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Abstract: The paper considers optimal monetary stabilization policy in a forward-

looking model, when the central bank recognizes that private-sector expectations need

not be precisely model-consistent, and wishes to choose a policy that will be as good

as possible in the case of any beliefs that are close enough to model-consistency. It

is found that commitment continues to be important for optimal policy, that the

optimal long-run inflation target is unaffected by the degree of potential distortion

of beliefs, and that optimal policy is even more history-dependent than if rational

expectations are assumed.
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An extensive literature has considered the optimal conduct of monetary policy

under the assumption of rational (or model-consistent) expectations. This literature

has found that it is quite important to take account of the effects of the systematic

(and hence predictable) component of monetary policy on expectations. For example,

it is found quite generally that an optimal policy commitment differs from the policy

that would be chosen through a sequential optimization procedure with no advance

commitment of future policy. It is also found quite generally that optimal policy is

history-dependent — a function of past conditions that no longer affect the degree

to which it would be possible to achieve stabilization aims from the present time
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onward.1

Both of these conclusions, however, depend critically on the idea that an ad-

vance commitment of future policy should change people’s expectations at earlier

dates. This may lead to the fear that analyses that assume rational expectations

(RE) exaggerate the degree to which a policy authority can rely upon private-sector

expectations to be shaped by its policy commitments in precisely the way that it

expects them to be. What if the relation between what a central bank plans to do

and what the public will expect to happen is not quite so predictable? Might both

the case for advance commitment of policy and the case for history-dependent policy

be considerably weakened under a more skeptical view of the precision with which

the public’s expectations can be predicted?

One way of relaxing the assumption of rational expectations is to model agents as

forecasting using an econometric model, the coefficients of which they must estimate

using data observed prior to some date; sampling error will then result in forecasts

that depart somewhat from precise consistency with the analyst’s model.2 However,

selecting a monetary policy rule on the basis of its performance under a specific model

of “learning” runs the risk of exaggerating the degree to which the policy analyst

can predict and hence exploit the forecasting errors that result from a particular

way of extrapolating from past observations. One might even conclude that the

optimal policy under learning achieves an outcome better than any possible rational-

expectations equilibrium, by inducing systematic forecasting errors of a kind that

happen to serve the central bank’s stabilization objectives. But if such a policy were

shown to be possible under some model of learning considered to be plausible (or

even consistent with historical data), would it really make sense to conduct policy

accordingly, relying on the public to continue making precisely the mistakes that the

policy is designed to exploit?

It was exactly this kind of assumption of superior knowledge on the part of the

policy analyst that the rational expectations hypothesis was intended to prevent.

Yet as just argued, the assumption of RE also implies an extraordinary ability on the

part of the policy analyst to predict exactly what the public will be expecting when

1Both points are discussed extensively in Woodford (2003, chap. 7).
2Examples of monetary policy analysis under assumptions of this kind about private-sector ex-

pectations include Athanasios Orphanides and John C. Williams (2005, 2007) and Vitor Gaspar,
Frank Smets and David Vestin (2006).
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policy is conducted in a particular way. In this paper, I propose instead an approach

to policy analysis that does not assume that the central bank can be certain exactly

what the public will expect if it chooses to conduct policy in a certain way. Yet neither

does it neglect the fact that people are likely to catch on, at least to some extent, to

systematic patterns created by policy, in analyzing the effects of alternative policies.

In this approach, the policy analyst assumes that private-sector expectations should

not be too different from what her model would predict under the contemplated policy

— people are assumed to have near-rational expectations (NRE). But it is recognized

that a range of different beliefs would all qualify as NRE. The CB is then advised to

choose a policy that would not result in too bad an outcome under any NRE, i.e., a

robustly optimal policy given the uncertainty about private-sector expectations.

NRE are given a precise meaning here by specifying a quantitative measure of

the degree of discrepancy between the private-sector beliefs and the those of the

central bank; the policy analyst entertains the possibility of any probability beliefs

on the part of the private sector that are not too distant from the bank’s under this

(discounted relative entropy) measure. A robustly optimal policy is then the solution

to a min-max problem, in which the policy analyst chooses a policy to minimize the

value of her loss function in the case of those distorted beliefs that would maximize

her expected losses under that policy.

Both this way of specifying the set of contemplated misperceptions and the con-

ception of robust policy choice as a minmax problem follow the work of Lars Peter

Hansen and Thomas J. Sargent (2007b). The robust policy problem considered here

has some different elements, however, from the type of problems generally considered

in the work of Hansen and Sargent. Their primary interest (as in the engineering

literature on robust control) has been in the consequences of a policy analyst’s un-

certainty about the correctness of her own model of the economy,3 rather than about

the degree to which the private sector’s expectations will agree with its own. Much of

the available theory has been developed for cases in which private sector expectations

are not an issue at all.

Hansen and Sargent (2003; 2007b, chap. 16) do discuss a class of “Stackelberg

problems” in which a “leader” chooses a policy taking into account not only the op-

timizing response of the “follower” to the policy, but also the fact that the follower

3Of course, I do not mean to minimize the relevance of this kind of uncertainty for practical
policy analysis, even though I abstract from it here in order to focus on a different issue.
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optimizes under distorted beliefs (i.e., distorted from the point of view of the leader),

as a result of the follower’s concern for possible model misspecification.4 The problem

considered here is similar, except that here the policy analyst is worried about the

NRE beliefs that would be worst for her own objectives, while in the Hansen-Sargent

game, the leader anticipates that the follower will act on the basis of the distorted

beliefs that would imply the worst outcome for the follower himself.5 Anastasios G.

Karantounias, Hansen and Sargent (2007) consider an optimal dynamic fiscal policy

problem, in which private sector expectations of future policy are a determinant of

the effects of policy, as here.6 But again the concern is with possible misspecification

of the policy analyst’s model, and since in this case the objective of the policy analyst

and the representative private household are assumed to be the same, the misspecifi-

cations about which both the policy analyst and households are assumed to be most

concerned are the same.

One might think that this difference should not matter in practice, if the policy

analyst’s objective coincides with that of the private sector — as one might think

should be the case in an analysis of optimal policy from the standpoint of public

welfare. But in the application to monetary stabilization policy below, the private

sector is not really a single agent, even though I assume that all price-setters share

the same distorted beliefs. It is not clear that allowing for a concern for robustness

on the part of individual price-setters would lead to their each optimizing in response

to common distorted beliefs, that coincide with those beliefs under which average

expected utility is lowest.

But more crucially, even in a case where the private sector is made up of identical

agents who each solve precisely the same problem, the distorted beliefs that matter in

the Hansen-Sargent analysis are those that result in an equilibrium with the greatest

subjective losses from the point of view of the private sector. In the problem consid-

4Hansen and Sargent also allow for a concern with potential misspecification on the part of the
leader, but in the limiting case of their setup in which Θ = ∞ while θ < ∞, only the follower
contemplates that the common “approximating model” may be incorrect; the leader regards it as
correct, but takes account of the effect on the follower’s behavior of the follower’s concern that the
model may be incorrect.

5I also consider a different class of possible distorted probability beliefs (Hansen and Sargent allow
only for shifts in the mean of the conditional distribution of possible values for the disturbances)
and use a different measure of the degree of distortion of PS beliefs (relative entropy).

6See also Justin Svec (2008) for analysis of a similar problem.
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ered here, instead, the NRE beliefs that matter are those that result in an equilibrium

with the greatest expected losses under the central bank’s probability beliefs. Even

if the loss function is identical for the central bank and the private sector, I assume

that it is the policy analyst’s evaluation of expected losses that matters for robust

policy analysis.

A number of papers have also considered the consequences of a concern for ro-

bustness for optimal monetary policy using a “new Keynesian” model of the effects

of monetary policy similar to the one assumed below (e.g., Richard Dennis, 2007; Kai

Leitemo and Ulf Söderström, 2008; Carl E. Walsh, 2004).7 Like Hansen, Sargent,

and co-authors, these authors assume that the problem is the policy analyst’s doubt

about the correctness of her own model, and assume that in the policy analyst’s

“worst case” analysis, private-sector expectations are expected to be based on the

same alternative model as she fears is correct. These papers also model the class of

contemplated misspecifications differently than is done here, and (in the case of both

Dennis and Leitemo-Soderstrom) assume discretionary optimization on the part of

the central bank, rather than analyzing an optimal policy commitment. Nonetheless,

it is interesting to observe some qualitative similarities of the conclusions reached by

these authors and the ones obtained below on the basis of other considerations.8

Section 1 introduces the policy problem that I wish to analyze, defining “near-

rational expectations” and a concept of robustly optimal policy. Section 2 then

characterizes the robustly optimal policy commitment. Section 3 considers, for com-

parison, policy in a Markov perfect equilibrium under discretion, in order to inves-

tigate the degree to which commitment improves policy in the case of near-rational

expectations. Section 4 concludes.

7An early contribution to this literature, Marc P. Giannoni (2002), considers a problem even
less closely related to the problem treated here. Not only is Giannoni concerned with potential
misspecification of the cental bank’s model, but the policies considered are restricted to parametric
families of interest-rate reaction functions.

8For example, in three of the four cases considered by Leitemo and Soderstrom (2008), they
find that optimizing policy will allow less response of inflation to “cost-push” shocks than would
occur in the absence of a concern for robustness, as is also true here, both under a robustly optimal
commitment and in a robust Markov perfect equilibrium.

5



1 Stabilization Policy with Near-Rational

Expectations

Here I develop the general idea sketched above in the context of a specific example,

that weakens the assumption regarding private-sector expectations in the well-known

analysis by Richard Clarida, Jordi Gali and Mark Gertler (1999) of optimal mone-

tary policy in response to “cost-push shocks.” This example is chosen because the

results under the assumption of rational expectations will already be familiar to many

readers.

1.1 The Objective of Policy

It is assumed that the central bank can bring about any desired state-contingent

evolution of inflation πt and of the output gap xt consistent with the aggregate-supply

relation

πt = κxt + βÊtπt+1 + ut, (1)

where κ > 0, 0 < β < 1, Êt[·] denotes the common (distorted) expectations of the

private sector (more specifically, of price-setters — I shall call these PS expectations)

conditional on the state of the world in period t, and ut is an exogenous cost-push

shock. The analysis is here simplified by assuming that all PS agents have com-

mon expectations (though these may not be model-consistent); given this, the usual

derivation9 of (1) as a log-linear approximation to an equilibrium relation implied by

optimizing price-setting behavior follows just as under the assumption of RE.

The central bank’s (CB) policy objective is minimization of a discounted loss

function

E−1

∑
t=0

βt 1

2
[π2

t + λ(xt − x∗)2] (2)

where λ > 0, x∗ ≥ 0, and the discount factor β is the same as in (1). Here Et[·]
denotes the conditional expectation of a variable under the CB beliefs, which the

policy analyst treats as the “true” probabilities, since the analysis is conducted from

the point of view of the CB, which wishes to consider the effects of alternative possible

policies. (The condition expectation is taken with respect to the economy’s state at

date -1, i.e., before the realization of the period zero disturbance.) I do not allow

9See, e.g., Woodford (2003, chap. 3).
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for any uncertainty on the part of the CB about the probability with which various

“objective” states of the world (histories of exogenous disturbances) occur, in order to

focus on the issue of uncertainty about PS expectations.10 The CB believes that the

exogenous state ut is drawn independently each period from a normal distribution;

specifically, it believes that

ut = σuwt, (3)

where wt is distributed i.i.d. N(0, 1).11 Note that this property of the joint distribution

of the {ut} is not assumed to be correctly understood by the PS.

I shall suppose that the central bank chooses (once and for all, at some initial

date) a state-contingent policy πt = π(ht), where ht ≡ (wt, wt−1, . . .) is the history

of realizations of the economy’s exogenous state. I assume that commitment of this

kind is possible, to the extent that it proves to be desirable; and we shall see that

it is desirable to commit in advance to a policy different from the one that would

be chosen ex post, once any effects of one’s decision on prior inflation expectations

could be neglected. I also assume that there is no problem for the central bank

in implementing the state-contingent inflation rate that it has chosen, once a given

situation ht is reached.12 This is likely to require that someone in the central bank

can observe exactly what PS inflation expectations are at the time of implementation

of the policy (in order to determine the nominal interest rate required to bring about

a certain rate of inflation);13 I assume uncertainty about PS expectations only at

10Thus I abstract here from the main kind of uncertainty considered by Hansen and Sargent
(2007b).

11This notation allows us to consider the effects of variation in the volatility of the cost-push
shocks, without changing the CB beliefs about the probability of different states identified by his-
tories {wt}.

12Even so, the assumption that the central bank commits itself to a state-contingent path for
inflation, rather than to a Taylor rule or to the satisfaction of some other form of target criterion,
is not innocuous. Using this representation of the policy commitment would be innocuous in a RE
analysis like that of Clarida et al. (1999), since one is effectively choosing from among all possible
REE. But here different representations of policy need not always lead to the same set of equilibrium
allocations being consistent with near-rational expectations. This raises the question of which form
of policy commitment is most robust to potential departures from rational expectations, a topic to
be addressed in future work. It should not be assumed that the robustly optimal strategy within
this class is necessarily also optimal within some broader class of specifications.

13In general, implementation of a desired state-contingent inflation rate regardless of the nature
of (possibly distorted) PS inflation expectations requires the central bank to directly monitor and
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the time of selection of the state-contingent policy commitment. Note that any such

strategy π(·) implies a uniquely defined state-contingent evolution of both inflation

and the output gap (given PS beliefs), using equation (1), and thus a well-defined

value for CB expected losses (2).

The analysis is made considerably more tractable if the set of contemplated strate-

gies is further restricted. A linear policy is one under which the planned inflation

target at each date is a linear function of the history of shocks,

πt = αt +
t∑

j=0

φj,twt−j, (4)

for some coefficients {αt, φj,t} that may be time-varying, but evolve deterministically,

rather than themselves depending on the history of shocks. Restriction of attention

to policies in this class has the advantage that a closed-form solution for the worst-

case near-rational beliefs is possible, as shown in section 2.14 And the optimal policy

under rational expectations (RE), characterized by Clarida et al. (1999), belongs

to this family of policies. In the case of a concern for robustness with respect to

near-rational expectations, the restriction to linear policies is no longer innocuous.

But the characterization of robustly optimal policy within this class of policies is

nonetheless of interest. As we shall see, the optimal policy under RE is no longer the

optimal choice, even within this restricted class of policies, and the coefficients of the

robustly optimal linear policy rule provide a convenient parameterization of the ways

in a concern for robustness changes the optimal conduct of policy.15 Moreover, the

(Markov-perfect equilibrium) policy resulting from discretionary optimization under

RE is also a linear policy. Thus a consideration of robustly optimal policy within this

class also suffices to allow us to determine to what extent allowance for departures

from RE may lead optimal policy to resemble discretionary policy under the RE

analysis.

respond to those expectations, as in the “expectations-based” approach to implementation proposed
by George W. Evans and Seppo Honkapohja (2003).

14To be precise, what is needed is that the policy be conditionally linear, in the sense defined in (9)
below. In the case that {ut} evolves in accordance with a more general linear process, rather than
being i.i.d., what is needed is conditional linearity in the period t innovation, and not necessarily
linearity in the disturbance ut, as shown in Woodford (2005).

15Consideration of the extent to which the robustly optimal policy within a more flexible class of
contemplated policies may differ from the robustly optimal linear policy is an important topic for
further study.
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1.2 Near-Rational Expectations

I turn now to the specification of PS beliefs. These will be described by a probabil-

ity measure over possible paths for the evolution of the exogenous and endogenous

variables, that need not coincide with that of the policy analyst. I do assume that in

each of the equilibria contemplated by the policy analyst as possible outcomes under

a given policy, the PS is expected to act on the basis of a coherent system of prob-

ability beliefs that are maintained over time.16 (Thus PS conditional probabilities

at any date t are determined by Bayesian updating, given the PS prior over possible

paths and the paths of exogenous and endogenous variables up to that date.) These

probability beliefs need not correspond, however, to any particular theory about how

inflation or other variables are determined. The policy analyst neither assumes that

the PS believes that inflation is determined by a New Keynesian Phillips curve nor

that it believes in some other theory; the assumption of “near-rationality” is instead

an assumption about the degree of correspondence between PS probability beliefs

(however obtained) and those of the policy analyst herself.17

Why I do not require the analyst to assume that PS probability beliefs coincide

exactly with her own, I propose that she should not expect them to be completely

unlike her own calculation of the probabilities of different outcomes, either. One rea-

sonable kind of conformity to demand is to assume that private beliefs be absolutely

continuous with respect to the analyst’s beliefs, which means that private agents will

agree with the analyst about which outcomes have zero probability. (More precisely,

I shall assume that all contemplated PS beliefs are absolutely continuous over finite

time intervals, as in Hansen et al. (2006).18) Thus if policy ensures that something

16This differs from the assumption made in analyses of optimal policy with PS “learning” such as
those of Orphanides and Williams (2005, 2007) or Gaspar et al. (2006).

17Under the interpretation taken here, the conventional hypothesis of RE is not an assumption
that people “know the true model” and correctly solve its equations, but rather an assumption
that they have probability beliefs that coincide with the analyst’s own calculation of equilibrium
outcomes. This coincidence might be thought to arise because people in the economy share the
analyst’s model; but it might also be expected to result from observation of empirical frequencies,
without any understanding of why those probabilities constitute an equilibrium.

18This means that I allow for misspecifications that should be detected in the case of a data
sample of infinite length, as long as they are not easy to detect using a finite data set. As Hansen
et al. discuss, this is necessary if one wants the policy analyst to be concerned about possible
misspecifications that continue to matter far in the future.
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always occurs, or that it never occurs, the policy analysts expects the PS to notice

this, though it may misjudge the probabilities of events that occur with probabilities

between zero and one.

The assumption of absolute continuity implies that there must exist a scalar-

valued “distortion factor” mt+1, a function of the history ht+1 of exogenous states to

that point, satisfying

mt+1 ≥ 0 a.s., Et[mt+1] = 1,

and such that

Êt[Xt+1] = Et[mt+1Xt+1]

for any random variable Xt+1.
19 In effect, we may suppose that people correctly

understand the equilibrium mapping from states of the world to outcomes — thus, the

function Xt+1(ht+1) — even if they do not also correctly assign probabilities to states

of the world, as would be required for an RE equilibrium. I assume this, however,

not on the ground that people understand and agree with the policy analyst’s model

of the economy, but simply on the ground that they agree with the policy analyst

about zero-probability events; since in equilibrium (according to the calculations of

the policy analyst), a history ht+1 is necessarily associated with a particular value

Xt+1, the PS is also expected to assign probability one to the value Xt+1 in the event

that history ht+1 is realized, though they need not agree with the analyst about the

probability of this event.

This representation of the distorted beliefs of the private sector is useful in defining

a measure of the distance of the private-sector beliefs from those of the policy analyst.

As discussed in Hansen and Sargent (2005, 2007a, b), the relative entropy

Rt ≡ Et[mt+1 log mt+1]

is a measure of the distance of (one-period-ahead) PS beliefs from the CB beliefs with

a number of appealing properties.20 In particular, PS beliefs that are not too different

19The existence of the function m(ht+1) is guaranteed by the Radon-Nikodym theorem. In the
case of a discrete set of states w that are possible at date t + 1, given the economy’s state at date
t, m(w) is simply the ratio π̂(w)/π(w), where π(w) is the probability assigned by the CB to state
w and π̂(w) is the probability assigned by the PS to that state. This way of describing distorted
beliefs is used, for example, by Hansen and Sargent (2005, 2007a) and Hansen et al. (2006).

20For example, Rt is a positive-valued, convex function of the distorted probability measure,
uniquely minimized (with the value zero) when mt+1 = 1 almost surely (the case of RE).
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from those of the policy analyst in the sense that Rt is small are ones that (according

to the beliefs of the analyst) private agents would not be expected to be able to

disconfirm by observing the outcome of repeated plays of the game, except in the

case of a very large number of repetitions (the number expected to be required being

larger the smaller the relative entropy). One might thus view any given distorted

beliefs as more plausible the smaller is Rt.

The overall degree of distortion of PS probability beliefs about possible histo-

ries over the indefinite future can furthermore be measured by a discounted relative

entropy criterion

E−1

∞∑
t=0

βtmt+1 log mt+1,

as in Hansen and Sargent (2005). We shall suppose that the policy analyst wishes

to guard against the outcomes that can result under any PS beliefs that do not in-

volve too large a value of this criterion. The presence of the discount factor βt in

this expression implies that the CB’s concern with potential PS misunderstanding

doesn’t vanish asymptotically; this makes possible a time-invariant characterization

of robustly optimal policy in which the concern for robustness has nontrivial conse-

quences.21

More precisely, I shall assume that the policy analyst seeks to ensure as small as

possible a value for an augmented loss function

E−1

∞∑
t=0

βt 1

2
[π2

t + λ(xt − x∗)2]− θE−1

∞∑
t=0

βtmt+1 log mt+1 (5)

in the case of any possible PS beliefs.22 The presence of the second term indicates that

21If we omit the discount factor βt in our distance measure, the consequences are the same for the
objective (5) below as if one were to assume, instead of a constant “cost” θ of departure from CB
beliefs, a cost θβ−t that grows the farther into the future one looks. But a large value of θ allows
little departure from RE, so such a specification would imply much less allowance for potential PS
misunderstanding far in the future, relative to the one adopted here. I show below that under
the specification proposed here, the degree of distortion involved in the “worst-case” NRE beliefs
contemplated by the policy analyst is time-invariant. See Hansen et al. (2006) for discussion of this
issue, in the context of a continuous-time analysis.

22Technically, this criterion is defined only for PS beliefs that satisfy the absolute continuity
condition discussed above. But if we define the relative entropy to equal +∞ in the case of any
beliefs that are not absolutely continuous with respect to those of the CB, then (5) can be defined
for arbitrary PS beliefs.
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the policy analyst is not troubled by the fact that outcomes could be worse (from the

point of view of the stabilization objective (2) in the case of distorted PS expectations,

as long as the distance of the beliefs in question from those of the CB (as measured

by relative entropy) is sufficiently great relative to the increased stabilization losses.

Thus the analyst will only worry about distorted private-sector beliefs that ought

to be easy to disconfirm in the case that this particular kind of difference in beliefs

would be especially problematic for the particular policy under consideration.23 The

coefficient θ > 0 measures the analyst’s degree of concern for possible departures

from RE, with a small value of θ implying a great degree of concern for robustness,

while a large value of θ implies that only modest departures from RE are considered

plausible. In the limit as θ → ∞, the RE analysis is recovered as a limiting case of

the present one.

1.3 Robustly Optimal Commitment

In the case of any policy commitment {πt} contemplated by the policy analyst, and

any distorted PS beliefs described by a distortion factor {mt+1}, one can determine

the implied value of (5) by solving for the equilibrium process {xt} implied by (1).

Let this value be denoted L(π, m). The robustly optimal policy is then the policy π

that minimizes

L̄(π) ≡ sup
m
L(π, m), (6)

so as to ensure as low as possible an upper bound for the value of (5) under any

equilibrium that may result from the pursuit of the policy.24

23“Multiplier preferences” of this form are used extensively by Hansen and Sargent (2007b) to
model robust decisionmaking. Axiomatic foundations for preferences of this form are provided by
Tomasz Strzalecki (2008).

24Alternatively, one might suppose that the policy analyst should choose a policy that minimizes
the value of (2) under worst-case NRE beliefs, where the latter are defined as the distortion m that
solves the inner problem in (6). Apart from the appeal of the axiomatic foundations offered by
Strzalecki (2007) for the “multiplier preferences” used here, this formulation has the advantage of
making the objectives of the policy analyst and the “malevolent agent” perfectly opposed, so that
the “policy game” between them is a zero-sum game. This can have advantages when characterizing
the solution, though I have not relied on this aspect of the game in the analysis below. The monetary
stabilization policy problem is analyzed under the alternative assumption in Woodford (2006), and
the same qualitative results are obtained in that case, though some of the algebra is different. See
Woodford (2005, Appendix A.3) for comparison of the results under the alternative assumptions.
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The policy problem (6) can be thought of as a “game” between the CB and a

“malevolent agent” that chooses the PS beliefs so as to frustrate the CB’s objectives.

However, our interest in this problem does not depend on any belief in the existence

of such an “agent.” Consideration of the min-max problem (6) is simply a way of

ensuring that the policy chosen is as robust as possible to possible departures from RE,

without sacrificing too much of the CB’s stabilization objectives. It is also sometimes

supposed that selection of a policy that minimizes (6) requires extreme pessimism on

the part of the policy analyst, since only the “worst-case” distorted beliefs are used

to evaluate each contemplated policy. But use of this criterion does not require that

the policy analyst believe that the equilibrium that would result from worst-case PS

beliefs (the distortion m that solves the problem of the “malevolent agent”) is the

one that must occur. The “malevolent agent’s” problem is considered only because

this is a convenient mathematical approach to determining the upper bound on losses

under a given policy.

The policy {πt} for periods t ≥ 0 that minimizes (6), under no constraints be-

yond the assumption of linearity (4), is in general not time-invariant (the optimal

coefficients for the rule for πt will vary with the date t), and also not time-consistent

(re-optimization at some later date would not lead the policy analyst to choose to

continue the sequence of inflation commitments chosen at date zero), for reasons that

are familiar from the literature on policy analysis under RE.25 Both of these complica-

tions result from the fact that one supposes that the CB can choose an inflation rate

for period zero without having to take account of any effects of its choice on inflation

expectations prior to date zero, while the inflation rate that it chooses for any date

t ≥ 1 has consequences for PS inflation expectations,26 and hence for the feasible

degree of inflation and output-gap stabilization in earlier periods. We can instead

obtain an optimal policy problem with a recursive structure (the solution to which is

a time-invariant policy rule) if, instead of supposing that the policy analyst chooses

a sequence of (possibly time-varying) inflation commitments {πt} for all t ≥ 0, we

consider only the problem of choosing an optimal sequence of inflation commitments

for periods t ≥ 1, taking as given a commitment π0(w0) that the CB’s policy must

25The issue is discussed in detail in Woodford (2003, chap. 7).
26While I do not assume that PS expectations must exactly coincide with the CB’s policy intention,

as in the RE analysis, nevertheless the CB’s state-contingent policy intention affects the plausibility
of particular PS inflation expectations, as long as θ > 0.
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fulfill.27

Let us suppose that the initial inflation commitment is itself linear,

π0(w0) = p0
−1 + p1

−1w0, (7)

for some coefficients (p0
−1, p

1
−1), and let us suppose that the inflation commitments

that are chosen for periods t ≥ 1 may depend on the value of p0
−1, as well as upon

the shocks that occur in periods zero through t. Thus we consider policies that can

be written in the form

πt = αt + γtp
0
−1 +

t∑
j=0

φj,twt−j, (8)

for some coefficients {αt, γt, φj,t}. The separate term γtp
0
−1 matters because I shall

suppose that the coefficients of the linear rule are chosen before the value of p0
−1 is

known, and are to apply regardless of that value (that may depend on the economy’s

state at date -1). I shall let Φ denote the set of linear policies for dates t ≥ 1 of the

form (8).

It will also be useful to discuss the broader set Π of conditionally linear policies,

under which the state-contingent inflation rate one period in the future can be written

πt+1(wt+1) = p0
t + p1

t wt+1 (9)

in any period t ≥ 0, where p0
t may depend on both the state ht and the initial

condition p0
−1, but p1

t depends only on the date. Any policy φ ∈ Φ corresponds to a

policy p ∈ Π, where the coefficients p are given by

p0
t (ht; p

0
−1) = αt+1 + γt+1p

0
−1 +

t+1∑
j=1

φj,t+1wt+1−j,

p1
t = φ0,t+1

for each t ≥ 0.

For any given initial commitment (p0
−1, p

1
−1) and policy p ∈ Π, we can compute an

expected value for the augmented loss function L(p0
−1, p

1
−1, p,m) as above, in the case

of any contemplated PS beliefs m; and we can correspondingly define the upper bound

L̄(p0
−1, p

1
−1, p). Now suppose that the coefficient p0

−1 is drawn from a distribution ρ,

27The same kind of initial commitment defines an optimal policy “from a timeless perspective” in
the RE analysis presented in Woodford (2003, chap. 7).
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and that a policy p, specifying the coefficients of (9) for all possible states at dates

t ≥ 0, must be chosen to apply in the case of any realization of p0
−1 in the support

of this distribution. (The PS beliefs m may depend on the realization of p0
−1.) Then

the upper bound on the value of Eρ[L(p0
−1, p

1
−1, p, m)] for a given policy p is equal to

L̂(p; p1
−1, ρ) ≡ Eρ[L̄(p0

−1, p
1
−1, p)],

where Eρ indicates integration over the distribution ρ of possible values for p0
−1. A

robustly optimal linear policy commitment is then a set of coefficients φ ∈ Φ that

solve the problem

inf
φ∈Φ

L̂(p(φ); p1
−1, ρ), (10)

where p(φ) identifies the coefficients {p0
t , p

1
t} corresponding any given linear policy φ.

The assumed initial commitment is self-consistent if it is a form of commitment

that the policy analyst chooses in subsequent periods under the problem just de-

fined.28 To be precise, initial commitments (p̄1, ρ̄) are self-consistent if when we set

p1
−1 = p̄1, ρ = ρ̄, the worst-case equilibrium associated with the policy φ that solves

(10) is such that (i) p1
t = p̄1 for each t ≥ 0; and (ii) the unconditional distribution ρt

of values for the coefficient p0
t (integrating over the distribution ρ of possible values

for p0
−1 and over the distribution of possible shocks in each of periods zero through t)

is equal to ρ̄ for each t ≥ 0. One can show that a self-consistent specification of the

initial commitments is possible, and in this case the robustly optimal linear policy

has a time-invariant form, as discussed in the next section.

2 The Robustly Optimal Linear Policy

In this section, I characterize the solution to the optimal policy problem under com-

mitment defined in the previous section, and compare it to the optimal policy under

commitment in the RE analysis (as derived for example in Clarida et al., 1999). This

means finding the linear policy φ of the form (8) that solves (10) in the case that

(p1
−1, ρ) are the self-consistent initial commitments (p̄1, ρ̄).

28See Woodford (2003, chap. 7) for the concept of self-consistency invoked here.
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2.1 The “Worst-Case” NRE Beliefs

I begin by characterizing the “worst-case” NRE beliefs in the case of any given condi-

tionally linear policy {πt}. These are characterized by the process {mt+1} that solves

the “malevolent agent’s” problem on the right-hand side of (6). This is the process

{mt+1} for all t ≥ 0 that maximizes (5) subject to the constraint that Etmt+1 = 1 at

all times, where at each date xt is the solution to the equation

πt = κxt + βEt[mt+1πt+1] + ut. (11)

This problem is in turn equivalent to a sequence of problems in which for each

possible history ht, a function specifying mt+1 as a function of the realization of wt+1

is chosen so as to maximize

1

2
[π2

t + λ(xt − x∗)2]− θEt[mt+1 log mt+1] (12)

subject to the constraint that Etmt+1 = 1, where again xt is given by (11). This single-

period problem has a closed-form solution in the case that the commitment πt+1(wt+1)

is of the conditionally linear form (9), where the coefficients (p0
t , p

1
t ) depend only on

the history ht.

One notes that an interior solution to the problem of maximizing (12) exists only

if29

|p1
t |2 <

θ

β2

κ2

λ
. (13)

Otherwise, the objective (12) is convex, and the worst-case expectations involve ex-

treme distortion, resulting in unbounded losses for the CB. Obviously, it is optimal

for the CB to choose a linear policy such that p1
t satisfies the bound (13) at all times.

This provides an immediate contrast with optimal policy under RE, where the opti-

mal coefficient p1 (which is constant over time) is proportional to σu, the standard

deviation of the cost-push shocks.30 At least for large values of σu, it is evident that

concern for robustness leads to less sensitivity of inflation to cost-push disturbances

29See the Appendix, section A.1, for derivation of this condition, as well as the results stated in
the following two paragraphs. Strictly speaking, it is possible for the inequality (13) to be only
weakly satisfied, if p0

t satisfies a certain linear relation stated in the Appendix; the Appendix treats
this case as well, omitted here for simplicity. It is shown in section A.2 that in the robustly optimal
linear policy, the inequality is strict.

30See, e.g., equation (26) below.
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(smaller |p1
t |). One also observes that it leads to a failure of certainty equivalence, as

this would require p1
t to grow in proportion to σu.

In the case of a linear policy satisfying (13), under the worst-case NRE, the CB

fears that the PS will expect wt+1 to be conditionally distributed as N(µt, 1).31 If

p1
t = 0, µt = 0, while if p1

t 6= 0,

µt = (π̄t − p0
t )/p

1
t , (14)

where the worst-case inflation expectation (value of Êtπt+1) is given by

π̄t = ∆−1
t

[
p0

t − (πt − ut − κx∗)
βλ

θκ2
|p1

t |2
]

, (15)

∆t ≡ 1− β2

θ

λ

κ2
|p1

t |2 > 0. (16)

The worst-case NRE beliefs distort PS inflation expectations with respect to p0
t (the

CB’s expectation) in the direction opposite to that needed to bring xt closer to x∗;

and this distortion is greater the larger is the sensitivity of (next period’s) inflation

to unexpected shocks, becoming unboundedly large as the bound (13) is approached.

As a consequence of this possibility, the CB fears an output gap equal to

xpess
t − x∗ =

(πt − ut − κx∗)− βp0
t

κ∆t

. (17)

Note that xt−x∗ is larger than it would be under RE by a factor ∆−1
t , which exceeds

1 except in the limit in which θ is unboundedly large (the RE limit), or if p1
t = 0, so

that inflation is perfectly predictable.

The probabilities assigned by the PS to different possible realizations of wt+1 are

distorted by a factor mt+1 such that

log mt+1 = ct − β

θ

λ

κ
(xt − x∗)πt+1,

where the constant ct takes the value necessary in order for Etmt+1 to equal 1. This

implies that the degree of distortion of the worst-case NRE beliefs (as measured by

relative entropy) is equal to

Rpess
t ≡ Êt[log mt+1] =

1

2

[
β

θ

λ

κ
(xt − x∗)

]2

|p1
t |2 ≥ 0. (18)

31As shown in Woodford (2005), this result can easily be extended to the case of a vector of
innovations upon which πt+1 may depend linearly, generalizing the formulas for the scalar case
presented here.
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Note that the degree of distortion against which the policy analyst must guard is

greater the larger the degree of inefficiency of the output gap (i.e., the larger is

|xt − x∗|), as this increases the marginal cost to the CB’s objectives of (the most

unfortunate) forecast errors of a given size; and greater the larger the degree to

which inflation is sensitive to disturbances (i.e., the larger is |p1
t |), as this increases the

scope for misunderstanding of the probability distribution of possible future rates of

inflation, for a given degree of discrepancy between CB and PS beliefs (as measured by

relative entropy). Of course, it is also greater the smaller is θ, the penalty parameter

that we use to index the CB’s degree of concern for robustness to PS expectational

error.

Substituting (17) for the output gap and (18) for the relative entropy term in (5),

we obtain a loss function for the CB of the form32

L̂(p; p1
−1, ρ) = E

∞∑
t=0

βtL(pt−1; pt; wt), (19)

defined for any policy p ∈ Π, where pt is shorthand for the pair (p0
t , p

1
t ), and the

unconditional expectation of any random variable Xt in a period t ≥ 0 is defined as

E[Xt] ≡ EρE−1[Xt].

The robust policy problem (10) can then be described as the choice of a linear policy

that maximizes (19).

2.2 Dynamics of Optimal Commitment

Rather than directly considering the problem of finding the linear policy φ ∈ Φ that

maximizes (19), it is simpler to consider the problem of finding the conditionally linear

p ∈ Π that maximizes this objective, for some specification of the initial commitment

(p1
−1, ρ). In fact, the robustly optimal policy within this class is always a fully linear

policy, so that we will have also found the robustly optimal element of the more

restrictive class of policies Φ.

The reason for this is fairly simple. The optimal conditionally linear policy p

must involve a process {p0
t} that is optimal taking as given the sequence {p1

t}. But

for a given sequence {p1
t} satisfying (13) at all dates, the loss function L(pt−1; pt; wt)

32See Appendix A.1 for the explicit form of the function L(pt−1; pt;wt).
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is a (convex) quadratic function of (p0
t−1, p

0
t , wt), with coefficients that vary with t

(in the case that the sequence {p1
t} is not constant over time). The problem of

choosing an optimal state-contingent commitment {p0
t} given the sequence {p1

t} is

therefore a convex linear-quadratic (LQ) optimal control problem, albeit one with

(deterministically) time-varying coefficients. Hence the optimal solution is a linear

policy of the form

p0
t = λt + µtp

0
t−1 + νtwt, (20)

where the coefficients {λt, µt, νt} are deterministic sequences that depend on the

sequence {p1
t}. But equation (20), which must hold for all t ≥ 0, together with the

fact that the sequence {p1
t} is deterministic, imply that the sequence of conditionally

linear inflation commitments (9) constitute a linear policy of the form (8). Hence

the optimal conditionally linear policy must be a linear policy, and since all linear

policies are conditionally linear, it must be the optimal linear policy.

The linear law of motion (20) also implies that if the unconditional distribution

ρt−1 for p0
t−1 is a normal distribution N(µp,t−1, σ

2
p,t−1), then the unconditional distri-

bution ρt for p0
t will also be a normal distribution, with mean and variance given by

a law of motion of the form

(µp,t, σ
2
p,t) = Ψ(µp,t−1, σ

2
p,t−1; ψt), (21)

where ψt ≡ (λt, µt, νt) is the vector of coefficients of the law of motion (20). Because

of my interest in choosing a self-consistent initial commitment, I shall suppose that ρ

is some normal distribution N(µp,−1, σ
2
p,−1), in which case ρt will also be normal for

all t ≥ 0 under the optimal linear policy.

Finally, the first-order conditions for the optimal choice of the sequence {p1
t} can

be written in the form33

g(p1
t−1, p

1
t , p

1
t+1; µp,t−1, σ

2
p,t−1; ψt, ψt+1) = 0 (22)

for each t ≥ 0. The conditionally linear policy that maximizes (19) for given initial

conditions (p1
−1, µp,−1, σ

2
p,−1) then corresponds to deterministic sequences {p1

t ; µp,t, σ
2
p,t; ψt}

for t ≥ 0 that satisfy (21) and (22) for all t ≥ 0, where the sequence of coefficients

{ψt} describe the solution to the LQ problem defined by the sequence of coefficients

{p1
t}.
33See Appendix A.2 for further discussion.
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The self-consistent initial conditions (p̄1, µ̄p, σ̄
2
p) are simply the steady-state solu-

tion to the above system of difference equations. I show in Appendix A.2 that such a

steady state exists. The robustly optimal linear policy, i.e., the policy that maximizes

(19) in the case of initial conditions (p̄1, µ̄p, σ̄
2
p), is then a policy with time-invariant

coefficients, as asserted earlier. Here I compare the properties of this policy with the

optimal policy under RE, and also compare equilibrium outcomes under the worst-

case equilibrium consistent with this policy to the RE equilibrium outcomes under

the RE-optimal policy.

2.3 Characteristics of Optimal Policy

Under the stationary policy corresponding to the steady state of the system (21)–

(22), p1
t = p̄1 each period, where p̄1 is a positive quantity satisfying the bound (13). It

then follows that the LQ problem that we must solve for the optimal state-contingent

evolution {p0
t} involves a period loss function with constant coefficients. It follows

that the coefficients of the law of motion (20) are time-invariant as well. In fact, one

can show34 that the law of motion takes the form

p0
t = µp0

t−1 + µ(p̄1 − σu)wt, (23)

where 0 < µ < 1 is the smaller root of the quadratic equation

P (µ) ≡ βµ2 −
(

1 + β +
κ2∆̄

λ

)
µ + 1 = 0. (24)

Here 0 < ∆̄ ≤ 1 is the constant value of (16) associated with p̄1. It then follows from

(9) that the state-contingent inflation target evolves according to an ARMA(1,1)

process

πt = µπt−1 + p̄1wt − µσuwt−1 (25)

for all t ≥ 1.

Because 0 < µ < 1, (23) implies that {p0
t} is a stationary process, with a well-

defined unconditional mean and variance (µ̄p, σ̄
2
p). Moreover, the unconditional mean

is zero — so that (25) implies that the inflation rate fluctuates around a long-run

average value of zero as well — just as in the optimal policy commitment in the RE

case, regardless of the assumed value of θ. Thus the optimal long-run inflation target

34This and the other results cited in this section are derived in Appendix A.2.
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Figure 1: Variation of p̄1 with σu, under alternative degrees of concern for robustness.

is unaffected by the degree of concern for robustness; in particular, allowance for NRE

does not result in an inflation bias of the kind associated with discretionary policy.35

According to the RE analysis, inflation also evolves according to a stationary

ARMA(1,1) process with mean zero. But in the RE case, one can further show that

p̄1 = µσu, (26)

so that (25) involves only the first difference of the cost-push shock. (In this case, the

law of motion can equivalently be written as a stationary AR(1) process for the log

price level.) In the case of a finite value of θ, instead, the optimal response coefficient

necessarily satisfies

0 < p̄1 < µσu, (27)

so that the price level is no longer stationary.

35On the inflation bias associated with discretionary policy, see Clarida et al. (1999) or Woodford
(2003, chap. 7).
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Figure 1 shows how p̄1 varies with σu for alternative values of θ.36 In the RE

case, p̄1 increases linearly with σu, as indicated by (26) and as required for certainty-

equivalence. For any given amplitude of cost-push shocks, lower θ (greater concern

for robustness) results in a lower optimal p̄1, indicating less sensitivity of inflation to

the current cost-push shock. The extent to which this is true increases in the case of

larger shocks; in the case of any finite value of θ, p̄1 increases less than proportionally

with σu, indicating a failure of certainty equivalence. In fact, p̄1 remains bounded

above, as required by (13).

Thus a concern for robustness results in less willingness to let inflation increase in

response to a positive cost-push shock. This is because larger surprise variations in

inflation increase the extent to which PS agents may over-forecast inflation, worsening

the output/inflation tradeoff facing the CB. This conclusion recalls the one reached

by Orphanides and Williams (2005) on the basis of a model of learning.

At the same time, a concern for robustness increases the degree to which optimal

policy is history-dependent. As in the RE case, an optimal commitment involves a

lower inflation rate (on average) in periods subsequent to a positive cost-push shock.37

Moreover, (24) implies that µ is closer to 1 in the finite-θ case (where ∆̄ < 1) than

in the RE case (in which µ is also a root of (24), but with ∆̄ = 1). Hence the

effect of a past cost-push shock on average inflation should last longer, so that the

history-dependence of the optimal inflation commitment is even greater than under

RE.

And not only should the CB commit to eventually undo any price increases re-

sulting from positive cost-push shocks (as in the RE case); when θ is finite, it should

commit to eventually reduce the price level below the level it would have had in the

absence of the shock. This is illustrated in Figure 2 in the case of the numerical

example just discussed.38 The lower right panel shows the impulse response of the

36In this figure, I assume parameter values β = 0.99, κ = 0.05, λ = 0.08, and x∗ = 0.2. A low value
of λ is justified by the welfare-theoretic foundations of the loss function (2) discussed in Woodford
(2003, chap. 6).

37This is shown by the negative coefficient multiplying wt in (23). Note that since µ < 1, (27)
implies that p̄1 < σu.

38In the figure, optimal impulse responses to a one-standard-deviation positive cost-push shock
are shown, both in the case of infinite θ (the standard RE analysis) and for a value θ = 0.001. Other
parameter values are as in Figure 1; in addition, it is assumed here that σu = 0.02. In the upper
left panel, the inflation rate is an annualized rate; given that the model periods are interpreted as
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Figure 2: Optimal responses to a positive cost-push shock, with and without concern

for robustness.

log price level; while under rational expectations, the optimal commitment returns

the price level eventually to precisely the level that it would have had in the absence

of the shock, when θ = 0.001, the optimal commitment eventually reduces the price

level, by an amount about twice as large as the initial price-level increase in response

to the shock. The result that the sign of the initial price-level effect is eventually

reversed is quite general, and follows from the fact that lagged MA term in (25) is

larger than the contemporaneous term according to (27).

Of course, (25) describes the dynamics of inflation as they are understood by

the central bank. PS forecasts of future inflation need not correspond to what this

equation for inflation dynamics would imply. In the equilibrium with worst-case NRE

expectations, PS inflation expectations evolve in accordance with (15). Substitution

quarters, “inflation” is four times the change in the log price level.
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of the law of motion (23) allows this to be rewritten as

π̄t = Λp0
t + β−1(∆̄−1 − 1)κx∗, (28)

where Λ < 1. This implies that PS inflation expectations are a linear function of CB

inflation expectations, but with a bias (E[π̄] > 0, since ∆̄ < 1 in the case of finite θ),

and a derivative less than 1.39

The fact that Λ < 1 means that the CB cannot count on its intention to lower

inflation (on average) following a positive cost-push shock to lower PS expectations

of inflation by as much as the CB’s own forecast of future inflation is reduced. But

the consequence of this for robustly optimal policy is not that the CB should not

bother to try to influence inflation expectations through a history-dependent policy;

instead, it is optimal to commit to adjust the subsequent inflation target to an even

greater extent and in a more persistent way (as shown in Figure 2), in order to

ensure that inflation expectations are affected even if expectations are not perfectly

model-consistent.

In the limit as θ → 0 (extreme concern for possible departures from RE), the

optimal p̄1 → 0. (In fact, this can be immediately seen from the bound (13).) In the

limit, it is optimal for the CB to prevent cost-push shocks from having any immediate

effect on inflation at all. This does not, however, mean that inflation is completely

stabilized, for (23) still implies that the planned inflation rate in the next period is

reduced in the event of a positive cost-push shock. (Note that µ remains bounded

away from zero in this limit, since (24) implies that 0 < µRE < µ < 1 for any value

0 < ∆̄ < 1.) It remains desirable to reduce intended subsequent inflation, because

a reduction in Êtπt+1 at the same time as an increase in ut reduces the extent to

which the output gap must become more negative due to the cost-push shock; even

though PS expectations of inflation cannot be counted on to fall as much as the CB’s

intended inflation rate does, it is still worthwhile to reduce intended future inflation,

in order to ensure some moderation of inflation expectations.

39In the limit as θ →∞, ∆̄ → 1 and Λ → 1, so that (15) implies that π̄t = p0
t , the case of RE.
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3 Near-Rational Expectations and the Importance

of Policy Commitment

I have observed above that robustly optimal policy involves advance commitment,

in a similar way as optimal policy under the assumption of rational expectations.

But does the degree to which PS expectations may depart from model-consistency

affect the degree to which commitment matters? In order to address this question,

it is necessary to characterize equilibrium policy under discretionary optimization on

the part of a CB that understands that private-sector expectations need not be fully

model-consistent, and compare this to the robustly optimal policy under commitment.

Suppose that the objective of the central bank is to minimize (5), as above, but

that each period the central bank chooses a short-run inflation target πt after learning

the current state wt, without making any commitment as to the inflation rate that

it may choose at any later dates. Because the payoffs and constraints of both the

CB and the malevolent agent in the continuation game at date t are independent

of the past, in a Markov perfect equilibrium (MPE), πt will depend only on wt. I

shall assume an equilibrium of this kind;40 hence there is assumed to exist a time-

invariant policy function π̄(·) such that in equilibrium πt = π̄(wt) each period. Under

discretionary optimization, the CB takes for granted the fact that it will choose to

follow the rule π̄(·) in all subsequent periods, though it is not committed to follow it

in the current period. The CB also takes for granted the set of possible NRE beliefs

of the PS regarding the economy’s future evolution, given that (at least in the view

of the CB) the truth is that the exogenous state will be drawn independently each

period from a unit normal distribution, monetary policy will follow the rule π̄(·), and

output will be determined by (1). It then chooses an inflation rate πt to implement

in the current period, given its own model of the economy’s subsequent evolution

and guarding against the worst-case NRE beliefs given that model. In a MPE, the

solution to this problem is precisely the inflation rate πt = π̄(wt).

I shall formally define a robust MPE as follows. Given a policy rule π̄(·), let

V (π0; w0) be the value of the objective (5) if the initial state is w0, the CB chooses an

inflation rate π0 in that initial state and then follows the rule π̄(·) in all periods t ≥ 1,

40The restriction to Markov perfect equilibria is commonplace in the literature on discretionary
monetary policy under rational expectations; the equilibrium concept proposed here generalizes the
one used by Clarida et al. (1999) in their RE analysis of this model.
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and PS beliefs correspond to the worst-case NRE beliefs given this policy. Then given

the inflation rate chosen in any period, the worst-case NRE beliefs mt+1(·) solve the

problem

max
mt+1(·)

1

2
[π2

t + λ(xt − x∗)2]− θEtβ
tmt+1 log mt+1 + βEtV (π̄(wt+1; wt+1), (29)

where xt is the solution to

πt = κxt + βEt[mt+1π̄(wt+1)] + ut.

A robust MPE is then a pair of functions π̄(·) and V (·; ·) such that for any pair

(πt; wt), V (πt; wt) is the maximized value of (29), and for any state wt, π̄(wt) is the

inflation rate that solves the problem

min
πt

V (πt; wt). (30)

A robust linear MPE is a robust MPE in which π̄(·) is a linear function of the state,

π̄(st) = p̄0 + p̄1wt, (31)

for some constant coefficients p̄ = (p̄0, p̄1).41

A linear policy (31) is an example of the kind of conditionally linear policy consid-

ered in the previous section. Moreover, because the final term in (29) is independent

of the choice of mt+1(·), the function mt+1(·) that solves the problem (29) is also the

one that maximizes (12), so that the characterization of worst-case NRE beliefs in

appendix A.1 again applies. Once again, |p1| must satisfy the bound (13) in order

for there to be well-defined worst-case beliefs;42 and when this bound is satisfied, the

worst-case beliefs are again described by (14) – (15).

41Note that it is not necessary, as in our discussion of robustly linear policy under commitment,
to suppose that the CB optimizes over a restricted class of policy rules; in fact, in the discretionary
policy problem (30), the CB does not choose a rule at all, but only an inflation rate in the particular
state that has been realized. Nonetheless, I do not here address the question whether the linear
MPE discussed below are the only possible kind of robust MPE.

42In the case of discretionary policy, I can no longer argue that the CB will surely choose a policy
that satisfies (13), in order to avoid unbounded losses. For now the CB is assumed to choose πt+1

without taking into account the effect of the way in which the dependence of πt+1 on wt+1 affects
the worst-case choice of mt+1(·), given that the distorted PS beliefs are a historical fact by the time
that πt+1 is chosen. Nonetheless, there can be no well-defined equilibrium in which (13) is violated.
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Given this characterization of worst-case beliefs, the problem (30) of the discre-

tionary central bank reduces to

min
πt

L̃(πt; p̄; wt), (32)

where L̃(πt; pt; wt) is the loss function defined in appendix A.1.43 Since for any wt,

L̃ is a strictly convex, quadratic function of πt, the discretionary policy π̄(wt) is just

the solution to the first-order condition

L̃π(πt; p̄; wt) = 0.

This linear equation in πt is easily solved, yielding

π̄(wt) =
λ

κ2∆̄ + λ
[κx∗ + ut + βp̄0]. (33)

This in turn implies that π̄(·) is indeed a linear function of the form (31), where44

p̄0 =
λκx∗

κ2∆̄ + (1− β)λ
> 0, (34)

p̄1 =
λ

κ2∆̄ + λ
σu > 0. (35)

In both of these expressions, 0 < ∆̄ ≤ 1 is defined as

∆̄ = 1− β2

θ

λ

κ2
|p̄1|2. (36)

Because a MPE solves a fixed-point problem that does not correspond to an

optimization problem, depending on parameter values there may be a unique fixed

point, multiple fixed points, or none at all; in the latter case, no robust linear MPE

exists. Here the fixed-point problem reduces to finding values (p̄1, ∆̄) that satisfy the

two equations (35)–(36) along with the bound (13), so that 0 < ∆̄ ≤ 1. One can show

that if λ/κ2 ≥ 2, there is a unique robust linear MPE if σu < p̂1, while no MPE exist

43It is the same as the period loss function in (19), simply written in terms of different variables,
because we are now interested in the CB’s state-by-state choice of πt rather its advance choice of
the coefficients pt−1 of a rule that will determine πt.

44See Woodford (2005, sec. 4) for a generalization of this result to the case of more general linear
processes for {ut}.
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Figure 3: Varying numbers of linear MPE, depending on the size of the cost-push

disturbances.

if σu ≥ p̂1, where p̂1 is the upper bound on |p̄1| defined in (13).45 If instead λ/κ2 < 2,

then there is a unique MPE if σu ≤ p̂1, but two distinct MPE if p̂1 < σu < σ∗u, where

σ∗u ≡
2

3
√

3

[
θ

β2

(
κ2 + λ

λ

)3
]1/2

. (37)

There is again a unique MPE in the special case that σu = σ∗u, but there exist no

MPE if σu > σ∗u.
46

The possibility of multiple solutions is illustrated numerically in Figure 3. Here

the parameter values assumed are as in Figure 1, except that now κ = 0.15,47 and I

45See appendix A.3 for the proof of this result and the ones stated next, and equation (A.21) in
the appendix for the definition of p̂1.

46Regardless of the value of σu > 0, this bound will be violated in the case of small enough θ,

which is to say, in the case of a large enough concern for robustness on the part of the CB.
47A larger value of κ is used in this example in order to illustrate the possibility of multiple
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graph the locus of solutions only for the case θ = 0.001. A unique solution exists for

values of σu smaller than 0.068,48 two solutions exist for values between 0.068 and

0.159, and no solutions exist for larger values of σu. In the intermediate range, the

second solution (in which inflation is more sensitive to cost-push shocks) is shown by

the dotted branch of the locus of fixed points. While these solutions also satisfy the

above definition of a robust linear MPE, they are less appealing than the ones on the

branch shown as a solid line in the figure, on grounds of what Evans and Honkapohja

(2001) refer to as “expectational stability.”

One can reduce the system (35) – (36) to the single equation

p̄1 = Φ(p̄1), (38)

where Φ(p̃) is the value of p̄1 that satisfies (35), when ∆̄ in this equation is the value

obtained by substituting p̄1 = p̃ in equation (36). Note that Φ(p1
t ) indicates the

degree of sensitivity of inflation to cost-push shocks that would optimally be chosen

by a CB choosing under discretion in period t, if it expects the sensitivity of inflation

to cost-push shocks in the following period to be given by p1
t .

49 One can show that

the lower branch of solutions corresponds to fixed points at which 0 < Φ′(p̄1) < 1,

while the upper branch corresponds to fixed points at which Φ′(p̄1) > 1. Hence in the

former case, an expectation that policy will be near the fixed point far in the future

will justify choosing a policy very close to the fixed point now, while in the latter case,

even an expectation that policy will be near that fixed point in the distant future

will not lead the CB to choose policy near that fixed point now — only if future

policy is expected to coincide precisely with the fixed point will similar behavior be

justified now. Hence this fixed point is “unstable” under perturbations of expectations

regarding future policy in a way that makes it less plausible that successive central

bankers should coordinate on those particular expectations.50

solutions, which do not exist under the baseline calibration.
48As the graph suggests, there are actually two solutions to the system of equations in this region

as well – the dotted branch of the locus of solutions can be extended further to the left. But for
values of σu this small, the solutions on the dotted branch involve ∆̄ < 0, and so do not correspond
to MPE.

49Thus Φ(·) is a mapping from the discretionary CB’s “perceived law of motion” to the “actual
law of motion” resulting from its optimizing decisions, in the terminology of Evans and Honkaphja
(2001).

50One can also show that the expectationally stable MPE is an asymptotically stable rest point
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What happens in the case of an economy in the region where σu is too large for any

MPE to exist? (Note that this requires that σu > p̂1.) One observes that Φ(0) > 0,

and also that Φ(p̂1) = σu > Φ(p̂1). Then, if there are no fixed points in the interval

(0, p̂1), Φ(p) > p over the entire interval.51 This means that whatever value of p1 may

be expected to describe monetary policy in the following period, a CB that optimizes

under discretion will choose a larger value in the current period. There is then no

Markov perfect equilibrium; but the situation is clearly one in which (an attempt

at) discretionary optimization would be expected to lead to very large responses of

inflation to cost-push shocks — there would be no reason for the inflation response

to remain within any finite bounds!

In the case of rational expectations (the limit as θ →∞), there is always a unique

solution, given by

p̄1 =
λ

κ2 + λ
σu > 0. (39)

This is the characterization of policy under discretion given by Clarida et al. (1999);

the linearity in σu again indicates that a principle of certainty equivalence applies.

Comparison with (26) indicates that under discretionary policy, inflation responds

more strongly to a cost-push shock than under the optimal commitment, according

to the RE analysis. Moreover, because p̄0 > 0 in the case of discretion, while the

long-run average value of p0
t is zero under the optimal commitment, discretionary

policy is characterized by an “inflationary bias”. These discrepancies between what

policy would be like in the best possible RE equilibrium and what it is like in the

MPE with discretionary policy indicate the importance of advance commitment to

an optimal decision procedure for monetary policy.

How are these familiar results affected by allowing for near-rational expectations?

We see from (34) that whenever a robust linear MPE exists, it involves a positive

average inflation rate π∗ = p̄0; so again discretionary policy results in an inflationary

bias. Moreover, this equation indicates that π∗ is a decreasing function of ∆̄; hence

the inflationary bias is increased by a concern for robustness on the part of the CB

under adaptive learning dynamics, in which a sequence of central bankers seek to forecast the policies
of their successors by extrapolating observed policy in the past, while the expectationally unstable
MPE will also be unstable under the learning dynamics. On the connection between expectational
stability and stability under adaptive learning dynamics, see generally Evans and Honkapohja (2001).

51If instead there are two fixed points, the sign of Φ(p) − p changes between them; this is what
makes the lower solution expectationally stable while the upper is unstable.
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Figure 4: Variation of p̄1 with σu, under discretionary policy and under an optimal

commitment, with and without allowance for near-rational expectations.

(which makes ∆̄ less than 1). The problem of excessive sensitivity of the inflation

rate to cost-push shocks is also increased by a concern for robustness. We observe

from (35) that

p̄1 >
λ

κ2 + λ
σu (40)

when ∆̄ < 1, so that p̄1 is larger than in the RE case, described by (39). One can also

show52 that if we select the lower-sensitivity MPE as “the” prediction of the model

when multiple solutions exist, then the solution for p̄1 is monotonically decreasing in

θ over the range of values for which a robust linear MPE exists, which means that p̄1

is higher the greater the concern for robustness.

In the RE analysis, a discretionary policymaker allows inflation to respond more

to cost-push shocks, because of her inability to commit to a history-dependent policy

under which a positive cost-push shock would reduce subsequent inflation (as would

52Again see appendix A.3 for the proof.
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occur under an optimal commitment). In the absence of such a commitment, inflation

expectations do not move in a direction that helps to offset the effects of the distur-

bance on the short-run Phillips-curve tradeoff, and in the absence of such mitigation

of the shift in the Phillips-curve tradeoff, it is necessary to allow inflation to respond

to a greater extent. When the discretionary policymaker must guard against possi-

ble departures from RE, her situation is even more dire. Under the worst-case NRE

beliefs, inflation expectations increase following a positive cost-push shock, precisely

because this moves the Phillips curve in the direction that worsens the policymaker’s

tradeoff; and so the extent to which the discretionary policymaker finds it necessary to

allow inflation to increase is even greater than under the RE analysis (where inflation

expectations do not change).

While a concern for robustness increases the sensitivity of inflation to cost-push

shocks under discretionary policy, we found in section 2 that it reduces the sensitivity

to cost-push shocks under an optimal commitment. This is illustrated numerically

in Figure 4, which extends Figure 1 to show how the equilibrium value of p̄1 varies

with σu under discretionary policy as well as under the optimal commitment from a

timeless perspective, both with and without an allowance for near-rational expecta-

tions.53 (The two lower curves correspond to cases also shown in Figure 1.) When

RE are assumed, p̄1 is larger under discretionary policy, as just shown; but with a

concern for robustness (finite θ), the gap between the values of p̄1 under discretionary

policy and under a robustly optimal linear policy is even larger.

Thus the distortions of policy resulting from optimization under discretion are

increased when the CB allows for the possibility of near-rational expectations, and

the lessons of the RE analysis become only more important. When the CB’s concern

for robustness is sufficiently small (i.e., θ is large) — and when the volatility of

fundamentals is sufficiently small (i.e., σu is small) — a robust linear MPE exists, but

the degree to which it involves both an excessive average rate of inflation and excessive

responsiveness of inflation to cost-push shocks, relative to what would occur under

the robustly optimal linear policy, is even greater than is true in the RE analysis.

In the case of a sufficiently great concern for robustness, or a sufficiently unstable

environment, a robust linear MPE fails even to exist; in this case, the dangers of

discretionary policy are even more severe, and to an extent much greater than would

53The parameter values used in the figure are again those used in Figure 1. The RE curves assume
that θ−1 = 0, while the ones allowing for NRE beliefs assume that θ−1 = 1000.
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be suggested by the RE analysis.

4 Conclusion

I have shown how it is possible to analyze optimal policy for a central bank that

recognizes that private expectations may not be model-consistent, without commit-

ting oneself to a particular model of expectational error. The approach leads to a

one-parameter family robustly-optimal linear policies, indexed by a parameter θ that

measures the degree of concern for possible misunderstanding of equilibrium dynam-

ics.

Even when the central bank’s uncertainty about private expectations is consid-

erable (the case of low θ), calculation of the effects of anticipations of the system-

atic component of policy is still quite an important factor in policy analysis. Op-

timal policy is still history-dependent even when rational expectations are not as-

sumed. Indeed, a concern for robustness only increases the optimal degree of history-

dependence.

Moreover, just as in the RE analysis, commitment is important for optimal policy.

The distortions predicted to result from discretionary policymaking become even more

severe when the central bank allows for the possibility of near-rational expectations,

so that the importance of commitment is increased. And, as in the RE analysis, a

crucial feature of an optimal commitment is a guarantee that inflation will be low

and fairly stable. The fact that private beliefs may be distorted does not provide any

reason to aim for a higher average rate of inflation, while it does provide a reason

for the central bank to resist even more firmly the inflationary consequences of “cost-

push” shocks.
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A Appendix: Details of Derivations

A.1 Worst-Case NRE Beliefs

Suppose that the policy commitment is of the conditionally linear form

πt+1 = p0
t + p1

t wt+1 (A.1)

for some process {p0
t (ht, p

0
−1)} and some deterministic sequence {p1

t}. The problem

of the “malevolent agent” in any state of the world at date t (corresponding to a

history ht up to that point) is to choose a function specifying mt+1 as a function of

the realization of wt+1 so as to maximize

1

2
[π2

t + λ(xt − x∗)2]− θEt[mt+1 log mt+1] (A.2)

subject to the constraint that Etmt+1 = 1, where at each date xt is implied by the

equilibrium relation

πt = κxt + βEt[mt+1πt+1] + ut. (A.3)

It is obvious that the choice of the random variable mt+1

matters only through its consequences for the relative entropy (which affects the

objective (A.2)) on the one hand, and its consequences for PS expected inflation

(which affects the constraint (A.3) on the other. Hence in the case of any θ > 0, the

worst-case beliefs will minimize the relative entropy Et[mt+1 log mt+1] subject to the

constraints that

Etmt+1 = 1, Et[mt+1πt+1] = π̄t, (A.4)

whatever degree of distortion the PS inflation expectation π̄t may represent. I first

consider this sub-problem.

Since r(m) ≡ m log m is a strictly convex function of m, such that r′(m) → −∞
as m → 0 and r′(m) → +∞ as m → +∞, it is evident that there is a unique, interior

optimum, in which the first-order condition

r′(mt+1) = φ1t + φ2tπt+1

holds in each state at date t + 1, where φ1t, φ2t are Lagrange multipliers associated

with the two constraints (A.4). This implies that

log mt+1 = ct + φ2tπt+1 (A.5)
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in each state, for some constant ct. The two constants ct and φ2t in (A.5) are then

the values that satisfy the two constraints (A.4).

Under the assumption of a conditionally linear policy (A.1), πt+1 is conditionally

normally distributed, so that (A.5) implies that mt+1 is conditionally log-normal.54

It follows that

log Etmt+1 = Et[log mt+1] +
1

2
vart[log mt+1]

= ct + φ2tp
0
t +

1

2
φ2

2t|p1
t |2.

Hence the first constraint (A.4) is satisfied if and only if

ct = −φ2tp
0
t −

1

2
φ2

2t|p1
t |2. (A.6)

Under the worst-case beliefs, the PS perceives the conditional probability density

for wt+1 to be f̃(wt+1) = mt+1(wt+1)f(wt+1), where f(·) is the standard normal

density. Hence

log f̃(w) = log mt+1(w) + log f(w)

= ct + φ2tπt+1 − 1

2
log2π − 1

2
w2

= −1

2
log2π − 1

2
[w − φ2tp

1
t ]

2,

using (A.5) to substitute for mt+1 in the second line, and (A.1) and (A.6) to substitute

for πt+1 and ct respectively in the third line. But this is just the log density function for

a variable that is distributed as N(µt, 1), where the bias in the perceived conditional

expectation of wt+1 is µt = φ2tp
1
t . Hence

Êtπt+1 = p0
t + p1

t µt = p0
t + φ2t|p1

t |2,

and the second constraint (A.4) is satisfied if and only if55

φ2t =
π̄t − p0

t

|p1
t |2

. (A.7)

54This is one of the main reasons for the convenience of restricting our attention to linear policies
in this paper.

55Here I assume that p1
t 6= 0. If p1

t = 0, the constraint is satisfied regardless of the distortion
chosen by the “malevolent agent,” as long as π̄t = p0

t , which is necessarily the case. In this case, ct

and φ2t are not separately identified, but (A.6) suffices to show that mt+1 = 1 with certainty.
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Condition (A.6) then uniquely determines ct as well, and mt+1 is completely described

by (A.5), once we have determined the value of π̄t that should be chosen by the

“malevolent agent.” Note that the bias µt is given by expression (14), as asserted in

the text.

The relative entropy of the worst-case beliefs will then be equal to

Rpess
t = Êt[log mt+1] = ct + φ2tÊtπt+1

=
1

2

(π̄t − p0
t )

2

|p1
t |2

, (A.8)

using (A.6) and (A.7). This is proportional to the squared distance between the PS

inflation forecast and that of the central bank; but for any given size of gap between

the two, the size of the distortion of probabilities that is required is smaller the larger

is |p1
t |.56

It remains to determine the worst-case choice of π̄t.
57 It follows from (A.3) that

(xpess
t − x∗)2 =

1

κ2
(πt − ut − κx∗ − βπ̄t)

2. (A.9)

Substituting this for the squared output gap and (A.8) for the relative entropy in

(A.2), we obtain an objective for the “malevolent agent” that is a quadratic function

Q(π̄t; ut, πt, pt) of the distorted inflation forecast π̄t, and otherwise independent of the

distorted beliefs; thus π̄t is chosen to maximize this function. The function is strictly

concave (because the coefficient multiplying π̄2
t is negative) if and only if p1

t satisfies

the inequality

|p1
t |2 <

θ

β2

κ2

λ
. (A.10)

If the inequality is reversed, the function Q is instead convex, and is minimized rather

than maximized at the value of π̄t that satisfies the first-order condition Qπ̄ = 0. But

in this case, the “malevolent agent” can achieve an unboundedly large positive value

of the objective (A.2), as stated in the text; and a robustly optimal policy can never

involve a value of p1
t this large.

In the case that (A.10) holds with equality, Q is linear in π̄t, and it is again

possible for the “malevolent agent” to achieve an unboundedly large positive value of

56Equation (A.8) again assumes that p1
t 6= 0. In the event that p1

t = 0, it follows from the previous
footnote that the relative entropy of the worst-case beliefs will equal zero.

57The analysis here assumes that p1
t 6= 0. If p1

t = 0, there is no choice about the value of π̄t; it
must equal p0

t .
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the objective through an extreme choice of π̄t, except in the special case that

p0
t = β−1(πt − ut − κx∗), (A.11)

so that the linear function has a slope of exactly zero. Thus unless p0
t satisfies (A.11),

p1
t must satisfy the bound (A.10) in order for the objective (A.2) to have a finite

maximum. Even in the special case that (A.11) holds exactly, p1
t must satisfy a

variant of (A.10) in which the strict inequality is replaced by a weak inequality.

When (A.10) holds, the maximum value of Q occurs for the value of π̄t such that

Qπ̄ = 0. This implies that the worst-case value of π̄t is

π̄t = ∆−1
t

[
p0

t − (πt − ut − κx∗)
βλ

θκ2
|p1

t |2
]

, (A.12)

∆t ≡ 1− β2

θ

λ

κ2
|p1

t |2 > 0, (A.13)

as stated in the text. Substituting this solution into (A.8) and (A.9), one obtains

the implied output gap (17) and and relative entropy (18) under the worst-case NRE

beliefs, as stated in the text. Substituting these expressions into the objective (A.2),

one obtains an objective for the CB of the form

L̂(p; p1
−1, ρ) = E

∞∑
t=0

βtL(pt−1; pt; wt), (A.14)

in which the period loss is given by

L(pt−1; pt; wt) ≡ 1

2
π2

t +
λ

2κ2∆t

[πt − ut − κx∗ − βp0
t ]

2, (A.15)

where 0 < ∆t < 1 is the function of p1
t defined by (A.13), πt is the function of pt−1

and wt defined by (A.1), and ut = σuwt. Note that we can alternatively write

L(pt−1; pt; wt) = L̃(πt; pt; wt),

where the function L̃ is defined by the right-hand side of (A.15), since the coefficients

pt−1 only enter through their consequences for the value of πt.
58

When, instead, (A.10) holds with equality, and (A.11) holds as well, the worst-

case value of π̄t is indeterminate, but the maximized value of (A.2) is nonetheless

well-defined, and equal to zero. In this case, the period loss function is equal to

L(pt−1; pt; wt) =
1

2
π2

t .

58This alternative expression for the period loss function is convenient in Appendix A.3.
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When neither this case nor the one discussed in the previous paragraph applies, we

can define L(pt−1; pt; st) as being equal to +∞. The function is then defined (but

possibly equal to +∞) for all possible values of its arguments.

Note also that L(pt−1; pt; st) is necessarily non-negative, since for any values of

the arguments, it is possible for the “malevolent agent” to obtain a non-negative

value of (A.2) by choosing mt+1 = 1 in all states; the maximized value of (A.2) is

then necessarily at least this high. It follows that both the conditional expectations

and the infinite sum in (A.14) are sums (or integrals) of non-negative quantities;

hence both are well-defined (though possibly equal to +∞) for all possible values

of the arguments. Thus the CB objective (A.14) is well-defined for an arbitrary

conditionally-linear policy {pt} and arbitrary initial conditions (p1
−1, ρ).

A.2 Robustly Optimal Linear Policy

Given the worst-case PS beliefs characterized in the previous appendix, the problem

of the CB is to choose a {pt} for all t ≥ 0 so as to minimize (A.14), for given initial

conditions p1
−1 and a distribution ρ of possible values for p0

−1. The CB must choose a

policy under which p0
t may depend on both p0

−1 and the history of shocks ht, but p1
t

must be a deterministic function of time.

One can show that the objective (A.14) is a convex function of the sequence {pt}.
I begin by noting that (A.2) is a convex function of πt and xt, for any choice of

mt+1(·). Then since (A.3) is a linear relation among πt, xt, and πt+1(·), it follows

that, taking as given the choice of mt+1(·), the value of (A.2) implied by any choice

of πt+1(·) by the CB is a convex function of πt and πt+1(·). Similarly, since (A.1) is

linear, the value of (A.2) implied by any choice of pt is a convex function of pt−1 and

pt, for any choice of mt+1(·). Then since the maximum of a set of convex functions

is a convex function, it follows that the maximized value of (A.2) is also a convex

function of pt−1 and pt. Thus L(pt−1; pt; wt) is a convex function of (pt−1, pt). Finally,

a sum of convex functions is convex; this implies that (A.14) is a convex function of

the sequence {pt}.
Convexity implies that the CB’s optimal policy can be characterized by a system
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of first-order conditions,59 according to which

L3(pt−1; pt; wt) + βEtL1(pt; pt+1; wt+1) = 0 (A.16)

for each possible history ht at any date t ≥ 0, and

E[L4(pt−1; pt; wt) + βL2(pt; pt+1; wt+1)] = 0 (A.17)

for each date t ≥ 0. Here L1 through L4 denote the partial derivatives of L(p0
t−1, p

1
t−1; p

0
t , p

1
t ; wt)

with respect to its first through fourth arguments, respectively. Condition (A.16) is

the first-order condition for the optimal choice of p0
t (ht, p

0
−1, and (A.17) is the corre-

sponding condition for the optimal choice of p1
t (which must take the same value in

all states of the world at date t).

Note that it follows from the characterization in the previous appendix that for

any plan satisfying (A.10), the partial derivatives just referred to are well-defined,

and equal to

L1(pt−1; pt; wt) = πt +
λ

κ2

πt − ut − κx∗ − βp0
t

∆t

,

L2(pt−1; pt; wt) = L1(pt−1; pt; wt)wt,

L3(pt−1; pt; wt) = −β
λ

κ2

πt − ut − κx∗ − βp0
t

∆t

,

L4(pt−1; pt; wt) =
β2

θ

(
λ

κ2

)2 (
πt − ut − κx∗ − βp0

t

∆t

)2

p1
t .

Substituting (A.1) for πt and (A.13) for ∆t in these expressions, one can express the

first-order conditions (A.16) – (A.17) as restrictions upon the sequence {pt}.
Taking as given the deterministic sequence {p1

t}, one observes that (A.16) is a

linear stochastic difference equation for the evolution of the process {p0
t}, with coef-

ficients that are time-varying insofar as they involve the coefficients {p1
t}. One can

show that these linear equations must have a linear solution of the form (20). Here

there is no need to give a general expression for the coefficients of this solution, as

59This sequence of first-order conditions by itself is necessary but not sufficient for an optimum; in
order to prove that a solution to the FOCs represents an optimum, one must also verify a transver-
sality condition. Here, however, we are interested only in the steady-state solution to the FOCs,
which necessarily satisfies the transversality condition. Hence the steady-state solution character-
ized below does represent the policy that minimizes (A.14) under the self-consistent specification of
the initial conditions.
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we are interested only in the existence of a steady state. In such a steady state, if

it exists, p1
t is equal to some constant value p̄1 for all t; so it suffices to consider the

solution to (A.16) in this case.

Under the assumption that p1
t = p̄1 for all t ≥ −1, (A.16) is a stochastic linear

difference equation for the process {p0
t} of the form

Et[A(L)p0
t+1] = (σu − p̄1)wt, (A.18)

where

A(L) ≡ β −
(

1 + β +
κ2∆̄

λ

)
L + L2.

(Here ∆̄ is the constant value of ∆t implied by the constant value p̄1.) By factoring

the lag polynomial in (A.18), one can easily show that (A.18) has a unique stationary

solution,60 given by

p0
t = µp0

t−1 − µ(σu − p̄1)wt, (A.19)

where 0 < µ < 1 is the smaller root of the characteristic equation (24) given in the

text. Note that a stationary solution exists regardless of the value assumed for p̄1, as

long as it satisfies (A.10), for the quadratic equation is easily seen to have a root in

that interval in the case of any ∆̄ > 0. In fact, since 0 < ∆̄ < 1, one can show that

µRE < µ < 1, where µRE is the root in the RE case (corresponding to ∆̄ = 1).

The law of motion (A.19) implies that if the unconditional distribution for p0
t−1

is N(µp,t−1, σ
2
p,t−1), then (given the assumption that wt is i.i.d. N(0, 1)) the uncondi-

tional distribution for p0
t is also normal, with mean and variance

µp,t = µµp,t−1, σ2
p,t = µ2[σ2

p,t−1 + (σu − p̄1)2].

These difference equations have a unique fixed point, corresponding to the stationary

or ergodic distribution implied by the law of motion (A.19), namely,

µ̄p = 0, σ̄2
p =

µ2(σu − p̄1)2

1− µ2
.

I turn next to the implications of conditions (A.17). Note that for each period

t ≥ 0, the left-hand side of this equation involves the values of the three quanti-

ties (p1
t−1, p

1
t , p

1
t+1) and the unconditional joint distribution of (p0

t−1, p
0
t , p

0
t+1; wt, wt+1).

60This is the solution to the FOCs that satisfies the transversality condition and hence that
corresponds to the process that minimizes (A.14). For a generalization of this characterization
to the case in which the process {ut} follows a more general linear process, see Woodford (2005,
Appendix A.2).
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Given the assumption of a normal distribution N(µp,t−1, σ
2
p,t−1) for p0

t−1 and the law

of motion (20) for {p0
t} under optimal policy, we can write this joint distribution

as a function of the parameters (µp,t−1, σ
2
p,t−1) of the marginal distribution for p0

t−1

and the parameters (ψt, ψt+1) of the conditional distribution (p0
t , p

0
t+1; wt, wt+1|p0

t−1).

(Recall that ψt denotes the vector of coefficients of the law of motion (20).) Hence

the left-hand side of (A.17) is a function of the form

g(p1
t−1, p

1
t , p

1
t+1; µp,t−1, σ

2
p,t−1; ψt, ψt+1),

as asserted in (22). Once again, we need not further discuss the form of this equation

except in the case of a steady-state solution.

Using the solution above for the unconditional joint distribution of (p0
t−1, p

0
t , p

0
t+1; wt, wt+1)

in the case of self-consistent initial conditions, condition (A.17) then becomes a

second-order nonlinear difference equation in p1
t (the coefficients of which depend,

however, on the assumed value of p̄1). One observes that

E[L4(pt−1; pt; wt)] =
β2

θ

(
λ

κ2

)2
p̄1

∆̄2
E[(πt − ut − κx∗ − βp0

t )
2]

=
β2

θ

(
λ

κ2

)2
p̄1

∆̄2
[a + 2bp̄1 + (p̄1)2],

where

a ≡ E[(p0
t−1 − ut − κx∗ − βp0

t )
2],

b ≡ E[wt(p
0
t − ut − κx∗ − βp0

t )].

Similarly, one can show that

E[L2(pt; pt+1; wt+1)] = E[πt+1wt+1] +
λ

κ2∆̄
E[(πt+1 − ut+1 − κx∗ − βp0

t+1)wt+1]

= p̄1 +
λ

κ2∆̄
[p̄1 + b].

Hence condition (A.17) is equivalent to

f(p̄1) ≡ β2

θ

(
λ

κ2

)2
c

∆̄2
p̄1 + p̄1 +

λ

κ2∆̄
[p̄1 + b] = 0, (A.20)

where

c ≡ a + 2bp̄1 + (p̄1)2.
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A robustly optimal linear policy then exists if and only if (A.20) has a solution p̄1

that satisfies the bound (A.10). Of course, in defining the function f(·), one must

take account of the dependence of c and ∆̄ on the value of p̄1.

When {p0
t} evolves in accordance with the stationary dynamics (A.19), the above

definitions imply that

a = (κx∗)2 + E{[(1− βµ)p0
t−1 − (σu − βµ(σu − p̄1))wt]

2}
= (κx∗)2 +

(1− βµ)2µ2

1− µ2
(σu − p̄1)2 + [(1− βµ)σu + βµp̄1]2,

b = −σu − βE[p0
t wt]

= −(1− βµ)σu − βµp̄1.

I furthermore observe that a = a0 + b2, where

a0 ≡ (κx∗)2 +
(1− βµ)2µ2

1− µ2
(σu − p̄1)2 > 0.

Hence

c = a0 + (b + p̄1)2 > 0

can be signed for all admissible values of p̄1. Substituting this function of p̄1 for c and

(A.13) for ∆̄ in (A.20) yields a nonlinear equation in p̄1, that is solved numerically

in order to produce Figure 1.

One can easily show that a solution to this equation in the admissible range must

exist. Note first that (A.10) can alternatively be written in the form

|p̄1| < p̂1 ≡ κ

λ1/2

θ1/2

β
. (A.21)

I next observe that

f(0) =
λ

κ2∆̄
b = − λ

κ2
(1− βµ)σu < 0.

On the other hand, in the case of any finite θ, as p1 → p̂1, the first term in the

expression (A.20) becomes larger than the other two terms, so that f(p1) > 0 for

any value of p1 close enough to (while still below) the bound, Since the function

f(·) is well-defined and continuous on the entire interval [0, p̂1), there must be an

intermediate value 0 < p̄1 < p̂1 at which f(p̄1) = 0. Such a value satisfies both (A.10)

and (A.20), and so describes a robustly optimal linear policy.
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One can further establish that

0 < p̄1 < µσu, (A.22)

as asserted in the text. When evaluated at the value p1 = µσu, the second two terms

in (A.20) are equal to

− λ

κ2∆̄
P (µ)σu = 0,

where P (µ) is the polynomial defined in (24). Moreover, in the limiting case in which

θ → ∞ (the RE case), the first term in condition (A.20) is identically zero, so that

f(µσu) = 0, and p̄1 = µσu is a solution.61 Instead, when θ is finite, the first term is

necessarily positive, so that f(µσu) > 0. If µσu < p̂1, this implies that there exists a

solution to (A.17) such that (A.22) holds. If instead p̂1 ≤ µσu, then (A.22) follows

from the result in the previous paragraph. Hence in either case, the robustly optimal

policy satisfies (A.22) for any finite θ, while the upper bound holds with equality in

the limiting case of infinite θ.

Substitution of the law of motion (A.19) for p0
t in (A.12) leads to the solution

π̄t = Λp0
t + β−1(∆̄−1 − 1)κx∗,

where

Λ ≡ ∆̄−1 − β−1µ−1(∆̄−1 − 1).

Note that

Λ− 1 = (1− β−1µ−1)(∆̄−1 − 1) < 0,

since 0 < β, µ, ∆̄ < 1, from which it follows that Λ < 1.

A.3 Existence and Stability of Robust Linear MPE

A robust linear MPE corresponds to a pair (p̄1, ∆̄) that satisfy equations

p̄1 =
λ

κ2∆̄ + λ
σu > 0, (A.23)

∆̄ = 1− β2

θ

λ

κ2
|p̄1|2, (A.24)

61It is easily seen to be the unique solution, since f(p) is linear in this case. One can also show
that this is the optimal policy without restricting attention to linear policies, as is done here; see
Clarida et al. (1999) or Woodford (2003, chap. 7).
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with ∆̄ > 0 so that (A.10) is satisfied. Equivalently, we are looking for solutions to

the two equations in the interval 0 < p̄1 < p̂1, where p̂1 is defined by (A.21).

If we write these equations as ∆̄ = ∆1(p̄
1) and ∆̄ = ∆2(p̄

1) respectively, we observe

that ∆1(p) is a decreasing, strictly concave function for all p > 0, while ∆2(p) is a

decreasing, strictly convex function over the same domain. Moreover, ∆1(p) < ∆2(p)

for all small enough p > 0 (as ∆2(p) → +∞ as p → 0), and also for all large enough

p (as ∆1(p) → −∞ as p → +∞). Hence there are either no intersections of the two

curves with p̄1 > 0, or two intersections, or a single intersection at a point of tangency

between the two curves.

The slopes of the two curves are furthermore given by

∆′
1(p) = −2

β2

θ

λ

κ2
p,

∆′
2(p) = − λ

κ2

σu

p2
.

From these expressions one observes that ∆′
2(p) is less than, equal to, or greater than

∆′
1(p) according to whether p is less than, equal to, or greater than p̃1, where

p̃1 ≡
(

θ

β2

σu

2

)1/3

> 0.

From this it follows that there are two intersections if and only if ∆2(p̃
1) < ∆1(p̃

1),

which holds if and only if σu < σ∗u, where σ∗u is defined as in (37).62 Similarly, the

two curves are tangent to each other if and only if σu = σ∗u; in this case, the unique

intersection is at p̄1 = p̃1. And finally, the two curves fail to intersect if and only if

σu > σ∗u.

It remains to consider how many of these intersections occur in the interval 0 <

p̄1 < p̂1. One notes that there is exactly one solution in that interval (and hence

a unique robust linear MPE) if and only if ∆2(p̂
1) < 0, which holds if and only if

σu < p̂1. When σu = p̂1 exactly, ∆2(p̂
1) = ∆1(p̂

1) = 0, and the curves intersect at

p̄1 = p̂1. This is the larger of two solutions for p̄1 if and only if

∆′
1(p̂

1) < ∆′
2(p̂

1), (A.25)

which holds if and only if λκ2 < 2. In this case, as σu is increased further, the larger

of the two solutions for p̄1 decreases with σu, so that there are two solutions in the

62It is useful to note that this definition implies that σ∗u ≥ p̂1, with equality only if κ2/λ = 1/2.
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interval (0, p̂1), until σu = σ∗, and the two solutions collapse into one, as the curves

are tangent. (Note that σ∗u > p̂1.) For still larger values of σu, there is no intersection,

as explained in the previous paragraph.

If instead, λ/κ2 = 2 exactly, then the curves are tangent when σu = p̂1 (which in

this case is also equal to σ∗u). At this point the only intersection occurs at p̄1 = p̂1

(which fails to satisfy condition (A.10)), and for larger values of σu there are no

intersections. Finally, if λ/κ2 > 2, then the inequality in (A.25) is reversed, and

when σu = p̂1, the intersection at p̄1 = p̂1 is the smaller of the two solutions. (The

smaller solution approaches p̂1 from below as σu increases to p̂1.) In this case, there

are no solutions p̄1 < p̂1 when σu = p̂1. As σu increases further, the smaller solution

continues to increase with σu, so that even for values of σu that continue to be less

than or equal to σ∗u (so that the curves continue to intersect), there are no solutions

with p̄1 < p̂1. And for still larger values of σu, there are again no solutions at all.

Hence in each case, the number of solutions is as described in the text.

The “expectational stability” analysis proposed in the text involves the properties

of the map

Φ(p) ≡ ∆−1
2 (∆1(p)).

Formally, a fixed point p̄1 of Φ (which corresponds to an intersection of the two curves

studied above) is expectationally stable if and only if there exists a neighborhood P

of p̄1 such that

lim
n→∞

Φn(p) = p̄1

for any p ∈ P. Our observations above about the functions ∆1(·), ∆2(·) imply that

Φ(·) is a monotonically increasing function. Hence a fixed point p̄1 is stable if and

only if Φ′(p̄1) < 1.

The above definition implies that

Φ′(p) =
∆′

1(p)

∆′
2(∆

−1
2 (∆1(p)))

> 0.

Evaluated at a fixed point of Φ, this reduces to

Φ′(p̄1) =
∆′

1(p̄
1)

∆′
2(p̄

1)
.

Hence the stability condition is satisfied if and only if

∆′
2(p̄

1) < ∆′
1(p̄

1) < 0. (A.26)
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Because of the concavity of ∆1(·) and the convexity of ∆2(·), this condition necessarily

holds at the fixed point with the smaller value of p̄1, and not at the higher value.

Hence in Figure 3, it is the upper (dashed) branch of solutions that is expectationally

unstable, while the lower (solid) branch of solutions is stable. We therefore conclude

that regardless of the other parameter values, there is exactly one expectationally

stable robust linear MPE for all values of σu below some positive critical value, and

no robust linear MPE for values of σu greater than or equal to that value.

Finally, let us consider the way in which p̄1 changes as θ is reduced (indicating

that a broader range of NRE beliefs are considered possible). Letting p̄1 be implicitly

defined by the equation

∆1(p̄
1) = ∆2(p̄

1),

the implicit function theorem implies that

dp̄1

dθ
= − ∂∆1/∂θ

∆′
1 −∆′

2

. (A.27)

It follows from (A.26) that in the case of an expectationally stable MPE, the denom-

inator of the fraction in (A.27) is positive. We also observe that

∂∆1

∂θ
=

β2

θ2

λ

κ2
(p̄1)2 > 0,

so that the numerator is positive as well, and hence p̄1 decreases as θ increases. This

means that p̄1 increases as the CB’s concern for robustness increases (corresponding to

a lower value of θ, up until the point where there ceases to any longer be a robust linear

MPE at all. In that case, as discussed in the text, we can think of the equilibrium

sensitivity of inflation to cost-push shocks as being unbounded; so the conclusion

that greater concern for robustness leads to greater sensitivity of inflation to cost-

push shocks extends, in a looser sense, to that case as well.
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