
Optimal Interest-Rate Smoothing ∗

Michael Woodford
Department of Economics

Princeton University
Princeton, NJ 08544 USA

June 2002

Abstract

This paper considers the desirability of the observed tendency of central banks to
adjust interest rates only gradually in response to changes in economic conditions.
It shows, in the context of a simple model of optimizing private-sector behavior, that
assignment of an interest-rate smoothing objective to the central bank may be desirable,
even when reduction of the magnitude of interest-rate changes is not a social objective
in itself. This is because a response of policy to “irrelevant” lagged variables may be
desirable owing to the way it steers private-sector expectations of future policy.
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1 Optimal Monetary Policy Inertia

Many students of central bank behavior have noted that the level of nominal interest rates

in the recent past appears to be an important determinant of where the central bank will

set its interest-rate instrument in the present. Changes in observed conditions, such as in

the rate of inflation or in the level of economic activity, result in changes in the level of the

central bank’s operating target for the short-term interest rate that it controls, but these

changes typically occur through a series of small adjustments in the same direction, drawn

out over a period of months, rather than through an immediate once-and-for-all response

to the new development. This type of behavior is especially noticeable in the case of the

Federal Reserve in the U.S., but characterizes many other central banks to at least some

extent as well.1

Such behavior may be rationalized on the ground that central banks seek to “smooth”

interest rates, in the sense that they seek to minimize the variability of interest-rate changes,

in addition to other objectives of policy such as inflation stabilization. Yet it remains unclear

why it should be desirable for central banks to pursue such a goal. There are several plausible

reasons why policymakers should prefer policies that do not require the level of short-term

interest rates to be too variable. On the one hand, the zero nominal interest-rate floor

(resulting from the availability of cash as a riskless, perfectly liquid zero-return asset) means

that rates cannot be pushed below zero. This means that a policy consistent with a low

average rate of inflation, which implies a low average level of nominal interest rates, cannot

involve interest-rate reductions in response to deflationary shocks that are ever too large.

And at the same time, high nominal interest rates always imply distortions, as resources are

wasted on unnecessary efforts to economize on cash balances. Friedman (1969) stresses that

this is a reason to prefer a regime with low average inflation, or even moderate deflation;

1See, e.g., Cook and Hahn (1989), Rudebusch (1995), Goodhart (1996), and Sack (1998a, 1998b). The
presence of lagged interest rates in estimated central-bank reaction functions (e.g., Judd and Rudebusch,
1998; Sack, 1998b; or Clarida et al., 1998, 2000) is often interpreted in terms of partial-adjustment dynamics
for the gap between the actual level of the interest-rate instrument and a desired level that depends on
variables such as current inflation and real activity.
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but it is actually the level of nominal interest rates that directly determines the size of

the distortion, and the argument applies as much to short-run variation in nominal interest

rates as to their average level. Thus it is also desirable on this ground for policy not to raise

nominal interest rates too much in response to inflationary shocks.2 But while it makes a

great deal of sense for a central bank to seek to achieve its other aims in a way consistent

with as low as possible a variance of the level of short-run nominal rates, this in no way

implies a direct concern with the variability of interest-rate changes.

Nonetheless, I shall argue that a concern with interest-rate smoothing on the part of a

central bank can have desirable consequences. This is because such an objective can result

in history-dependent central-bank behavior which, when anticipated by the private sector,

can serve the bank’s stabilization objectives through the effects upon current outcomes of

anticipated future policy.

If the private sector is forward-looking, so that the effects of policy depend to an im-

portant extent on expectations regarding future policy, it is well known that discretionary

minimization of a loss function representing true social objectives will generally lead to a

(Markov) equilibrium which is suboptimal from the point of view of those same objectives.

The reason is that a central bank that optimizes under discretion neglects at each point in

time the effects that anticipations of its current actions have had upon equilibrium deter-

mination at earlier dates, as these past expectations can no longer be affected at the time

that the bank decides how to act. Yet a different systematic pattern of conduct, justify-

ing different expectations, might have achieve a better outcome in terms of the bank’s own

objectives.

As a consequence, a better outcome can often be obtained (in the Markov equilibrium

associated with discretionary optimization) if the central bank is assigned an objective dif-

ferent from the true social objective; the problem of choosing an appropriate objective is

sometimes called the problem of “optimal delegation”. Famous examples include the pro-

2Both of these grounds for inclusion of a quadratic stabilization objective for a short-term nominal interest
rate in the objective function that monetary policy should be designed to mininimize are analyzed in detail
in Woodford (2002, chap. 6).
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posal by Rogoff (1985) that a central banker should be chosen who is “conservative”, in the

sense of placing a greater weight on inflation stabilization than does the social loss function,

or the proposal by King (1997) that the central bank should aim to stabilize the output gap

around the level consistent with achieving its inflation target on average, even when a higher

level of output relative to potential would be socially optimal. In both cases, modification

of the central bank’s objective can eliminate the bias toward higher-than-optimal average

inflation resulting from discretionary policy when the central bank seeks to minimize the

true social loss function.

In these examples, the central bank’s assigned loss function is still a quadratic function of

the same target variables as is the true social loss function; the assigned target values for these

variables may be changed (as in the King proposal), or the relative weights on alternative

stabilization objectives may be altered (as in the Rogoff proposal), but the variables that

one wishes to stabilize are not changed. However, in general, there will also be advantages

to introducing new target variables into the central bank’s assigned loss function. This is

the argument given here for assigning a central bank an interest-rate smoothing objective.

In particular, it will often be desirable to assign the central bank a loss function that

involves lagged endogenous variables that are irrelevant to the computation of true social

losses in a given period, as a way of causing policy to be history-dependent. In the case of any

loss function that is a function of the same target variables as the true social loss function,

and no others, policy must be purely forward-looking in a Markov equilibrium resulting from

discretionary optimization by the bank. This means that at each point in time, policy (and

the resulting values of the target variables) depend only on those aspects of the state of

the world that define the set of feasible paths for the target variables from the present time

onward. Yet in general, optimal policy is not purely forward-looking (Woodford, 2000). This

is shown in the example considered in this paper through explicit computation of the optimal

state-contingent evolution of the economy subject to the constraint that policy be purely

forward-looking, and comparing this with the optimal state-contingent evolution when this

constraint is relaxed.
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It might seem that familiar “dynamic programming” arguments imply that optimal policy

should be purely forward-looking. But such arguments apply to the optimal control of

backward-looking systems of the kind considered in the engineering literature, and not to

the control of a forward-system of the kind that a central bank is concerned with, as a result

of private-sector optimization (under rational expectations). In a case of the latter sort, the

evolution of the target variables depends not only the central bank’s current actions, but also

upon how the private sector expects monetary policy to be conducted in the future. It follows

from this that a more desirable outcome may be achieved if it can be arranged for private

sector expectations of future policy actions to adjust in an appropriate way in response to

shocks. But if the private sector has rational expectations, it is not possible to arrange

for expectations to respond to shocks in a desired way unless subsequent policy is affected

by those past shocks in the way that one would like the private sector to anticipate. This

will generally require that the central bank’s behavior be history-dependent — that it not

depend solely upon current conditions and the bank’s current forecast of future conditions,

but also upon past conditions, to which it was desirable for the private sector to be able to

count upon the central bank’s subsequent response.

The essential insight into why interest-rate smoothing by a central bank may be desirable

is provided by a suggestion of Goodfriend (1991), also endorsed by Rudebusch (1995). Good-

friend argues that output and prices do not respond to daily fluctuations in the (overnight)

federal funds rate, but only variations in longer-term interest rates. The Fed can thus achieve

its stabilization goals only insofar as its actions affect these longer-term rates. But long rates

should be determined by market expectations of future short rates. Hence an effective re-

sponse by the Fed to inflationary pressures, say, requires that the private sector be able

to believe that the entire future path of short rates has changed. A policy that maintains

interest rates at a higher level for a period of time once they are raised — or even following

initial small interest-rate changes by further changes in the same direction, in the absence

of a change in conditions that makes this unnecessary — is one that, if understood by the

private sector, will allow a moderate adjustment of current short rates to have a significant
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effect on long rates. Such a policy offers the prospect of significant effects of central bank

policy upon aggregate demand, without requiring excessively volatile short-term interest

rates.

This paper offers a formal analysis of the benefits of inertial behavior along essentially

the lines sketched by Goodfriend, in the context of a simple, and now rather standard,

forward-looking macro model, with clear foundations in optimizing private-sector behavior.

Section 2 presents the model, poses the problem of optimal monetary policy, and derives

the optimal state-contingent responses of endogenous variables, including nominal interest

rates, to shocks under an optimal regime.3 Section 3 highlights the need for policy to be

history-dependent, by contrasting the fully optimal responses with the optimal responses

subject to the constraint that policy be non-inertial. Section 4 then considers the optimal

delegation problem, showing that it is desirable for the central bank’s loss function to include

an interest-rate smoothing objective, even though the true social loss function does not.

Section 5 concludes.

2 Optimal Responses to Fluctuations in the Natural

Rate of Interest

In order to illustrate more concretely the themes of the preceding discussion, it is useful to

introduce a simple optimizing model of inflation and output determination under alterna-

tive monetary policies, where monetary policy is specified in terms of a feedback rule for a

short-term nominal interest rate instrument. The model is similar, if not identical, to the

small forward-looking models used in a number of recent analyses of monetary policy rules,

including Kerr and King (1996), Bernanke and Woodford (1997), Rotemberg and Wood-

ford (1997, 1999), McCallum and Nelson (1999a, 1999b), and Clarida et al. (1999). As is

explained in Woodford (2002, chap. 4), the model’s equations can be derived as log-linear

3The analysis of optimal state-contingent policy follows Woodford (1999a), which also contrasts optimal
state-contingent policy under commitment with the Markov equilibrium associated with discretionary min-
imization of the true social loss function. The analysis of optimal forward-looking policy is new here, as is
the treatment of the optimal delegation problem.
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approximations to the equilibrium conditions of a simple intertemporal general equilibrium

model with sticky prices. While the model is quite simple, it incorporates forward-looking

private sector behavior in three respects, each of which is surely of considerable importance

in reality, and would therefore also be present in some roughly similar form in any realistic

model.

The model’s two key equations are an intertemporal IS equation (or Euler equation for

the intertemporal allocation of private expenditure) of the form

xt = Etxt+1σ[it − Etπt+1 − rn
t ], (2.1)

and an aggregate supply equation of the form

πt = κxt + βEtπt+1, (2.2)

where xt is the deviation of the log of real output from its natural rate, πt is the rate of

inflation (first difference of the log of the price level), and it is the deviation of the short-term

nominal interest rate (the central bank’s policy instrument) from its steady-state value in

the case of zero inflation and steady output growth. These two equations, together with a

rule for the central bank’s interest-rate policy, determine the equilibrium evolution of the

three endogenous variables πt, xt, and it.

The exogenous disturbance rn
t corresponds to Wicksell’s “natural rate of interest”, the

interest rate (determined by purely real factors) that would represent the equilibrium real rate

of return under flexible prices, and that corresponds to the nominal interest rate consistent

with an equilibrium with constant prices.4 In our simple model, disturbances to the natural

rate represent a useful summary statistic for all non-monetary disturbances that matter for

the determination of inflation and the output gap, for no other disturbance term enters either

equation (2.2) or (2.1), once they are written in terms of the output gap xt as opposed to

the level of output. Hence if, as we shall suppose, the goals of stabilization policy can be

described in terms of the paths of the inflation rate, the output gap, and interest rates alone,

4See Woodford (2002, chap. 4) for further discussion of the importance of this concept for monetary
policy.
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then the problem of optimal monetary policy may be formulated as a problem of the optimal

response to disturbances to the natural rate of interest.

We shall assume that the objective of monetary policy is to minimize the expected value

of a loss criterion of the form

W = E0

{ ∞∑

t=0

βtLt

}
, (2.3)

where 0 < β < 1 is a discount factor, and the loss each period is given by

Lt = π2
t + λxx

2
t + λii

2
t , (2.4)

for some weights λx, λi > 0. The assumed form of (2.4) is relatively conventional, except that

an interest-rate stabilization objective is included, for either or both of the reasons discussed

in the introduction.5 Note that an interest-rate “smoothing” objective is not assumed. The

“target values” of each of the target variables are assumed to be those associated with a

steady state with zero inflation in the absence of real disturbances. Thus target values are

not assumed that result in any bias in the average rate of inflation, or in the average values

of other state variables, under discretionary policy; the reason for assigning the central bank

a loss function other than the social loss function has solely to do with the sub-optimality

of the dynamic responses to shocks under discretionary minimization of (2.4).6

I begin by characterizing the dynamic responses to shocks that would occur under an

optimal commitment, and comparing these to the consequences of discretionary policy when

the central bank seeks to minimize the true social loss function. Our problem is to choose

stochastic processes πt, xt, and it — specifying each of these variables as a function of a

random state It that includes not only the complete history of the exogenous disturbances

(rn
t , rn

t−1, . . . , r
n
0 ), but also all public information at date t about the future evolution of the

natural rate — in order to minimize the criterion defined by (2.3) and (2.4), subject to

5A welfare-theoretic justification for this objective function, in the context of the microfoundations of the
structural model behind equations (2.1) – (2.2), is presented in Woodford (2002, chap. 6).

6Allowing for different target values would affect only the optimal long-run average values of the en-
dogenous variables, and not the nature of optimal responses to shocks. Since our concern here is with
stabilization issues, we abstract from any complications that may be involved in bringing about a desirable
long-run average state.
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the constraint that the processes satisfy equilibrium conditions (2.2) and (2.1) at all dates

t ≥ 0. We shall imagine in this calculation that a policymaker can choose the entire future

(state-contingent) evolutions of these variables, once and for all, at date zero. Once this

benchmark has been characterized, we can then consider the problem of implementation of

such an optimal plan.

2.1 Characterization of the Optimal Plan

This sort of linear-quadratic optimization problem can be treated using methods that are

by now familiar.7 It is useful to write a Lagrangian of the form8

E0

{ ∞∑

t=0

βt{(1/2)Lt + φ1t[xt − xt+1 + σ(it − πt+1 − rn
t )] + φ2t[πt − κxt − βπt+1]}

}
. (2.5)

An optimal plan then must satisfy the first-order conditions

πt − β−1σφ1t−1 + φ2t − φ2t−1 = 0, (2.6)

λxxt + φ1t − β−1φ1t−1 − κφ2t = 0, (2.7)

λiit + σφ1t = 0, (2.8)

obtained by differentiating the Lagrangian with respect to πt, xt, and it respectively. Each

of conditions (2.6) – (2.8) must hold at each date t ≥ 1, and the same conditions also must

hold at date t = 0, where however one adds the stipulation that

φ1,−1 = φ2,−1 = 0. (2.9)

We may omit consideration of the transversality conditions, as we shall consider only bounded

solutions to these equations, which necessarily satisfy the transversality conditions. A

(bounded) optimal plan is then a set of bounded processes {πt, xt, rt, φ1t, φ2t} for dates t ≥ 0,

that satisfy (2.2), (2.1), and (2.6) – (2.8) at all of these dates, consistent with the initial

conditions (2.9).

7See, e.g., Backus and Driffill (1986) for treatment of a general linear-quadratic problem. See Woodford
(1999b) for further discussion of the optimal plan for this model.

8Note that conditional expectations are dropped from the way in which the constraints are written inside
the square brackets, because the expectation E0 at the front of the entire expression makes them redundant.
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If the optimal plan is bounded (which is the only case in which our log-linear approx-

imations to the model structural equations and our quadratic approximation to the social

welfare function can be expected to accurately characterize it), one can show that this system

of equations has a unique bounded solution of the form

zt = Gφt−1 −H
∞∑

j=0

Ã−(j+1)aEtr
n
t+j, (2.10)

where z′t ≡ [πt xt it] is the vector of endogenous variables and φ′t ≡ [φ1t φ2t] is the vector

of Lagrange multipliers, for certain matrices of coefficients that depend on the model pa-

rameters. The eigenvalues of the matrix Ã lie outside the unit circle, so that the infinite

sum converges in the case of any bounded process for the natural rate. The corresponding

solution for the Lagrange multipliers is of the form

φt = Nφt−1 − C
∞∑

j=0

Ã−(j+1)aEtr
n
t+j, (2.11)

where the eigenvalues of the matrix N lie inside the unit circle. This property of the matrix

N implies that (2.11) defines a bounded stochastic process for the multipliers φt, given any

bounded process for the natural rate.

It is obvious that such an optimal plan will, in general, not be time consistent, in the sense

discussed by Kydland and Prescott (1977). For a policymaker that solves a corresponding

problem starting at some date T > 0 will choose processes for dates t ≥ T that satisfy

equations (2.10) – (2.11), but starting from initial conditions

φ1,T−1 = φ2,T−1 = 0

corresponding to (2.9). Yet these last conditions will, in general, not be satisfied by the op-

timal plan chosen at date zero, according to solution (2.11) for the evolution of the Lagrange

multipliers. This is why discretionary optimization leads to a different equilibrium outcome

than the one characterized here.

The presence of the lagged Lagrange multipliers in (2.10) is also the reason why optimal

policy cannot be implemented through any purely forward-looking procedure. These terms
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imply that the endogenous variables at date t – and in particular, the central bank’s setting

of the interest rate at that date – should not depend solely upon current and forecasted future

values of the natural rate of interest. They should also depend upon the predetermined state

variables φt−1, which represent an additional source of inertia in optimal monetary policy,

independent of any inertia that may be present in the exogenous disturbance process rn
t .

The additional terms represent the way in which policy should deviate from what would be

judged optimal simply taking into account the current outlook for the economy, in order

to follow through upon commitments made at an earlier date. It is the desirability of the

central bank’s being able to credibly commit itself in this way that makes it desirable for

monetary policy to be somewhat inertial.

The extent to which these equations imply inertial behavior of the nominal interest rate

can be clarified by writing a law of motion for the interest rate that makes no reference to

the Lagrange multipliers. Let us suppose that the relevant information at date t about the

future evolution of the natural rate can be summarized by an exogenous state vector st, with

law of motion

st+1 = Tst + εt+1, (2.12)

where εt+1 is a vector of exogenous disturbances unforecastable at t, and let the natural rate

be given by some linear function of these states,

rn
t = k′st. (2.13)

Equation (2.11) can then be written in the form

φt = Nφt−1 + nst, (2.14)

for a certain matrix of coefficients n.

The endogenous variable φ2t can then be eliminated from the system of equations (2.14),

yielding an equation with instead two lags of φ1t. Then using (2.8) to substitute out φ1t, we

obtain the law of motion

Q(L)it = R(L)st (2.15)
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for the nominal interest rate, where

Q(L) ≡ det[I −NL], R(L) ≡ −(λrσ)−1[n′1 + (N12n
′
2 −N22n

′
1)L]. (2.16)

The degree of persistence in the intrinsic dynamics of the nominal interest rate under the

optimal plan, unrelated to any persistence in the fluctuations in the exogenous states st is

determined by the roots µi of the characteristic equation

Q(µ) = 0,

which roots are just the eigenvalues of the matrix N . These roots are determined by factors

independent of the dynamics of the exogenous disturbances. Thus it may be optimal for

nominal interest rates to exhibit a great deal of persistence, regardless of the degree of

persistence of the fluctuations in the natural rate.

2.2 A Simple Limiting Case

The extent to which the equations just derived imply behavior that might appear to involve

interest-rate “smoothing” can be clarified by considering a limiting case, in which a closed-

form solution is possible. This is the limiting case in which the value of the parameter κ (the

slope of the “short-run Phillips curve”) approaches zero. In this limit, variations in output

relative to potential cause no change in the level of real marginal cost, and firms accordingly

have no reason to change their prices at any time. Hence πt = 0 at all times, regardless of

monetary policy. We shall assume that the values of all other parameters are unchanged.

In this limiting case, the κφ2t term in (2.7) can be neglected, so that it becomes possible

to solve for the variables xt, it, and φ1t using only equations (2.1), (2.7), and (2.8). We can

furthermore use two of these equations to eliminate xt and φ1t, leaving the equation

Etit+1 −
(

1 + β−1 +
λx

λi

σ2

)
it + β−1it−1 = −λx

λi

σ2rn
t (2.17)

for the optimal interest-rate dynamics.

One observes that the characteristic equation associated with (2.17) necessarily has two

real roots, satisfying

0 < µ1 < 1 < β−1 < µ2,
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and that µ2 = (βµ1)
−1. Because exactly one root is inside the unit circle, (2.17) has a unique

bounded solution, given by

it = µ1it−1 + σ2(λx/λi)
∞∑

j=0

µ
−(j+1)
2 Etr

n
t+j. (2.18)

This gives us a law of motion of the form (2.15), but in this limiting case, a representation

is possible in which Q(L) is only of first order, and R(L) is a constant (there are no lags at

all). In fact, one can easily show that (2.18) is a partial-adjustment equation of the form

it = θit−1 + (1− θ)̄ıt, (2.19)

where the inertia coefficient θ = µ1, and the time-varying interest-rate “target” is given by9

ı̄t = (1− µ−1
2 )

∞∑

j=0

µ−j
2 Etr

n
t+j. (2.20)

Thus the optimal interest-rate dynamics are described by partial adjustment toward a moving

average of current and expected future natural rates of interest.

In the case that the natural rate is a simple first-order autoregressive process,

rn
t+1 = ρrn

t + εt+1 (2.21)

for some 0 ≤ ρ < 1, the target rate is just a function of the current natural rate of interest,

although (because of expected mean-reversion of the natural rate in the future) it varies less

than does the natural rate itself. Specifically, we have

ı̄t = krn
t , (2.22)

where k ≡ (µ2 − 1)/(µ2 − ρ), so that 0 < k < 1. If the fluctuations in the natural rate

are largely transitory, the elasticity k may be quite small, though it is any event necessarily

greater than 1−β. If the fluctuations in the natural rate are nearly a random walk (ρ is near

one), the elasticity k instead approaches one. In this case, interest rates eventually change

by nearly as much as the (nearly permanent) change that has occurred in the natural rate;

9Here we use the fact that σ2λx/λi is equal to (1− µ1)(µ2 − 1).
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but even in this case, the change in the level of nominal interest rates is delayed. As a result,

an innovation in the natural rate is followed by a series of interest rate changes in the same

direction, as in the characterizations of actual central-bank behavior by Rudebusch (1995)

and Goodhart (1996).

While this partial-adjustment representation of optimal interest-rate dynamics is only

exactly correct in an unrealistic limiting case, it provides considerable insight into the optimal

interest-rate responses in more realistic cases. This is shown through numerical analysis of

a case with κ > 0 in the next section.

3 The Value of Interest-Rate Inertia

A central theme of this paper is the desirability of assigning to the central bank an objective

which makes lagged nominal interest rates relevant to the bank’s evaluation of possible

current states. In order to show the need for an objective of that form, it is appropriate

to consider the degree to which responses similar to those associated with the optimal plan

can be achieved through choice of a suitable central-bank loss function that does not depend

on any such lagged variables. To consider this question, we need not consider the Markov

equilibria associated with alternative central-bank loss functions at all. Instead, we may

simply consider what the best possible equilibrium would be like that can be achieved by

any purely forward-looking decision procedure. To the extent that that pattern of responses

to shocks — the optimal non-inertial plan — remains substantially inferior to the optimal

plan in the absence of such a restriction, there are clear benefits to the introduction of

history-dependence of the proper sort into the central bank’s decision procedures.

3.1 The Optimal Non-Inertial Plan

By a purely forward-looking procedure we mean one that makes the bank’s policy decision

a function solely of the set of possible equilibrium paths for the economy from the present

date onward. In a Markov equilibrium associated with any such procedure, the endogenous

variables must be functions only of the state vector st. Hence we may proceed by optimizing
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over possible state-contingent evolutions of the economy that satisfy this restriction. We

call the optimal pattern of responses to disturbances subject to this restriction the optimal

non-inertial plan.

We shall simplify by here considering only the case in which the natural rate evolves

according to (2.21). In this case, non-inertial plans are those in which each endogenous

variable yt is a time-invariant linear function10 of the current natural rate of interest,

yt = fyr
n
t . (3.1)

Substituting the representation (3.1) for each of the variables y = π, x, i into (2.2) – (2.1),

we find that feasible non-inertial plans correspond to coefficients fy that satisfy

(1− βρ)fπ = κfx, (3.2)

(1− ρ)fx = −σ(fi − 1− ρfπ). (3.3)

Among these plans, we seek the one that minimizes E[W ], the unconditional expectation

of (2.3), taking the unconditional expectation over the stationary distribution of possible

initial exogenous states rn
0 . We take this unconditional expectation so that our choice of the

optimal plan does not depend upon the state that the economy happens to be in at the time

that the commitment is made.11

Given our restriction to non-inertial plans, minimization of E[W ] is equivalent to min-

imization of E[L], the unconditional expectation of the period loss (2.4). Thus we seek to

10We could also allow for a non-zero constant term in (3.1), but it is easily seen that in the present example
the optimal long-run value of each of the variables is zero.

11If instead we were to minimize W , conditioning upon the state of the economy at the time of choice as
in Levine (1991), the exact non-inertial plan that would be chosen would in general depend upon that state.
This is because the choice of how the variables should depend upon rn would be distorted by the desire to
obtain an initial (unexpected) inflation, without creating expectations of a similar rate of inflation on average
in the future; this could be done by exploiting the fact that rn

0 is known to have a value different from its
expected value in the future (which is near zero eventually). By instead defining the optimal non-inertial
policy as we do, we obtain a unique policy of this kind, and associated unique values for statistics such as
the variability of inflation under this policy. Also, under our definition, unlike Levine’s, the optimal “simple”
plan is certainty-equivalent, just like the fully optimal plan and the time-consistent optimizing plan. That
is, the optimal long-run average values of the variables are the same as for a certainty problem, while the
optimal response coefficients fy are independent of the variance of the disturbance process.
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minimize

E[L] = [f 2
π + λxf

2
x + λif

2
i ]var(rn), (3.4)

subject to the linear constraints (3.2) – (3.3).The first-order conditions for optimal choice of

the fy imply that

fi =
κ(1− βρ)−1fπ + λxfx

[(1− ρ)σ−1 − ρκ(1− βρ)−1]λi

. (3.5)

This condition along with (3.2) – (3.3) determines the optimal response coefficients.

3.2 A Numerical Example

To consider what degree of interest-rate inertia might be optimal in practice, it is useful

to consider a numerical example, “calibrated” to match certain quantitative features of the

Rotemberg and Woodford (1997, 1999) analysis of optimal monetary policy for the U.S.

economy.12 The numerical values that we shall use are given in Table 1. We assume an

AR(1) process for the fluctuations in the natural rate of interest as in (2.21), so that we

need only calibrate a single parameter ρ. The value of ρ chosen here implies a degree of

concern for reduction of interest-rate variability similar to that obtained by Rotemberg and

Woodford in their estimated model, though their estimate disturbance processes are more

complex.

For the parameter values in Table 1, the matrix N is given by

N =

[
.4611 .0007

−.7743 .6538

]
,

and its eigenvalues are found to be approximately .65 and .46. Both of these are substantial

positive quantities, suggesting that once interest rates are perturbed in response to some

shock, it should take several quarters for them to be restored to nearly their normal level,

even if the shock is completely transitory.

Figure 1 illustrates this by showing the optimal responses of inflation, the output gap,

and the short-term nominal interest rate to a unit positive innovation εt in the natural-rate

process. The natural rate of interest is made higher by (0.35)j percentage points in quarter

12Details of the justification for this calibration are set out in Woodford (1999b).
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t+j by this disturbance. The figure shows the dynamic responses of the endogenous variables

in quarters t + j, for j = 0 through 10, both under both the optimal plan and the optimal

non-inertial plan.

Under the optimal non-inertial plan (dash-dot lines in the figure), the nominal interest

rate is raised in response to the real disturbance, but only by about two-thirds the amount

of the increase in the natural rate. As a result, monetary policy does not fully offset the

inflationary pressure created by the disturbance, and both inflation and the output gap

increase;13 this is optimal within the class of non-inertial policies because it involves less

interest-rate variability than would be required to completely stabilize inflation and the

output gap (by perfectly tracking the variations in the natural rate). Because the policy is

non-inertial, inflation, the output gap, and the nominal interest rate all decay back to their

long-run average values at exactly the same rate as the real disturbance itself decays, i.e., in

proportion to (0.35)j.

Under the fully optimal plan (solid lines in the figure), instead, the nominal interest rate

is raised by less at the time of the shock. But the increase is more persistent than is the

disturbance to the natural rate of interest, so that policy is expected to be tighter under this

policy than under the optimal non-inertial plan from quarter t + 2 onward. Thus interest

rates are more inertial under the optimal plan, both in the sense that the central bank is

slow to raise rates when the natural rate unexpectedly increases, and also in the sense that

it is slow to bring them back down when the natural rate returns to its normal level.

The advantages of more inertial adjustment of the interest rate can be seen in the other

two panels of the figure. Despite the gentler immediate interest-rate response, the initial

increase in the output gap is no greater under this policy, because spending is restrained

by the anticipation of tight policy farther into the future; and the output gap returns to

its normal level much more rapidly under this policy, as interest rates are kept relatively

high despite the decay of the natural rate back toward its normal level. Because the output

13See Woodford (2002, chap. 4) for discussion of the effects on inflation and output of fluctuations in the
natural rate of interest in a model like this one.
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stimulus is expected to be short-lived (the output gap is actually expected to undershoot

its normal level by the quarter after the shock), the increase in inflation resulting from

the shock is minimal under the optimal policy. Thus monetary policy is as successful at

stabilizing inflation and the output gap under this policy as under the optimal non-inertial

plan (actually, somewhat more successful overall), yet the desired result is achieved with

much less variability of interest rates, owing to a commitment to adjust them in a smoother

way.

Statistics regarding the variability of the various series under the two plans are reported

in Table 2. Here independent drawings from the same distribution of shocks εt are assumed

to occur each period, and infinite-horizon stochastic equilibria are computed under each

policy. The measure of variability reported for each variable zt is

V [z] ≡ E[E0{(1− β)
∞∑

t=0

βtẑ2
t }], (3.6)

where the outer (unconditional) expectation is over possible initial states of the economy rn
0

at the time that policy is chosen, computed using the stationary distribution associated with

the exogenous process (2.21) for the natural rate. The unconditional expectation allows us

a measure that is independent of the economy’s initial state. Except for the discounting,

E[z] corresponds to the unconditional variance of zt, and in the case of non-inertial plans,

it is equal to the unconditional variance even though β < 1. In the case of the optimal

plan, the discounted measure is of greater interest, because our loss measure E[W ] — the

unconditional expectation of (2.3), integrating over the stationary distribution for the initial

state rn
0 — is in that case just a weighted sum of the previous three columns. For purposes

of comparison, the table also presents statistics for the Markov equilibrium resulting from

discretionary minimization of the true social loss function.14

The table shows that for the calibrated parameter values, there is a substantial gain from

commitment to an inertial policy, relative to the best possible non-inertial policy. This is

primarily due to the lower volatility of nominal interest rates under the optimal plan (V [i]

14See Woodford (1999a) for further discussion of the differences between the optimal plan and the outcome
of discretionary policy.
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is reduced by more than 70 percent), although the central bank’s other stabilization goals

are better served as well (V [π] + λxV [x] is also reduced).

Visual inspection of the optimal interest-rate dynamics in Figure 1 suggests that partial

adjustment of the nominal adjustment toward a level determined by the current natural rate

of interest, just as in the limiting case analyzed in section 2.2, gives a reasonable approxima-

tion to optimal interest-rate dynamics. This is because the element N12 of the matrix N is

quite small. In the case that N12 were exactly equal to zero, Q(L) and R(L) would contain

the common factor (1 − N22L). Removing this factor from both sides of (2.15), one would

obtain interest-rate dynamics of the form (2.19), prescribing partial adjustment toward a

time-varying “target” interest rate equal to

ı̄t = −(σ/λi)(1−N11)
−1n′1st, (3.7)

with an inertia coefficient of θ = N11. In our numerical example, the target rate (3.7) would

be given by ı̄t = .52rn
t , while the inertia coefficient is equal to θ = .46, indicating that interest

rates should be adjusted only about half of the way toward the current target level (implied

by the natural rate) within the quarter.

4 Advantages of a Central Bank Smoothing Objective

We turn now to the question of the type of objective that should be assigned to the central

bank in order to bring about equilibrium responses to shocks similar to those associated

with the optimal plan.15 We thus wish to address what is sometimes called the problem of

optimal delegation of authority to conduct monetary policy. In such an analysis, one asks

what objective the central bank should be charged with, understanding that the details of the

pursuit of the goal on a day-to-day basis should then be left to the bank, and expecting that

the bank will then act as a discretionary minimizer of its assigned loss function.16 Our results

in the previous section suggest that equilibrium responses to shocks can be improved if the

15This is not, of course, the only way that one might seek to bring about the desired type of equilibrium
responses. See Woodford (1999b), Svensson and Woodford (1999) and Giannoni and Woodford (2002) for
discussion of alternative approaches in the context of similar models.
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central bank is assigned an interest-rate smoothing objective, leading to partial-adjustment

dynamics for the bank’s interest-rate instrument, even though the lagged nominal interest

rate is irrelevant to both the true social objective function (2.4) and the structural equations

of our model.

4.1 Markov Equilibrium with a Smoothing Objective

Let us consider the consequences of delegating the conduct of monetary policy to a central

banker that is expected to seek to minimize the expected value of a criterion of the form

(2.3), where however (2.4) is replaced by a function of the form

Lcb
t = π2

t + λ̂xx
2
t + λ̂ii

2
t + λ∆(it − it−1)

2. (4.1)

Here we allow the weights λ̂x, λ̂i to differ from the weights λx, λi associated with the true

social loss function. We also allow for the existence of a term that penalizes interest-rate

changes, not present in the true social loss function (2.4).

The time-consistent optimizing plan associated with such a loss function can be derived

using familiar methods, expounded for example in Soderlind (1998). Note that the presence

of a term involving the lagged interest rate in the period loss function (4.1) means that

in a Markov equilibrium, outcomes will depend on the lagged interest rate. In such an

equilibrium, the central bank’s value function in period t is given by a time-invariant function

V (it−1; r
n
t ).17

Standard dynamic programming reasoning implies that the value function must satisfy

the Bellman equation

V (it−1; r
n
t ) = min

(it,πt,xt)
Et

{
1

2
[π2

t + λ̂xx
2
t + λ̂ii

2
t + λ∆(it − it−1)

2]

+βV (it; r
n
t+1)

}
, (4.2)

16Alternatively, the question is sometimes framed as asking what type of central banker (or monetary
policy committee) should be appointed, taking it as given that the central banker will seek to maximize the
good as he or she personally conceives it, again optimizing under discretion.

17Here we simplify by assuming that the natural rate of interest is itself Markovian, with law of motion
(2.21), though we could easily generalize our results to allow for more complicated linear state-space models.
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where the minimization is subject to the constraints

πt = κxt + βEt[π(it; r
n
t+1)],

xt = Et[x(it; r
n
t+1)− σ(it − rn

t − π(it; r
n
t+1))].

Here the functions π(it; r
n
t+1), x(it; r

n
t+1) describe the equilibrium that the central bank ex-

pects to occur in period t+1, conditional upon the exogenous state rn
t+1. This represents the

consequence of discretionary policy at that date and later, that the current central banker

regards him or herself as unable to change.

We shall furthermore restrict attention to solutions of the Bellman equation in which the

value function is a quadratic function of its arguments, and the solution functions for i, π,

and x are each linear functions of their arguments. The solution functions can accordingly

be written

i(it−1; r
n
t ) = iiit−1 + inrn

t , (4.3)

π(it−1; r
n
t ) = πiit−1 + πnrn

t , (4.4)

x(it−1; r
n
t ) = xiit−1 + xnr

n
t , (4.5)

where ii, in, and so on are constant coefficients to be determined by solving a fixed-point

problem. Note also that differentiation of (4.2) using the envelope theorem implies that the

partial derivative of the value function with respect to its first argument must satisfy

V1(it−1; r
n
t ) = λ∆[it−1 − i(it−1; r

n
t )]. (4.6)

Thus linearity of the solution function i guarantees the linearity of the function V1 as well.

We turn now to the fixed-point problem for the constant coefficients in the solution

functions. First of all, substitution of the assumed linear solution functions into the two

constraints following (4.2), and using

Etr
n
t+1 = ρrn

t , (4.7)

allows us to solve for xt and πt as linear functions of it and rn
t . (Let the coefficients on it in the

solutions for xt and πt be denoted Xi and Πi respectively. These coefficients are themselves
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linear combinations of the coefficients xi and πi introduced in (4.4) – (4.5).) Requiring the

solution functions defined in (4.3) – (4.5) to satisfy these linear restrictions yields a set of

four nonlinear restrictions on the coefficients xi, xn and so on.

Substituting these solutions for xt and πt into the right-hand side of (4.2), the expression

inside the minimization operator can be written as a function of it and rn
t . This expression

is quadratic in it, and so it achieves a minimum if and only if both first and second-order

conditions are satisfied. Substituting (4.6) for the derivative of the value function, the first-

order condition may be written as

Πiπt + λ̂xXixt + λ̂iit + λ∆(it − it−1) + βλ∆(it − Etit+1) = 0, (4.8)

while the second-order condition is

Ω ≡ Π2
i + λ̂xX

2
i + λ̂i + λ∆ + βλ∆(1− ii) ≥ 0. (4.9)

Requiring that the solutions defined in (4.3) – (4.5) always satisfy the linear equation (4.8)

gives us another set of two nonlinear restrictions on the constant coefficients of the solution

functions. We thus have a set of six nonlinear equations to solve for the six coefficients of

equations (4.3) – (4.5). A set of coefficients satisfying these equations, and also satisfying

the inequality (4.9), represent a linear Markov equilibrium for the central bank objective

(4.1).

We shall as usual be interested solely in the case of a stationary equilibrium, so that

fluctuations in it, πt and xt are bounded if the fluctuations in rn
t are bounded.18 It can be

shown that this is true if and only if

|ii| < 1. (4.10)

Thus we are interested in solutions to the six nonlinear equations that satisfy both inequalities

(4.9) and (4.10).

18Once again, this is the case in which our linear-quadratic approximations are justifiable in terms of a
Taylor series approximation to the exact conditions associated with private-sector optimization, in the case
of small enough exogenous disturbances.
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In the case that λ̂x, λ̂i, λ∆ ≥ 0, it will be observed that (4.10) implies condition (4.9), so

that we need not concern ourselves with the second-order condition in that case. However,

non-negativity of these weights in the central-bank objective is not necessary for convexity

of the central bank’s optimization problem, and it is of some interest to consider delegation

to a central banker with a negative weight on some term. Such preferences need not result

in a violation of convexity; the second-order condition will still be satisfied as long as the

other four terms together outweigh the negative λ̂i term.

We turn now to the question of what loss function the central bank should be assigned to

minimize, if a Markov equilibrium of this kind is assumed to result from delegation of such

an objective. We first note that setting λ∆ > 0 results in inertial interest-rate responses to

fluctuations in the natural rate. For the first-order condition (4.8) implies that

Ωii = λ∆

in any solution; thus if λ∆ > 0, both Ω and ii must be non-zero, and of the same sign. The

second-order condition (4.9) then implies that in any equilibrium, both quantities must be

positive. It follows that in any stationary equilibrium,

0 < ii < 1, (4.11)

so that the law of motion (4.3) for the nominal interest rate implies partial adjustment

toward a time-varying target that is a linear function of the current natural rate of interest.

One may wonder whether it is possible to choose the weights in the central bank’s loss

function so as to completely eliminate the distortions associated with discretion, and achieve

the same responses as under an optimal commitment. It should be immediately apparent

that it is not in general possible to achieve this outcome exactly. For we have shown in

section 2.1 that the optimal interest-rate dynamics have a representation of the form (2.15),

where in general Q(L) is of second order and R(L) is of first order; thus they generally do not

take a form as simple as (4.3). Nonetheless, we can show that exact implementation of the

optimal plan is possible at least in a limiting case. And we can also show that it is possible to
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achieve a pattern of responses nearly as good as the optimal plan, in the calibrated numerical

example of section 3.2. These points are taken up in succession in the next two subsections.

4.2 Optimal Delegation in a Limiting Case

Here we consider again the limiting case with κ = 0 taken up in section 2.2. We have

shown there that in this special case, the optimal interest-rate and output dynamics do

take the form given by (4.3) and (4.5) Hence we may ask whether it is possible to choose

the weights in (4.1) so that the Markov equilibrium just characterized involves the optimal

dynamics described in section 2.2. Note that only the ratios of the weights in the policy

objective, λ̂i/λ̂x and λ∆/λ̂x, rather than the absolute size of the three weights, matter for

this calculation. (Inflation variations are negligible under any policy regime, so the relative

weight on inflation variability no longer matters.) Hence we may, without loss of generality,

suppose that λ̂x = λx, the weight in the true social objective function.

Starting from the linear dynamics obtained in section 2.2, we need only check whether

these can be consistent with (4.8) and (4.9) for some weights in the assigned loss function.

Under the above choice of λ̂x, we find that there are unique values of λ̂i and λ∆ that render

the optimal equilibrium responses consistent with (4.8). These are given by

λ∆ = λi
λi(β

−1 − µ1) + λxσ
2

(1− βρµ1)βλxσ2
> 0, (4.12)

λ̂i = −(1− βρ)(1− βµ1)λ∆ < 0, (4.13)

where µ1 is again the smaller root of the characteristic equation associated with (2.17).

While one finds that the kind of partial-adjustment interest-rate dynamics associated

with the optimal plan do require λ∆ > 0, as conjectured, one finds that they cannot be

exactly matched through delegation to a central banker with discretion unless in addition

λ̂i < 0. But as noted earlier, a negative value for λ̂i does not necessarily imply violation of the

convexity condition (4.9) needed for central-bank optimization. In fact, we have shown above

that the second-order condition holds in the case of any solution to the first-order condition

with λ∆ > 0 and ii > 0. As we have shown in section 2.2 that ii > 0, and (4.12) implies
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that λ∆ > 0, the above assumed central-bank objective does result in a convex optimization

problem for the central bank. Thus the optimal pattern of responses to shocks can in this

case be supported as an equilibrium outcome under discretion, as long as the central bank

is charged with pursuit of an objective that involves interest-rate smoothing.

4.3 Optimal Delegation in a Numerical Example

When κ > 0, assignment of an objective from the simple class (4.1) does not suffice to

implement the precise optimal plan characterized in section 2. Nonetheless, it is possible to

achieve quite a good approximation to the optimal pattern of responses to shocks, in the

case of plausible parameter values. We demonstrate this through numerical analysis, using

once again the calibrated parameter values specified in Table 1. To begin, we shall assume

that λ̂x = λx = .048 (the value in Table 1), and consider only the consequences of variation

in λ̂i and λ∆.

We first note that the nonlinear equations referred to above do not always have a unique

solution for the coefficients ii, in, and so on. It can be shown that given a value for ii

consistent with these equations, a unique solution can be obtained, generically, for the other

coefficients. However, ii solves a quintic equation, which equation may have as many as five

real roots. For example, Figure 2 plots the solutions to this equation, as a function of λ̂i, in

the case that λ∆ = 0. One observes that there is a unique real root, ii = 0, in the case of

any λ̂i > 0; but for λ̂i < 0, there are multiple solutions, and given the results of the previous

sub-section, we are interested in considering loss functions of this kind.19

In the figure, solutions that also satisfy conditions (4.9) and (4.10), and so correspond to

stationary equilibria, are indicated by solid lines, while additional branches of solutions that

do not correspond to stationary equilibria are indicated by dashed lines.20 We observe that

19When λ∆ is exactly zero, only the root ii = 0 is actually a Markov equilibrium, since in this special case
the lagged nominal interest rate is an irrelevant state variable. However, for small non-zero values of λ∆,
the graph of the solutions is similar, and all solutions count as Markov equilibria.

20Technically, when λ∆ = 0, the second-order condition is (weakly) satisfied even by solutions in which
ii < 0. But our real interest is in the set of solutions that exist for small positive values of λ∆. The solutions
shown in Figure 2 with ii < 0 also correspond to solutions with ii < 0 in the case of small positive λ∆, and
under that perturbation these solutions cease to satisfy the second-order condition. Hence we show these
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while there exist multiple solutions to the nonlinear equations for all λ̂i < 0, there is still a

unique stationary equilibrium involving optimization under discretion for all λ̂i > −1.21 Only

for even larger negative values do we actually have multiple stationary Markov equilibria.

The same turns out to be true for λ∆ > 0 as well, at least in the case of the moderate values

of λ∆ that we shall consider here.22

We next consider how the properties of the stationary Markov equilibrium vary with the

parameters λ̂i and λ∆. In Figure 3, the white region indicates the set of loss function weights

for which there is a unique stationary equilibrium of the linear form characterized above. In

this region, the contour lines plot the value of E[W ] for this equilibrium. The grey region

indicates weights for which there are multiple stationary equilibria. Here we plot the lowest

possible value of E[W ]. As it turns out, the best equilibrium that is attainable corresponds

to weights in the white region, so that we do not have to face the question of whether one

should choose weights that are consistent with one good equilibrium but also with other bad

ones.

Four sets of policy weights marked on Figure 5 are of particular interest. The numerical

values of the weights are given in Table 3, along with properties of the resulting Markov

equilibrium. The X (corresponding to line 1 of Table 3) indicates the weights in the true

social loss function; but charging a discretionary central bank to minimize this objective

does not lead to the best equilibrium, under this same criterion. The large black dot (line

2 of Table 3) instead indicates the weights that lead to the best outcome, when one still

restricts attention to central bank loss functions with no smoothing objective (λ∆ = 0). This

corresponds to a weight λ̂i that implements the optimal non-inertial plan, characterized in

section 3.23 It involves a value λ̂i < λi, so that interest rates respond more vigorously to

branches of solutions with dashed lines.
21To be more precise, for any small enough value λ∆ > 0, there exists a unique stationary equilibrium

for all λ̂i > −1. This identifies the boundary of the white region in Figure 3 near the horizontal axis. It is
interesting to note that for values of λ̂i below a critical value, approximately -0.02, the unique stationary
equilibrium no longer corresponds to the “minimum state variable solution”, i.e., the solution in which lagged
interest rates are irrelevant.

22For very high values of λ∆ > 0, not shown in Figure 3 below, there exist multiple equilibria even for
higher values of λ̂i.

23Compare the second line of Table 3 with the second line of Table 2.
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variations in the natural rate of interest than occurs under discretion when the central bank

seeks to minimize the true social loss function.

The circled star, or wheel (line 4 of Table 3), instead indicates the minimum achievable

value of E[W ], among time-consistent equilibria of this kind. These weights therefore solve

the optimal delegation problem, if we restrict ourselves to central-bank objectives of the

form (4.1). As in the limiting case solved explicitly above, the optimal weights involve

λ∆ > 0, λ̂i < 0.

We note that minimum value of E[W ] shown in Figure 5 is the same, to three significant

digits, as that shown in Table 2 for the optimal plan under commitment. Thus more than

99.9 percent of the reduction in expected loss (relative to the outcome under discretionary

minimization of the true social loss function) that is possible in principle, through an optimal

commitment, can be achieved through an appropriate choice of objective for a discretionary

central bank.24 The exact optimal pattern of responses could presumably be supported as a

time-consistent equilibrium if we were to consider more complex central bank loss functions;

but our analysis here suffices to indicate the desirability of assigning the central bank an

interest-rate smoothing objective.

It may not be thought possible, in practice, to assign the central bank a smoothing

objective that involves a negative weight on one of the “stabilization” objectives. The star

without a circle in Figure 3 (third line of Table 3) indicates the best Markov equilibrium

that can be achieved subject to the constraint that λ̂i ≥ 0. This point corresponds to a point

of tangency between an isoquant of E[W ] and the vertical axis at λ̂i = 0. In this case, it is

still desirable to direct the central bank to penalize large interest-rate changes, though the

optimal λ∆ is smaller than if it were possible to choose λ̂i < 0.

Thus far, we have assumed that the relative weight on output gap variability, λ̂x, equals

the weight in the true social loss function, λx, given in Table 1. In fact, consideration of values

λ̂x 6= λx allows us to do no better, either in the case of loss functions with no smoothing

24The equilibrium achieved in this way is also very similar in other respects, such as the other statistics
for the optimal plan reported in Table 2.
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objective, or in the case of the fully unconstrained family. This is not because λ̂x = λx is a

uniquely optimal value in either case, but rather because we can find weights that support

the optimal plan for an arbitrary value of λ̂x, so that the constraint that λ̂x = λx has no

cost. For example, it would also be possible to impose the constraint that λ̂x = 0, so that

there is no output-gap term in the central bank loss function at all. The optimal weights in

this case are given on the fifth line of Table 3. Note that again λ̂i < 0, λ∆ > 0.

This ceases to be true if we impose the constraint that all weights be non-negative.

In this case, the constraint that λ̂i ≥ 0 binds. But if we must set λ̂i = 0, the additional

degree of freedom allowed by varying λ̂x does allow some improvement of the time-consistent

equilibrium, in general. In fact, for the numerical parameter values used above, the optimal

λ̂x is infinite; that is, the relative weight on the inflation term is best set to zero. To analyze

this case, it is thus convenient to adopt an alternative normalization for the central bank

loss function,

Lcb
t = x2

t + λ̃ππ2
t + λ̃ii

2
t + λ̃∆(it − it−1)

2. (4.14)

In terms of this alternative normalization, the loss function described on the fourth line

of Table 3 is instead described as on the sixth line of the table. The optimal objective in the

family (4.14), when we impose the constraint that λ̃i ≥ 0, is instead given on the seventh

line of the table. Once again we find that a positive weight on the smoothing objective is

desirable, though the constrained-optimal central-bank objective puts no weight on either

inflation stabilization or on reducing variation in the level of nominal interest rates.25

5 Conclusion

Even if there is no intrinsic benefit to minimizing the size of changes in the central bank’s

interest-rate instrument, it can be desirable for a central bank to seek to minimize a loss

function that includes a smoothing objective. For pursuit of such an objective will lead

a central bank that optimizes under discretion to adjust interest rates in a more inertial

25See Woodford (1999b) for further discussion of optimal delegation under this constraint.
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fashion, and interest-rate dynamics of this kind are desirable for the sake of objectives that

are important for monetary policy — namely, achieving a greater degree of stability of

inflation and the output gap, without requiring so much variation in the level of interest

rates.

Of course, the assignment to the central bank of an objective different from the true social

loss function, in the expectation that it will pursue that objective with discretion, is not the

only possible approach to the achievement of a desirable pattern of responses to disturbances.

One defect of the “optimal delegation” approach considered here is that it presumes that

the stationary Markov equilibrium associated with a particular distorted objective will be

realized. Yet there may well be other possible rational expectations equilibria consistent with

discretionary optimization by the central bank, “reputational” equilibria in which the bank

may do a better job of minimizing the objective it has been assigned, but as a consequence

bring about a pattern of responses that is less desirable from the point of view of the true

social objective.

An alternative approach that would not raise these difficulties would be a commitment by

the central bank to conduct policy according to an interest-rate feedback rule along the lines

of the “Taylor rule”. Interest-rate rules that would implement the optimal plan in the context

of the model considered here are discussed in Woodford (1999b) and Giannoni and Woodford

(2002). Under this approach as well, an optimal rule makes the current interest rate setting

a function of the recent past level of interest rates. A purely contemporaneous rule — one

that makes the current nominal interest rate a linear function of the current inflation rate

and current output gap only, as proposed by Taylor (1993) — can at best implement only

the optimal non-inertial plan. The more inertial interest rate dynamics shown in section

2 to characterize the optimal plan instead require a feedback rule that responds to lagged

endogenous variables; in particular, the rule must specify that the level chosen for the current

nominal interest rate will be higher the higher nominal interest rates already are. Thus this

feature of estimated central-bank reaction functions can also be justified as a characteristic

of optimal policy.
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Table 1: “Calibrated” parameter values.

Structural parameters
β 0.99

σ−1 .157
κ .024

Shock process
ρ 0.35

sd(rn) 3.72

Loss function
λx .048
λi .236

Table 2: Statistics for alternative policies.

Policy V[π] V[x] V[i] E[W ]
Discretion .487 22.95 4.023 2.547
Non-Inertial .211 9.92 6.720 2.279
Optimal .130 10.60 1.921 1.097

Table 3: Stationary Markov equilibria with alternative policy weights.

Policy Weights Equilibrium Statistics

λ̂π λ̂x λ̂i λ∆ V[π] V[x] V[i] E[W ]
1 .048 .236 0 .487 22.95 4.023 2.547
1 .048 .120 0 .211 9.92 6.720 2.279
1 .048 0 .282 .082 11.73 2.907 1.337
1 .048 -.439 .807 .135 10.50 1.922 1.097
1 0 -.232 .204 .135 10.50 1.922 1.097

20.7 1 -9.09 16.7 .135 10.50 1.922 1.097
0 1 0 5.51 .077 11.95 2.649 1.281
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