very indeterminate
indeed, this example shows that the demand that equilibrium be
determinate, to count as a proper equilibrium, may leave one with no
equilibria at all.

On the other hand, the proposed criterion may fail to reduce the
set of equilibria at all, even when that set is uncountably infinite.
Consider the economy of Example 6, in the case that y < 2/(1 - a). For
such an economy, every perfect foresight equilibrium is determinate, in
the sense that no other equilibrium remains uniformly close to it; any
two perfect foresight equilibria diverge eventually. Yet for this

economy, there exist an uncountably infinite number of perfect foresight

equilibria. We conclude that there is no suitable formal criterion
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which resolves the problem of indeterminate equilibrium in a

satisfactory manner. -

2. Temporary Competitive Equilibrium

Another possible response would be to abandon perfect
foresight equilibrium analysis altogether. The temporary competitive
equilibrium analysis advocated by Grandmont [1983b], and others before
him, would be an alternative. In the case of an econonmy like those of
Examples 1 and 2, for instance, Grandmont proposes that the perfect

foresight equilibrium condition

P
M
= + y( 1:')=O
Py " Pen
be replaced by the conditions
P
M t
(5.1) o Tyl =0
T pt+l
e ——
(5.2) Pryp = WP oPy_gseeespy o)

That is, the market clears each period, but young agents act on the
basis of expectations about the following period's price (Pi+l) that
may or may not coincide with the price that clears the market in the
following period (Pt+l)' Agents' expectations in each period are a
deterministic function of the price history; the forecasting function

¥ 1is arbitrarily specified as a part of the model, it being considered
one of "the important characteristics of the traders on the same level

as preferences, endowments and the like" (p.21). Under relatively weak
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assumptions (the most important being a bound on the elasticity of

p:+l with respect to pt), Grandmont proves the existence of a unique
temporary competitive equilibrium price function, pt = W(Pt—l""’Pt-T)’
that solves (5.1) and (5.2). There is then no problem of indeterminacy
of temporary competitive equilibrium; the past history of prices
determines a unique sequence of future prices in a straightforward
manner, .

One Jjustification for this approach is bresumably the argument
that there is no reason for rational agents to have correct expectations
of future prices, outside of a stationary equilibrium. Thus Grandmont
stipulates that his forecast function ¥ be such that in e periodic
equilibrium, expectations are always correct. However, the miltiplicity
of non~-stationary perfect foresight equilibria can be understood to
represent a multiplicity of stationary rational expectations
equilibria. Let us suppose that a certain economy with an indeterminate
steady state is subject to stochastic shocks that occur very
infrequently (i.e., the mean frequency of shocks is low compared to the
rate of convergence of berfect foresight equilibria to the indeterminate
steady state). Then in any stationary rational expectations equilibrium
of that economy, in which no random variables affect allocations except
the infrequent random shock just mentioned, the dynamic path followed by
prices and allocations in the time between any two shocks will be |
approximately g perféct foresight equilibrium path of the certainty

economy. And the miltiple non-stationary perfect foresight equilibria

will indicate the many different paths the economy can take, following a
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shock, in a stationary rational expectations equilibrium. Hence a
person who believes that expectations need only be correct in a
stationary equilibrium many nonetheless believe that the multiplicity of
perfect foresight equilibria in a case like Example 2'represents a
genuine multiplicity of possible equilibria. This, in our view, reduces
substantially the appeal of the temporary competitive equilibrium
approach.

It should also be emphasized that if one adoptis the temporary
competitive equilibrium approach, one must give up all hope of finding
conditions under which the welfare theorems of Walrasian equilibrium
theory are valid. Even if the sequence of temporary competitive
equilibria converges to a Pareto optimal steady state, the complete
intertemporal allocation will not be Pareto optimal, so that there could
be a role for Pareto-improving active policy outside the steady state.
Furthermore, the sequence of temporary competitive equilibria need never
converge to any stationary equilibrium in which expectations are
correct. Grandmont proves (for the one-good model with equilibrium
conditions (5.1) and (5.2)) that a perfect foresight equilibrium cycle
must be locally stable in the temporary competitive equilibrium dynamics
ifw: |

(1) The forecast function ¢ is consistent with all stationary

equilibria of period k; i.e., given any periodic price
history of period k, ¢ forecasts that the periodic sequence

will continue;
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(2) The forecast function ¢ is continuously differentiable, and
its elasticity with respect to its first argument satisfies a
certain bound,
(3) The forecast function ¢ is non-decreasing in all its
arguments, near any price history of period k; and
(4) The cycle of period k is a determinate perfect foresight
equilibrium.
But some economies have no determinate equilibrium cycle, as is shown by
Example 9. And even in the case of economies with a determinate cycle,
there is no single forecast function y which satisfies properties (1),
(2), and (3) for all possible cycle lengths. Hence there must be a
fortunate coincidence between the forecast function y that agents
happen to use, and the determinate periodic equilibrium that results
from their preferences and endowments, if even local convergence of the

sequence of temporary competitive equilibria is to be guaranteed.

3. Indeterminacy and Stabilization Policy

Another possible perspective would assume that perfect
foresight equilibrium is the correct equilibrium concept, when perfect
foresight equilibrium is determinate; but would hold that determinacy is
a desirable state of affairs, and a reasonable object of economic
policy. There are various possible reasons for wanting a determinate
equilibrium. One might believe that it is possible for rational agents
to compute the perfect foresight equilibrium, and so come to have the
correct (and common) expectations necessary for the perfect foresight

equilibrium to occur, when that equilibrium is at least locally unigue,
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but believe that agents would be unable to coordinate their expectations
in this way when perfect foresight equilibrium is indeterminate. Thus
one might desire determinacy in order to insure that a perfect foresight
equilibrium could in fact be achieved. This rationale is problematic
for two reasons. First of all, the story about how one supposes that
perfect foresight equilibria are achieved needs to be spelled out in
greater detail, so that it can be verified that indeterminacy prevents
any of the infinite set of indeterminate equilibria from being

reached. Second, most economies which have one or more sets of
indeterminate equilibria also have some determinate equilibrium., Thus,
in Example 2, even though the steady state is indeterminate, the
2-period cycle cycle may well be determinate; if it is not, there exists
a b-period cycle that may well be determinate, and so on. From the
point of view just suggested, the indeterminate monetary steady state in
Example 2 would not mean that no perfect foresight equilibrium could be
reached, only that it would not be one of the equilibria converging to
the monetary steady state, Instead, perhaps, the determinate 2-period
cycle would have to be considered the only attainable equilibrium of the
economy; but this provides no justification for a stabilization policy,
since that equilibrium is Pareto optimal.

A better reason for policy intervention to prevent indeterminacy
of equilibrium is the desire to prevent sunspot equilibria. If, as
conjectured in Section IV, indeterminacy always implies the existence of
a large number of stationary sunspot equilibria, then--since sunspot

equilibria are always inefficient--indeterminacy is undesirable. What
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one would really want, on these grounds, is a policy that could
guarantee the impossibility of sunspot equilibria. But if the
conjecture of Section IV is correct, eliminating the indeterminacy of a
steady state will at least guarantee the impossibility of sunspot
equilibria close to the steady state. This approach also provides a
rationale for Grandmont's [1983b] interest in active policies to prevent
equilibrium cycles. The equilibrium cycles themselves are Pareto
optimal, in the model he considers; but if cycles exist, then stationary
sunspot equilibria exist as well, as shown by Azariadis and Guesnerie
[1984].

The stabilization policy proposed by Grandmont [1983b], for an
econony like that of Example 2, works as follows. The monetary
authority pays out new money to the old each period in Proportion to the
money balances they held at the beginning of the period. If the rate of
nominal interest payments were predetermined, the set of perfect
foresight equilibrium allocations would be unchanged by any such policy,
as the proportional increase in money holdings could always be offset by
a proportional increase in the Price level. Grandmont proposes,
however, that the rate of nominal interest payments be made a function
of the price level in the Period in which the bayments are made, in
addition to depending upon the history of the economy. Monetary
policies of this sort are not neutral. The particular money supply rule

he suggests is

Moo Py
(5.3) M= ptﬂ(;t')g(g)
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where Mt is the nominal money stock in period t, Py is the money
price of the consumption good in period t, {p:} is a target sequence
of prices chosen by the authority (a constant rate of inflation, which
will correspond to the monetary steady state, with a constant rate of
growth of the money supply through interest payments on money balances),
and g is a smooth function satisfying g(1) =1, g'(v) < 0 and

|g(v) - 1] < € for all v » 0, where ¢ is a small positive number.

The period one money stock is chosen so that Ml/pi

-y(1). That is,
the target price level for period one will correspond to the level of
real balances associated with the monetary steady state.

If a perfect foresight equilibrium exists under such & policy, the
real rate of return on money balances held between periods t and
t +1 will be g(pt/pt). But then the equilibrium condition in

period t will be

M P
(5.4) =4 y(g(=2) =0
Py e Pg

In period one, P = pf satisfies this condition. Furthermore, it is
the unique solution. For in Example 2, the offer curve is backward
bending in the area of the monetary steady state, so that y(g) 1is an
increasing function of g for g near one; for ¢ chosen small
enough, g canbonly vary over an interval on which y(g) is an
increasing function, so that y(g(pt/p:)) is a decreasing function of
Py ‘Hence the left hand side of (5.4), for t = 1, is a decreasing
function of Pq1s and the solution Pl = pI is unique. But if in any

period by = pt, it follows that
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M
Pes

M
= —E = _y(l)
Py

so0 that Py = P%+l will be the unique equilibrium price in period
t +1 as well. Hence the unique perfect foresight equilibrium is
Py = pg for all t.

Grandmont's object is to show that statilization policy can rule
out equilibrium cycles. But it is clear that the proposed policy rules
out indeterminacy as well, Furthermore, it prevents the existence of
sunspot equilibria in this model, stationary or otherwise. For under
the policy rule given by (5.3), the rate of return to holding money
balances in period t is known with certainty, regardless of whether
Py, 1s stochastic or not; but then (5.4) determines p, uniquely, as
discussed above. There is thus no point at which the realization of a
sunspot variable can affect any prices or allocations.

Nor is this the only kind of active policy that can render the
monetary steady state determinate in Example 2. Suppose that, in
accordance with many familiar treatments of monetary policy, the
monetary authority is not allowed to react so quickly to price movements
as 1is required by the Grandmont policy. Suppose, in particular, that
the money stock in period t + 1 must be determined by the history up
to and including period t. Then if money supply variations occur
through interest payments on money balances, monetary policy cannot
alter the set of perfect foresight equilibria. If, on the other hand,
the money supply is altered by means of lump-sum taxes and transfers,

monetary policy has real effects.
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Suppose that the transfers (if any) are made to the young each
period, and similarly that taxes (if any) are levied upon the young.

Then the budget constraint of a member of generation t is

' ' -
Pe¥y ¥ PryyZeer S Mg - My

Let the excess demand function of a young agent then be
y(pt/pt+l’(Mt - Mt—l)/Pt)° As before, let us assume that the excess
demand function is smooth. The perfect foresight equilibrium condition

for period t, in the case of active policy, is

Mt—l Pt M -M
+ y( ,
Py Pry1 Py

(5.5)

Let us consider a particularly simple class of monetary policies,

M, = f(pt-l)' Then (5.5) becomes

£(p, ) P
(5.6) S22 4y
Py

. Tpp ;) - e, )

9
Pri1 Py

] =0

This is a third-order nonlinear difference equation for Py Let us
suppose that there exists a price level p¥ > 0 such that f£(p*) =
-p*y(1,0). This price level corresponds to the monetary steady state.

The determinacy of the steady state is investigated by linearizing

(5.6) around it. This yields
(1 -y )" [y 5 = p*] + (yf') o - p*l + (v +¥)p, - p*]
- ¥lpgy, -p*l =0

where Y1 and y, are the partial derivatives of y with respect to
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its first and second arguments, and Yy, yl, y2, f' are evaluated at the
monetary steady state. We are therefore interested in the roots of the

characteristic polynomial
P(A) = (-7 022 + (3, + y)a2 + (yo£')n + ((2 = y)£")
= 1 1 2 2

It follows from concavity of the utility function that A < Y¥oe The
assumption that both periods' consumétion are normal goods implies
0 < Yo <1 and ¥y + ¥y < 0. The assumption that the offer curve bends
backward sharply enough for the monetary steady state to be
indeterminate (under a passive monetary policy) implies Yo < 1/2,
y; > 0, and 2y, +y > 0. These inequalities imply that P(A) has only
real roots for all f' > 0. One root is zero for f' = 0, between zero
and one for 0 < f' < f/p*, and greater than one for f' > f/p*. A
second root is zero for f' = 0, and between zero and -(1 - y2)/y2
(hence between zero and -1) for all f' > 0. The third root is equal
to (yl + y)/yl for f' = 0, between (y1 + y)/yl and -1 (hence
between zero and -1) for 0 < f' < (2yl + y)/(2y2 - 1), and less than
-1 for f' > (2yl + y)/(2y2 - 1). It follows that the stable manifold
of the monetary steady state is of dimension three for 0 < f' <
(2yl + y)/(2y2 - 1), of dimension two for (2yl + y)/(2y2 - 1) < f' < f/p*,
and of dimension one for f' > f/p*., (The borderline cases will not be
treated here, as they require consideration of higher-order terms in the
Taylor expansion of the equilibrium conditions (5.6).)

The perfect foresight dynamics must satisfy two initial

conditions, in addition to satisfying (5.6) for t = 3,4,..., namely



1
_0+y(—9 O)=0
Py Poo By
Ml E& f(pl) M1
PNREAT P ) =0
2 3 1

where M0 is the nominal money holdings of generation zero at the

beginning of period one, and Ml

generation one. (The monetary authority gives the young of generation

is the nominal money holdings of

one a lump-sum transfer in the amount Ml - MO; this transfer must be
specified in addition to the function f(p), since there is no previous
period's price to use in period one. Alternatively, if one supposes
that MO and Ml are given by the same function f(p), using
historical prices P_y and Py» then there are again two initial
conditions, the historical values of P_; and po.) Hence a two-

dimensional stable manifold is required for exact determinacy, and the

monetary steady state is

- indeterminate under policies with 0 ¢ f' < (2y1 + y)/(2y2 -1);

- exactly determinate under policies with

(23rl + y)/(2y2 - 1) < f£' < f/p¥

- unstable under policies with f£' > f/p*.

Thus for an economy like that of Example 2, while a passive monetary
policy (which means f' = 0) means that the monetary steady state will
be indeterminate, there exist active policies under which the monetary
steady state will be determinate, even if the transfers or taxes in each

period are required to be predetermined. Note that in the notation used
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above, the slope of the offer curve through the monetary steady state in
Figure 2 is S = (yl +y)/y. Thus, as S approaches -1, 2yl +y
approaches zero, so that the lower bound on f' consistent with
determinacy approaches zero. The degree to which Mt must respond to
the previous period's price level is greater the more flat the offer
curve at the monetary steady state; if the slope is more negative than
=1, f' =0 1is consistent with determinacy.

Note also that the Policy needed in order to insure determinacy of
the monetary steady state for a glven economy need not be finely
adjusted to the Properties of the economy. There is an entire range of
Possible policies that will suffice, for any given economy ; hence no
very precise knowledge of the preferences and endowments of agents is
needed by the monetary authority in order to insure determinacy.

It is not easy to check whether stationary sunspot equilibria
exist under an active policy of the sort Just considered. Certainly
they exist in the case of a passive monetary policy, for in that case
there exist two-state Markov process equilibria, as shown in Section
IV. Two-state Markov brocess equilibria do not exist in the case of the
active policies, because of the lags introduced into the equilidbrium
conditions by the dependence of each period's money supply on the
previous period's price level. But this does not mean that stationary
sunspot equilibria of other sorts do not exist; more bowerful methods
will be required to address this question. If the conjecture of Section
IV is correct, then the bolicies that suffice to render the monetary

steady state determinate in the class of perfect foresight equilibria
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will also rule out stationary sunspot equilibria near the monetary
steady state. There might still exist other stationary sunspot

equilibria. This is a topic for further research.

Conclusion

It has been shown that the problem of indeterminate perfect
foresight equilibrium in overlapping generations models is robust. The
problem is not simply a reflection of pathological aspects of a model of
fiat money in which such money serves only as a store of wealth; it can
occur in models without money, and in the case of monetary equilibria in
which money has a value bounded away from zero forever. It can occur in
production economies as well as exchange economies, in economies. with
non-depreciating assets as well as in economies where all commodities
are perishable, and even in economies in which some agents behave like
infinite lived consumers.

On the other hand, and Just as important, it has been shown that
indeterminacy is not ubiquitous. There exist robust examples of |
infinite horizon models with overlapping generations of consumers in
which there do not exist multiple perfect foresight equilibria (e.g.,
Example 3 of Section I). This is important because it allows for the
possibility of using determinacy of equilibrium as a criterion for the
choice of policy regime. For among the parameters which determine
whether equilibrium is indeterminate or not may well be parameters which
are policy instruments. The two examples in Section VI show that this

may be the case.
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This survey has also suggested, through a consideration of several
examples, that indeterminacy of perfect foresight equilibrium is a
sufficient condition for the existence of stationary sunspot equilibria.
This is an important topic for further research. The connection, if it
can be established in general, will be important for several reasons.

On the one hand, it would provide further reasons for regarding
indeterminacy of perfect foresight equilibrium as a serious problem, and
for seeking to insure determinacy through active policy if necessary.

It shows that indeterminacy is a problem even if one believes that
agents can only be expected to have correct expectations in the case of
& stationary equilibrium; that the possible influence of self-fulfilling
expectations upon equilibrium allocations in the case of indeterminacy
is not a merely transient one; and that indeterminacy implies the
existence of a large number of inefficient rational expectations
equilibria. On the other hand, it would allow many things to be learned
about stationary sunspot equilibria--conditions for their existence,
types of policies that make them possible or that rule them out —-
through an analysis of the much more tractable problem of perfect

foresight equilibrium, of the sort taken up in Section II.
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Footnotes

¥My understanding of the issues treated here has developed over the
course of numerous conversatins with Costas Azariadis, Jess Benhabib,
Guillermo Calvo, Roger Farmer, John Geanakoplos, Jean-Michel Grandmont,
Tim Kehoe, David Levine, Walter Muller, Heraklis Polemarchakis, and Karl
Shell. Errors and eccentricities of the present exposition are mine
alone. I would also like to acknowledge the generous support of the
John D. and Catherine T. MacArthur Foundation.

1/ Gale makes a similar distinction between the two steady states,
but he calls the non-monetary steady state stable and the monetary
steady state unstable, and appears to believe that for this reason
the monetary steady state should be disregarded, as unlikely to
actually be reached. This interpretation of perfect foresight
equilibrium dynamics is discussed in Section V.

gj Certain general propositions mentioned below, however, might fail
to be true under a more comprehensive definition of indeterminacy.
For example, it may be established that a Pareto optimal steady
state cannot be indeterminate in the sense proposed here unless
income effects are sufficiently important. Yet there may exist an
uncountable number of perfect foresight equilibria in a model
where income effects are modest, that do not converge asympto-
tically to the steady state. See the discussion of Example 6.

3/ A common justification for the inclusion of infinite-horizon
maximizers is the Barro [1974] suggestion that if agents care
about the welfare of their descendants, and expect them in turn to
care about the welfare of their own descendants, and so on, the
intertemporal consumption and savings choices of the members of

such a "dynasty" may mimic those of a single infinite-lived
consumer,

L/ The "land" considered here is thus different from the asset that
exists in the first example of Calvo [1978]. Calvo's land is a
non-depreciating fixed factor of production, but labor input is
also required for production. Scheinkman [1980) considers an
asset which is the same as Calvo's land. The "land" considered
here is one of the types of "rent" considered by Tirole [198k4].

5/ For a proof in the case of a general stationary overlapping
generations exchange economy, see Muller and Woodford {1983]. In
the language of Tirole [1984], the existence of "rents" of this
sort rules out the existence of speculative "bubbles", of which
valued fiat money would be an example. Tirole provides further
discussion of some situations in which valued fiat money can
coexist with "rents". He shows that there may exist equilibria
with valued fiat money if the population is growing while the
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amount of land in existence is fixed, if there is technological

progress, or if the quantity of "rents" in existence grows at the
same rate as the population but the new "rents" in each period are
part of the endowment of agents born in that period.

For a proof that the existence of any amount of land rules out
inefficient equilibria in the overlapping generations model with
constant population, see Muller and Woodford [1983]. Tirole
[198h] states a similar result in the context of his model, and
Karl Shell advises us that this result has attained the status of
a "folk theorem." Scheinkman [1980] proves a similar result, for
& one-good model, in the case of a non-depreciating fixed factor
of production. A theorem of this sort applicable to non-
stationary economies as well is given by Wilson [1981], if one
interprets "land" as the endowment of an infinite lived agent, as
discussed below. Wilson shows that if there exists an ¢ > 0
such that the yield of the land is more than fraction ¢ of the
total available good each period, equilibrium will be Pareto
optimal.

In fact, the basic idea of the example, that inflation-financed
government expenditure can lead to indeterminacy of perfect
foresight equilibrium, is due to Black [1974], who demonstrates
this in the case of an &ad hoc money demand function, rather than
in an overlapping generations model.,

Sargent calls steady state z%* "stable", and z¥* "unstable",

thus following Gale's usage, and seeming to imply that z** jig

the steady state to which the econony must tend. In this,

TurioTsly enough, he ignores the arguments of Sargent and Wallace
1973 L ]

Note, however, that the indeterminate monetary steady state in
this example is not Pareto optimal. In fact, as is discussed in
Section II, it is hecessary that income effects be important if a
Pareto optimal steady state is to be indeterminate.

Geanakoplos and Polemarchakis discuss the perfect foresight
equilibrium that exist for this model with valued fiat money.

Gale [1973] distinguishes these two classes, calling the former
"golden rule" steady states, and the latter "balanced" steady
states. Grandmont [1983a] follows this terminology. Kehoe and
Levine [1982, 1983a, 1983b] call the former "nominal" steady
states, and the latter "real" steady states. We follow here the
terminology of Muller and Woodford 11983, 1984), which coincides
with the traditional distinetion between "monetary" and "non-
monetary" perfect foresight equilibria. It would perhaps be more
accurate to characterize the "non-monetary" steady states as
equilibria in which there is no outside money; agents may lend to
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and borrow from one another in a steady state of this sort.

The matrix G in Kehoe and Levine [1982, 1983b] is closely
related to this one, but not identical. Thelr matrix is the
linearization of the mapping which gives p.,) as a function
of (pl,p ). Hence stable eigenvalues, for %he% are eigenvalues
of modilus less than B, rather than eigenvalues inside the unit
circle. The notation used here allows use of the more familiar
stability criterion.

The criterion for Pareto optimality used here is a special case of
that derived in Balasko and Shell [1980].

This argument assumes that 1/8 1is not a repeated eigenvalue.,
Kehoe and Levine [1983b] show that generically the eigenvalues
of G are distinct.

In fact, g'a - ptz(p l’Pt) = 0 along any perfect foresight
equilibrium path, regardless of whether it converges asymptoti-
cally to a steady state. This is why a monetary equilibrium is
impossible when there exists non-depreciating land and population
is constant. See Muller and Woodford [1983].

Various qualifications must be made to this claim. For example,
if there exist production technologies which allow consumption
goods within a single period to be transformed into one another,
and these technologies are used in the steady state under
consideration, then each such technology effectively reduces the
number of goods per period by one, and as a result the upper bound
on the possible dimension of indeterminacy is correspondingly
reduced. As another example, if there exist independent constant
returns to scale production technologies, all used in the steady
state under consideration, equal in number to the number of goods
per period, then the conditions for each of these technologies to
earn zero profits each period suffice to determine the entire
sequence of prices, given any initial prices p,. It can then be
the eigenvalues of G must be such that exactly half have modulus

less than 8 2, as in the literature on "Hamiltonian dynamical
systems" in optimal growth theory. This makes indeterminacy
impossible, in the case of Pareto optimal steady states (g < 1).
However, the existence of any number less than n of independent
technologies used in the steady state, implies no restrictions on
the possible dimension of indeterminacy. See Muller and Woodford

[1984].

Muller and Woodford [1983] prove that some steady state must
always exist for a stationary economy with both finite and
infinite lived agents, but it need not be one in which any of the
infinite lived agents consume. It should be obvious that a steady
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state in which infinite lived agents consume will not be possible,
if they all discount the future to a sufficiently great extent.

If there exist H > 1 infinite lived agents with distinct
preferences and endowments, then there will remain H - 1 budget
constraints that must be imposed as equilibrium conditions, in
addition to the conditions corresponding to (2.12) and (2.13).
However, because there are an additional H - 1 state variables
in that case as well (a distinct A, for each infinite lived
agent), the results derived below as to the possible dimension of
indeterminacy are unchanged. See Muller and Woodford [1984].

Muller and Woodford [1984] extend this analysis to the case of an
economy with an arbitrary number of production_technologies. 1In
the case with production, one need not have n- = n, but one can
sggyethat exactlyshalf the eigenvalues will have modulus less than
8 s 80 that n~ ¢ n. Thus indeterminacy remains impossible,
although it is possible for the steady state to be unstable, as in
the example of Benhabib and Nishimura [198k4], discussed in Section
III.

Grandmont speaks not of determinacy, but of the stability of the

backward perfect foresight dynamics. Thus his "¢-stability"

corresponds to determinacy of equilibrium, in the terminology of
this paper. He is not concerned with determinacy because he does
not consider the perfect foresight dynamics to represent the
actual dynamics of the economy, other than in the case of a
stationary equilibrium. He considers the "¢~-stability" of
equilibrium cycles only as a device used to learn about the
stability of temporary competitive equilibrium dynamics.

However, there may be very many such equilibria. Grandmont
[1983b] shows that there exist robust examples with an infinite
set of periodic equilibria.

Thus Calvo [1978] states that the problem of indeterminacy

indicates that the "general equilibrium approach is not sufficient

for uniquely determining the path of income distribution," but
then notes that "since in our examples all equilibrium paths
converge to the same steady state, they do not necessarily
contradict the view that the Walras-Fisher approach is sufficient
for uniguely determining income distribution in the long run."
The examples of the present section, especially the reconside-
ration of Example 6, show that, to the contrary, the relative
rewards of capital and labor may be indeterminate forever.

He states the condition as one of "local stability" rather than of
indeterminacy. -
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Nor are finite-state Markov processes the only possible sunspot
equilibria. Sunspot equilibria corresponding to Markov processes
on a continuous state space can be shown to exist for this model
using the method demonstrated in Farmer and Woodford [1984].

I am indebted to Karl Shell for this insight.

However, in that case, one of the 2-period deterministic cycles is
indeterminate. Hence no counterexamples are known to the
proposition that stationary sunspot equilibria exist only when
there exists some indeterminate periodic equilibrium of period one
or greater., :

This is presumably the reason for the usage of Gale [1973] and
others, who describe indeterminate steady states of the sort-
discussed in Section I as "stable." This point of view is
explicitly assumed by Hahn [1982], and a related view is expressed
by Geanakoplos and Polemarchakis [1983]. Both of these papers
assume that the perfect foresight equilibrium that occurs is
picked out by some predetermined initial price level, and that
this price level is unchanged by a policy intervention that alters
the set of equilbria. Geanakoplos and Polemarchakis, however,
qualify their interpretation of this solution in ways discussed
below,.

Hahn [1982], pp. 1L4-15.

If one uses, instead, a temporary competitive equilibrium
framework, as discussed in the following subsection, then
stability is desirable--but in the temporary competitive
equilibrium dynamics, not in the forward perfect foresight
equilibrium dynamics. Indeed, Grandmont [1983b] shows that it is
instability of the forward perfect foresight dynamics (i.e.,
determinacy) that guarantees stability of temporary competitive
equilibrium dynamics for a wide class of forecasting functions.
See the discussion in subsection 2 below.

It would also correspond to a common practice in rational
expectations macroeconomics (never clearly Justified), of
selecting the rational expectatins equilibrium path that converges
to a steady state with the "saddle point" property as "the"
equilibrium, even when there are no explicit equilibrium
conditions (such as transversality conditions) that are violated
by other paths. See the discussion by Calvo [1978], who seems to
state that the rational expectations equilibrium methodology can
only be applied to a model with a determinate equilibrium, so that
the assumption that the world is like that becomes a testable
implication of the rational expectations hypothesis.
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There is no reason, however, to expect such a result to be true
for multi-good models. 1In fact, the class of economies Grandmont
considers is somewhat restrictive, even among one-good overlapping
generations models. The example of Figure 6b, for instance, shows
an economy with two determinate cycles (the steady state and one
of the 2-period cycles).
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