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Quantum state tomography aims to determine the state of a
quantum system as represented by a density matrix. It is a fundamen-
tal task in modern scientific studies involving quantum systems. In
this paper, we study estimation of high-dimensional density matrices
based on a relatively small number of Pauli measurements. In partic-
ular, under appropriate notion of sparsity, we establish the minimax
optimal rates of convergence for estimation of the density matrix un-
der both the spectral and Frobenius norm losses; and show how these
rates can be achieved by a common thresholding approach. Numerical
performance of the proposed estimator is also investigated.

1. Introduction. For a range of scientific studies including quantum
computation, quantum information and quantum simulation, an important
task is to learn and engineer quantum systems (Aspuru-Guzik et. al. (2005),
Benenti et. al. (2004, 2007), Brumfiel (2012), Jones (2013), Lanyon et. al.
(2010), Nielsen and Chuang (2000), and Wang (2011, 2012)). A quantum
system is described by its state characterized by a density matrix, which
is a positive semi-defintie Hermitian matrix with unit trace. Determining a
quantum state, often referred to as quantum state tomography, is impor-
tant but difficult (Alquier et. al. (2013), Artiles et. al. (2005), Aubry et.
al. (2009), Butucea et. al. (2007), Guţă and Artiles (2007), Häffner et. al.
(2005), Wang (2013), and Wang and Xu (2015)). It is often inferred by per-
forming measurements on a large number of identically prepared quantum
systems.
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More specifically we describe a quantum spin system by the d-dimensional
complex space Cd and its quantum state by a complex matrix on Cd. When
measuring the quantum system by performing measurements on some ob-
servables which can be represented by Hermitian matrices, we obtain the
measurement outcomes for each observable, where the measurements take
values at random from all eigenvalues of the observable, with the probability
of observing a particular eigenvalue equal to the trace of the product of the
density matrix and the projection matrix onto the eigen-space corresponding
to the eigenvalue. To handle the up and down states of particles in a quantum
spin system, we usually employ well-known Pauli matrices as observables to
perform measurements and obtain the so-called Pauli measurements (Brit-
ton et. al. (2012), Johnson et. al. (2011), Liu (2011), Sakurai and Napolitano
(2010), Shankar (1994), and Wang (2012, 2013)). Since all Pauli matrices
have ±1 eigen-values, Pauli measurements takes discrete values 1 and −1,
and the resulted measurement distributions can be characterized by bino-
mial distributions. Our goal is to estimate the density matrix by the Pauli
measurements.

Traditionally quantum tomography employs classical statistical models
and methods to deduce quantum states from quantum measurements. These
approaches are designed for the setting where the size of a density matrix is
greatly exceeded by the number of quantum measurements, which is almost
never the case even for moderate quantum systems in practice because the
dimension of the density matrix grows exponentially in the size of the quan-
tum system. For example, the density matrix for a one-dimensional quantum
spin chain of size b is of size 2b × 2b. In this paper, we consider specifically
how the density matrix could be effectively and efficiently reconstructed for
a large-scale quantum system with a relatively limited number of quantum
measurements.

Quantum state tomography is fundamentally connected to the problem
of recovering a high dimensional matrix based on noisy observations (Wang
(2013)). The latter problem arises naturally in many applications in statis-
tics and machine learning and has attracted considerable recent attention.
When assuming that the matrix parameter of interest is of (approximately)
low-rank, many regularization techniques have been developed. Examples
include Candès and Recht (2008), Candès and Tao (2009), Candès and Plan
(2009a, b), Keshavan, Montanari, and Oh (2010), Recht, Fazel, and Par-
rilo (2010), Bunea, She and Wegkamp (2011, 2012), Klopp (2011, 2012),
Koltchinskii (2011), Koltchinskii, Lounici and Tsybakov (2011), Negahban
and Wainwright (2011), Recht (2011), Rohde and Tsybakov (2011), and Cai
and Zhang (2015), among many others. Taking advantage of the low-rank
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structure of the matrix parameter, these approaches can often be applied
to estimate matrix parameters of high dimensions. Yet these methods do
not fully account for the specific structure of quantum state tomography. As
demonstrated in a pioneering article, Gross et al. (2010) argued that, when
considering quantum measurements characterized by the Pauli matrices, the
density matrix can often be characterized by the sparsity with respect to the
Pauli basis. Built upon this connection, they suggested a compressed sens-
ing (Donoho (2006)) strategy for quantum state tomography (Gross (2011)
and Wang (2013)). Although promising, their proposal assumes exact mea-
surements, which is rarely the case in practice, and adopts the constrained
nuclear norm minimization method, which may not be an appropriate matrix
completion approach for estimating a density matrix with unit trace (or unit
nuclear norm). We specifically address such challenges in the present article.
In particular, we establish the minimax optimal rates of convergence for the
density matrix estimation in terms of both spectral and Frobenius norms
when assuming that the true density matrix is approximately sparse under
the Pauli basis. Furthermore, we show that these rates could be achieved
by carefully thresholding the coefficients with respect to Pauli basis. Be-
cause the quantum Pauli measurements are characterized by binomial dis-
tributions, the convergence rates and minimax lower bounds are derived by
asymptotic analysis with manipulations of binomial distributions instead of
the usual normal distribution based calculations.

The rest of paper proceeds as follows. Section 2 gives some background
on quantum state tomography and introduces a thresholding based density
matrix estimator. Section 3 develops theoretical properties for the density
matrix estimation problem. In particular, the convergence rates of the pro-
posed density matrix estimator and its minimax optimality with respect
to both the spectral and Frobenius norm losses are established. Section 4
features a simulation study to illustrate finite sample performance of the
proposed estimators. All technical proofs are collected in Section 5.

2. Quantum state tomography with Pauli measurements. In
this section, we first review the quantum state and density matrix and in-
troduce Pauli matrices and Pauli measurements. We also develop results to
describe density matrix representations through Pauli matrices and char-
acterize the distributions of Pauli measurements via binomial distribution
before introducing a thresholding based density matrix estimator.

2.1. Quantum state and measurements. For a d-dimensional quantum
system, we describe its quantum state by a density matrix ρ on d dimen-
sional complex space Cd, where density matrix ρ is a d by d complex matrix
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satisfying (1) Hermitian, that is, ρ is equal to its conjugate transpose; (2)
positive semi-definite; (3) unit trace i.e. tr(ρ) = 1.

For a quantum system it is important but difficult to know its quantum
state. Experiments are conducted to perform measurements on the quantum
system and obtain data for studying the quantum system and estimating its
density matrix. In physics literature quantum state tomography refers to
reconstruction of a quantum state based on measurements for the quantum
systems. Statistically it is the problem of estimating the density matrix from
the measurements. Common quantum measurements are on observable M,
which is defined as a Hermitian matrix on Cd. Assume that the observable
M has the following spectral decomposition,

(2.1) M =
r∑

a=1

λaQa,

where λa are r different real eigenvalues of M, and Qa are projections
onto the eigen-spaces corresponding to λa. For the quantum system pre-
pared in state ρ, we need a probability space (Ω,F , P ) to describe mea-
surement outcomes when performing measurements on the observable M.
Denote by R the measurement outcome of M. According to the theory of
quantum mechanics, R is a random variable on (Ω,F , P ) taking values in
{λ1, λ2, · · · , λr}, with probability distribution given by

(2.2) P (R = λa) = tr(Qa ρ), a = 1, 2, · · · , r, E(R) = tr(Mρ).

We may perform measurements on an observable for a quantum system that
is identically prepared under the state and obtain independent and identi-
cally distributed observations. See Holevo (1982), Sakurai and Napolitano
(2010), and Wang (2012).

2.2. Pauli measurements and their distributions. The Pauli matrices as
observables are widely used in quantum physics and quantum information
science to perform quantum measurements. Let

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −

√
−1√

−1 0

)
, σ3 =

(
1 0
0 −1

)
,

where σ1, σ2 and σ3 are called the two dimensional Pauli matrices. Tensor
products are used to define high dimensional Pauli matrices. Let d = 2b for
some integer b. We form b-fold tensor products of σ0, σ1, σ2 and σ3 to
obtain d dimensional Pauli matrices

(2.3) σ`1 ⊗ σ`2 ⊗ · · · ⊗ σ`b , (`1, `2, · · · , `b) ∈ {0, 1, 2, 3}b.
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We identify index j = 1, · · · , d2 with (`1, `2, · · · , `b) ∈ {0, 1, 2, 3}b. For
example, j = 1 corresponds to `1 = · · · = `b = 0. With the index identifica-
tion we denote by Bj the Pauli matrix σ`1 ⊗σ`2 ⊗ · · · ⊗σ`b , with B1 = Id.
We have the following theorem to describe Pauli matrices and represent a
density matrix by Pauli matrices.

Proposition 1. (i) Pauli matrices B2, · · · ,Bd2 are of full rank and
have eigenvalues ±1. Denote by Qj± the projections onto the eigen-
spaces of Bj corresponding to eigenvalues ±1, respectively. Then for
j, j′ = 2, · · · , d2,

(2.4) tr(Qj±) =
d

2
, tr(Bj′Qj±) =

{
±d

2 if j = j′

0 if j 6= j′.

(ii) Denote by Cd×d the space of all d by d complex matrices equipped
with the Frobenius norm. All Pauli matrices defined by (2.3) form an
orthogonal basis for all complex Hermitian matrices. Given a density
matrix ρ we can expand it under the Pauli basis as follows,

(2.5) ρ =
Id
d

+
d2∑
j=2

βj
Bj

d
,

where βj are coefficients. For j = 2, · · · , d2,

(2.6) tr(ρQj±) =
1± βj

2
.

Suppose that an experiment is conducted to perform measurements on
Pauli observable Bj independently for n quantum systems which are iden-
tically prepared in the same quantum state ρ. As Bj has eigenvalues ±1,
the Pauli measurements take values 1 and −1, and thus the average of the n
measurements for each Bj is a sufficient statistics. Denote by Nj the average
of the n measurement outcomes obtained from measuring Bj , j = 2, · · · , d2.
Our goal is to estimate ρ based on N2, · · · , Nd2 .

The following proposition provides a simple binomial characterization for
the distributions of Nj .

Proposition 2. Suppose that ρ is given by (2.5). Then N2, · · · , Nd2 are
independent with

E(Nj) = βj , V ar(Nj) =
1− β2

j

n
,
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and n(Nj + 1)/2 follows a binomial distribution with n trials and cell prob-
abilities tr(ρQj+) = (1 + βj)/2, where Qj+ denotes the projection onto the
eigen-space of Bj corresponding to eigenvalue 1, and βj is the coefficient of
Bj in the expansion of ρ in (2.5).

2.3. Density matrix estimation. Since the dimension of a quantum sys-
tem grows exponentially with its components such as the number of particles
in the system, the matrix size of ρ tends to be very large even for a moder-
ate quantum system. We need to impose some structure such as sparsity on
ρ in order to make it consistently estimable. Suppose that ρ has a sparse
representation under the Pauli basis, following wavelet shrinkage estimation
we construct a density matrix estimator of ρ. Assume that representation
(2.5) is sparse in a sense that there is only a relatively small number of coef-
ficients βk with large magnitudes. Formally we specify sparsity by assuming
that coefficients β2, · · · , βd2 satisfy

(2.7)
d2∑
k=2

|βk|q ≤ πn(d),

where 0 ≤ q < 1, and πn(d) is a deterministic function with slow growth in
d such as log d.

Since Nk are independent, and E(Nk) = βk. We naturally estimate βk by
Nk and threshold Nk to estimate large βk, ignoring small βk, and obtain

(2.8) β̂k = Nk1(|Nk| ≥ $) or β̂k = sign(Nk) (|Nk| −$)+, k = 2, · · · , d2,

and then we use β̂k to construct the following estimator of ρ,

(2.9) ρ̂ =
Id
d

+

p∑
k=2

β̂k
Bk

d
,

where the two estimation methods in (2.8) are called hard and soft thresh-
olding rules, and $ is a threshold value which, we reason below, can be
chosen to be $ = ~

√
(4/n) log d for some constant ~ > 1. The threshold

value is designed such that for small βk, Nk must be bounded by threshold
$ with overwhelming probability, and the hard and soft thresholding rules
select only those Nk with large signal components βk.

As n(Nk + 1)/2 ∼ Bin(n, (1 + βk)/2), an application of Bernstein’s in-
equality leads to that for any x > 0,

P (|Nk − βk| ≥ x) ≤ 2 exp

(
− nx2

2(1− β2
k + x/3)

)
≤ 2 exp

(
−nx

2

2

)
,
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and

P

(
max

2≤k≤d2
|Nk − βk| ≤ $

)
=

d2∏
k=2

P (|Nk − βk| ≤ $)

≥
[
1− 2 exp

(
−n$

2

2

)]d2−1

=
[
1− 2d−2~

]d2−1
→ 1,

as d→∞, that is, with probability tending to one, |Nk| ≤ $ uniformly for
k = 2, · · · , d2. Thus we can select $ = ~

√
(4/n) log d to threshold Nk and

obtain β̂k in (2.8).

3. Asymptotic theory for the density matrix estimator.

3.1. Convergence rates. We fix matrix norm notations for our asymp-
totic analysis. Let x = (x1, · · · , xd)T be a d-dimensional vector and A =
(Aij) be a d by d matrix, and define their `α norms

‖x‖α =

(
d∑
i=1

|xi|α
)1/α

, ‖A‖α = sup{‖Ax‖α, ‖x‖α = 1}, 1 ≤ α ≤ ∞.

Denote by ‖A‖F =
√
tr(A†A) the Frobenius norm of A.

For the case of matrix, the `2 norm is called the matrix spectral norm or
operator norm. ‖A‖2 is equal to the square root of the largest eigenvalue of
AA†,

(3.1) ‖A‖1 = max
1≤j≤d

d∑
i=1

|Aij |, ‖A‖∞ = max
1≤i≤d

d∑
j=1

|Aij |,

and

(3.2) ‖A‖22 ≤ ‖A‖1 ‖A‖∞.

For a real symmetric or complex Hermitian matrix A, ‖A‖2 is equal to the
largest absolute eigenvalue of A, ‖A‖F is the square root of the sum of
squared eigenvalues, ‖A‖F ≤

√
d ‖A‖2, and (3.1)-(3.2) imply that ‖A‖2 ≤

‖A‖1 = ‖A‖∞.
The following theorem gives the convergence rates for ρ̂ under the spectral

and Frobenius norms.
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Theorem 1. Denote by Θ the class of density matrices satisfying the
sparsity condition (2.7). Assume d ≥ nc0 for some constant c0 > 0. For den-
sity matrix estimator ρ̂ defined by (2.8)-(2.9) with threshold $ = ~

√
(4/n) log d

for some constant ~ > 1, we have

sup
ρ∈Θ

E[‖ρ̂− ρ‖22] ≤ c1 π
2
n(d)

1

d2

(
log d

n

)1−q
,

sup
ρ∈Θ

E[‖ρ̂− ρ‖2F ] ≤ c2 πn(d)
1

d

(
log d

n

)1−q/2
,

where c1 and c2 are constants free of n and d.

Remark 1. Theorem 1 shows that ρ̂ has convergence rate π
1/2
n (d)d−1/2

(n−1/2 log1/2 d)1−q/2 under the Frobenius norm and convergence rate πn(d)d−1

(n−1/2 log1/2 d)1−q under the spectral norm, which will be shown to be op-
timal in next section. Similar to the optimal convergence rates for large
covariance and volatility matrix estimation (Cai and Zhou (2012) and Tao,
Wang and Zhou (2013)), the optimal convergence rates here have factors
involving πn(d) and log d/n. However, unlike the covariance and volatility
matrix estimation case, the convergence rates in Theorem 1 have factors
d−1/2 and d−1 for the spectral and Frobenius norms, respectively, and go to
zero as d approaches to infinity. In particular the result implies that MSEs
of the proposed estimator get smaller for large d. This is quite contrary
to large covariance and volatility matrix estimation where the traces are
typically diverge, the optimal convergence rates grow with the logarithm of
matrix size, and the corresponding MSEs increase in matrix size. The new
phenomenon may be due to the unit trace constraint on density matrix and
that the density matrix representation (2.5) needs a scaling factor d−1 to
satisfy the constraint. As a result, the assumption imposed on d and n in
Theorem 1 does not include the usual upper bound requirement on d by an
exponential growth with sample size in large covariance and volatility ma-
trix estimation. Also for finite sample ρ̂ may not be positive semi-definite,
we may project ρ̂ onto the cone formed by all density matrices and obtain
a positive semi-definite density matrix estimator ρ̃. As the underlying true
density matrix ρ is positive semi-definite, the distance between ρ̃ and ρ will
be bounded by twice the distance between ρ̂ and ρ, and thus ρ̃ has the same
convergence rates as ρ̂.

3.2. Optimality of the density matrix estimator. The following theorem
establishes a minimax lower bound for estimating ρ under the spectral norm.
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Theorem 2. We assume that πn(d) in the sparsity condition (2.7) sat-
isfies

(3.3) πn(d) ≤ ℵ dv (log d)q/2 /nq/2,

for some constant ℵ > 0 and 0 < v < 1/2. Then

inf
ρ̌

sup
ρ∈Θ

E[‖ρ̌− ρ‖22] ≥ c3 π
2
n(d)

1

d2

(
log d

n

)1−q
,

where ρ̌ denotes any estimator of ρ based on measurement data N2, · · · , Nd2,
and c3 is a constant free of n and d.

Remark 2. The lower bound in Theorem 2 matches the convergence
rate of ρ̂ under the spectral norm in Theorem 1, so we conclude that ρ̂
achieves the optimal convergence rate under the spectral norm. To establish
the minimax lower bound in Theorem 2, we construct a special subclass
of density matrices and then apply Le Cam’s lemma. Assumption (3.3) is
needed to guarantee the positive definiteness of the constructed matrices
as density matrix candidates and to ensure the boundedness below from
zero for the total variation of related probability distributions in Le Cam’s
lemma. Assumption (3.3) is reasonable in a sense that if the right hand side
of (3.3) is large enough, (3.3) will not impose very restrictive condition on
πn(d). We evaluate the dominating factor n−q/2dv on the right hand side
of (3.3) for various scenarios. First consider q = 0, the assumption becomes
πn(d) ≤ ℵ dv, v < 1/2 , and so Assumption (3.3) essentially requires πn(d)
grows in d not faster than d1/2, which is not restrictive at all as πn(d) usually
grows slowly in d. The asymptotic analysis of high dimensional statistics
usually allows both d and n go to infinity. Typically we may assume d grows
polynomially or exponentially in n. If d grows exponentially in n, that is,
d ∼ exp(b0 n) for some b0 > 0, then nq/2 is negligible in comparison with
dv, and n−q/2dv behavior like dv. The assumption in this case is not very
restrictive. For the case of polynomial growth, that is, d ∼ nb1 for some
b1 > 0, then n−q/2dv ∼ dv−q/(2b1). If v− q/(2b1) > 0, n−q/2dv grows in d like
some positive power of d. Since we may take v arbitrarily close to 1/2, the
positiveness of v − q/(2b1) essentially requires b1 > q, which can often be
quite realistic given that q is usually very small.

The theorem below provides a minimax lower bound for estimating ρ
under the Frobenius norm.

Theorem 3. We assume that πn(d) in the sparsity condition (2.7) sat-
isfies

(3.4) πn(d) ≤ ℵ′ dv′/nq,
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for some constants ℵ′ > 0 and 0 < v′ < 2. Then

inf
ρ̌

sup
ρ∈Θ

E[‖ρ̌− ρ‖2F ] ≥ c4 πn(d)
1

d

(
log d

n

)1−q/2
,

where ρ̌ denotes any estimator of ρ based on measurement data N2, · · · , Nd2,
and c4 is a constant free of n and d.

Remark 3. The lower bound in Theorem 3 matches the convergence
rate of ρ̂ under the Frobenius norm in Theorem 1, so we conclude that ρ̂
achieves the optimal convergence rate under the Frobenius norm. Similar
to the Remark 2 after Theorem 2, we need to apply Assouad’s lemma to
establish the minimax lower bound in Theorem 3, and Assumption (3.4)
is used to guarantee the positive definiteness of the constructed matrices
as density matrix candidates and to ensure the boundedness below from
zero for the total variation of related probability distributions in Assouad’s
lemma. Also the appropriateness of (3.4) is more relaxed than (3.3), as v′ < 2
and the right hand of (3.4) has main powers more than the square of that
of (3.3).

4. A simulation study. A simulation study was conducted to investi-
gate the performance of the proposed density matrix estimator for the finite
sample. We took d = 32, 64, 128 and generated a true density matrix ρ for
each case as follows. ρ has an expansion over the Pauli basis

ρ = d−1

Id +

d2∑
j=2

βjBj

 ,

where βj = tr(ρBj), j = 2, · · · , d2. From β2, · · · , βd2 we randomly selected
[6 log d] coefficients βj and set the rest of βj to be zero. We simulated [6 log d]
values independently from a uniform distribution on [−0.2, 0.2] and assigned
the simulated values at random to the selected βj . We repeated the proce-
dure to generate a positive semi-definite ρ and took it as the true density
matrix. The simulation procedure guarantees the obtained ρ is a density
matrix and has a sparse representation under the Pauli basis.

For each true density matrix ρ, as described in Section 2.2 we simulated
data Nj from a binomial distribution with cell probability βj and the number
of cells n = 100, 200, 500, 1000, 2000. We constructed coefficient estimators
β̂j by (2.8) and obtained density matrix estimator ρ̂ using (2.9). The whole
estimation procedure is repeated 200 times. The density matrix estimator is
measured by the mean squared errors (MSE), E‖ρ̂ − ρ‖22 and E‖ρ̂ − ρ‖2F ,
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that are evaluated by the average of ‖ρ̂ − ρ‖22 and ‖ρ̂ − ρ‖2F over 200 rep-
etitions, respectively. Three thresholds were used in the simulation study:
the universal threshold 1.01

√
4 log d/n for all βj , the individual threshold

1.01
√

4(1−N2
j ) log d/n for each βj , and the optimal threshold for all βj ,

which minimizes the computed MSE for each corresponding hard or soft
threshold method. The individual threshold takes into account the fact in
Theorem 2 that the mean and variance of Nj are βj and (1−β2

j )/n, respec-

tively, and the variance of Nj is estimated by (1−N2
j )/n.

Figures 1 and 2 plot the MSEs of the density matrix estimators with hard
and soft threshold rules and its corresponding density matrix estimator with-
out thresholding (i.e. βj are estimated by Nj in (2.9)) against the sample
size n for different matrix size d, and Figures 3 and 4 plot their MSEs against
matrix size d for different sample size. The numerical values of the MSEs
are reported in Table 1. The figures 1 and 2 show that the MSEs usually
decrease in sample size n, and the thresholding density matrix estimators
enjoy superior performances than that the density matrix estimator without
thresholding even for n = 2000; while all threshold rules and threshold val-
ues yield thresholding density matrix estimators with very close MSEs, the
soft threshold rule with individual and universal threshold values produce
larger MSEs than others for larger sample size such as n = 1000, 2000, and
the soft threshold rule tends to give somewhat better performance than the
hard threshold rule for smaller sample size like n = 100, 200. Figures 3 and 4
demonstrates that while the MSEs of all thresholding density matrix estima-
tors decrease in the matrix size d, but if we rescale the MSEs by multiplying
it with d2 for the spectral norm case and d for the Frobenius norm case,
the rescaled MSEs slowly increase in matrix size d. The simulation results
largely confirm the theoretical findings discussed in Remark 1.

5. Proofs. Let p = d2. Denote by C’s generic constants whose values
are free of n and p and may change from appearance to appearance. Let u∨v
and u ∧ v be the maximum and minimum of u and v, respectively. For two
sequences un,p and vn,p, we write un,p ∼ vn,p if un,p/vn,p → 1 as n, p → ∞,
and write un,p � vn,p if there exist positive constants C1 and C2 free of n
and p such that C1 ≤ un,p/vn,p ≤ C2. Let p = d2, and without confusion we
may write πn(d) as πn(p).

5.1. Proofs of Propositions 1 and 2. Proof of Proposition 1 In two di-
mensions, Pauli matrices satisfy tr(σ0) = 2, and tr(σ1) = tr(σ2) = tr(σ3) =
0, σ1,σ2,σ3 have eigenvalues ±1, the square of a Pauli matrix is equal to the
identity matrix, and the multiplications of any two Pauli matrices are equal
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Fig 1. The MSE plots against sample size for the proposed density estimator with hard and
soft threshold rules and its corresponding estimator without thresholding for d = 32, 64, 128.
(a)-(c) are plots of MSEs based on the spectral norm for d = 32, 64, 128, respectively, and
(d)-(f) are plots of MSEs based on the Frobenius norm for d = 32, 64, 128, respectively.
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Fig 2. The MSE plots against sample size for the proposed density estimator with hard
and soft threshold rules for d = 32, 64, 128. (a)-(c) are plots of MSEs based on the spectral
norm for d = 32, 64, 128, respectively, and (d)-(f) are plots of MSEs based on the Frobenius
norm for d = 32, 64, 128, respectively.



14 T. CAI ET AL.

40 60 80 100 120

0e
+

00
2e

−
04

4e
−

04
6e

−
04

(a)

Matrix size

M
S

E
 (

S
pe

ct
ra

l n
or

m
)

40 60 80 100 120

0e
+

00
2e

−
04

4e
−

04
6e

−
04

(b)

Matrix size

M
S

E
 (

S
pe

ct
ra

l n
or

m
)

40 60 80 100 120

0e
+

00
2e

−
04

4e
−

04
6e

−
04

(c)

Matrix size

M
S

E
 (

S
pe

ct
ra

l n
or

m
) Optimal threshold(hard)

Optimal threshold(soft)
Universal threshold(hard)
Universal threshold(soft)
Individual threshold(hard)
Individual threshold(soft)

40 60 80 100 120

0.
00

0
0.

00
2

0.
00

4
0.

00
6

(d)

Matrix size

M
S

E
 (

F
ro

be
ni

us
 n

or
m

)

40 60 80 100 120

0.
00

0
0.

00
2

0.
00

4
0.

00
6

(e)

Matrix size

M
S

E
 (

F
ro

be
ni

us
 n

or
m

)

40 60 80 100 120

0.
00

0
0.

00
2

0.
00

4
0.

00
6

(f)

Matrix size

M
S

E
 (

F
ro

be
ni

us
 n

or
m

)

Fig 3. The MSE plots against matrix size for the proposed density estimator with hard
and soft threshold rules for n = 100, 500, 2000. (a)-(c) are plots of MSEs based on the
spectral norm for n = 100, 500, 2000, respectively, and (d)-(f) are plots of MSEs based on
the Frobenius norm for n = 100, 500, 2000, respectively.
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Fig 4. The plots of MSEs multiplying by d or d2 against matrix size d for the proposed
density estimator with hard and soft threshold rules for n = 100, 500, 2000. (a)-(c) are plots
of d2 times of MSEs based on the spectral norm for n = 100, 500, 2000, respectively, and
(d)-(f) are plots of d times of MSEs based on the Frobenius norm for n = 100, 500, 2000,
respectively.
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Table 1
MSEs based on spectral and Frobenius norms of the density estimator defined by (2.8)

and (2.9) and its corresponding density matrix estimator without thresholding, and
threshold values used for d = 32, 64, 128, and n = 100, 200, 500, 1000, 2000.

MSE (Spectral norm) ×104 Threshold value ($) ×102

Without threshold Optimal threshold Universal threshold Individual threshold Universal Optimal
d n Density estimator Hard Soft Hard Soft Hard Soft Universal Hard Soft

32 100 348.544 4.816 4.648 5.468 4.790 6.104 4.762 24.782 15.180 0.619
200 175.034 4.449 4.257 5.043 4.708 5.293 4.667 17.524 7.739 0.562
500 70.069 2.831 3.054 3.344 4.130 3.260 4.071 11.083 2.397 0.373
1000 35.028 1.537 1.974 1.875 3.201 1.875 3.155 7.837 1.099 0.212
2000 17.307 0.785 1.195 1.001 2.230 0.989 2.200 5.541 0.551 0.116

64 100 368.842 1.583 1.572 1.744 1.583 1.954 1.586 27.148 16.660 0.395
200 183.050 1.565 1.534 1.669 1.575 1.833 1.571 19.196 9.252 0.376
500 73.399 1.175 1.228 1.367 1.490 1.347 1.476 12.141 2.900 0.307
1000 36.692 0.566 0.807 0.747 1.249 0.722 1.233 8.585 1.308 0.177
2000 18.402 0.186 0.443 0.255 0.832 0.251 0.820 6.070 0.657 0.061

128 100 381.032 0.543 0.542 0.574 0.543 0.705 0.545 29.323 17.500 0.237
200 190.113 0.541 0.539 0.570 0.542 0.594 0.542 20.734 10.246 0.235
500 75.824 0.471 0.480 0.514 0.525 0.509 0.522 13.114 3.547 0.213
1000 38.010 0.309 0.350 0.355 0.470 0.354 0.466 9.273 1.613 0.146
2000 18.907 0.142 0.216 0.194 0.359 0.194 0.356 6.557 0.725 0.080

MSE (Frobenius norm) ×103 Threshold value ($) ×102

Without threshold Optimal threshold Universal threshold Individual threshold Universal Optimal
d n Density estimator Hard Soft Hard Soft Hard Soft Universal Hard Soft

32 100 317.873 6.052 5.119 6.195 5.274 7.050 5.246 24.782 11.004 9.936
200 159.679 5.217 4.629 5.616 5.187 5.874 5.143 17.524 5.681 3.771
500 63.823 3.165 3.229 3.732 4.575 3.642 4.512 11.083 2.286 0.954
1000 31.856 1.722 2.053 2.119 3.540 2.119 3.492 7.837 1.100 0.401
2000 15.967 0.894 1.219 1.155 2.424 1.141 2.394 5.541 0.546 0.182

64 100 641.437 3.909 3.528 3.951 3.563 4.463 3.562 27.148 13.719 13.234
200 319.720 3.706 3.401 3.755 3.548 4.082 3.536 19.196 7.042 5.515
500 127.958 2.691 2.551 3.069 3.342 3.023 3.309 12.141 2.800 1.275
1000 63.845 1.335 1.628 1.765 2.791 1.717 2.756 8.585 1.277 0.548
2000 31.952 0.433 0.882 0.610 1.842 0.596 1.817 6.070 0.647 0.258

128 100 1283.182 2.370 2.240 2.370 2.242 2.924 2.245 29.323 15.989 16.128
200 639.556 2.349 2.219 2.354 2.238 2.444 2.238 20.734 8.218 7.799
500 255.954 1.990 1.906 2.125 2.172 2.102 2.160 13.114 3.355 1.773
1000 127.714 1.221 1.341 1.463 1.943 1.448 1.924 9.273 1.546 0.729
2000 63.921 0.581 0.815 0.798 1.471 0.798 1.456 6.557 0.719 0.327

to the third Pauli matrix multiplying by
√
−1, for example, σ1σ2 =

√
−1σ3,

σ2σ3 =
√
−1σ1, and σ3σ1 =

√
−1σ2.

For j = 2, · · · , p, consider Bj = σ`1⊗σ`2⊗· · ·⊗σ`b . tr(Bj) = tr(σ`1)tr(σ`2)
· · · tr(σ`b) = 0, and Bj has eigenvalues ±1, B2

j = Id.
For j, j′ = 2, · · · , p, j 6= j′, Bj = σ`1 ⊗ σ`2 ⊗ · · · ⊗ σ`b and Bj′ =

σ`′1 ⊗ σ`′2 ⊗ · · · ⊗ σ`′b ,

BjBj′ = [σ`1σ`′1 ]⊗ [σ`2σ`′2 ]⊗ · · · ⊗ [σ`bσ`′b ],

is equal to a d dimensional Pauli matrix multiplying by (
√
−1)b, which has

zero trace. Thus, tr(BjBj′) = 0, that is , Bj and Bj′ are orthogonal, and
B1, · · · ,Bp form an orthogonal basis. tr(ρBj/d) = βktr(B

2
j )/d = βk. In

particular B1 = Id, and β1 = tr(ρB1) = tr(ρ) = 1.
Denote by Qj± the projections onto the eigen-spaces corresponding to
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eigenvalues ±1, respectively. Then for j = 2, · · · , p,

Bj = Qj+ −Qj−, B2
j = Qj+ + Qj− = Id, BjQj± = ±Q2

j± = ±Qj±,

0 = tr(Bj) = tr(Qj+)− tr(Qj−), d = tr(Id) = tr(Qj+) + tr(Qj−),

and solving the equations we get

(5.1) tr(Qj±) = d/2, tr(BjQj±) = ±tr(Qj±) = ±d/2.

For j 6= j′, j, j′ = 2, · · · , p, Bj and Bj′ are orthogonal,

0 = tr(Bj′Bj) = tr(Bj′Qj+)− tr(Bj′Qj−),

and

Bj′Qj+ + Bj′Qj− = Bj′(Qj+ + Qj−) = Bj′ ,
tr(Bj′Qj+) + tr(Bj′Qj−) = tr(Bj′) = 0,

which imply

(5.2) tr(Bj′Qj±) = 0, j 6= j′, j, j′ = 2, · · · , p.

For a density matrix ρ with representation (2.5) under the Pauli basis
(2.3), from (5.1) we have tr(Qk±) = d/2 and tr(BkQk±) = ±d/2, and thus
(5.3)

tr(ρQk±) =
1

d
tr(Qk±) +

p∑
j=2

βj
d
tr(BjQk±) =

1

2
+
βk
d
tr(BkQk±) =

1± βk
2

.

Proof of Proposition 2
We perform measurements on each Pauli observable Bk independently for

n quantum systems that are identically prepared under state ρ. Denote by
Rk1 · · · , Rkn the n measurement outcomes for measuring Bk, k = 2, · · · , p.

(5.4) Nk = (Rk1 + · · ·+Rkn)/n,

Rk`, k = 2, · · · , p, ` = 1, · · · , n, are independent, and take values ±1, with
distributions given by

P (Rk` = ±1) = tr(ρQk±), k = 2, · · · , p, ` = 1, · · · , n.(5.5)

As random variables Rk1, · · · , Rkn are i.i.d. and take eigenvalues ±1,
n(Nk+1)/2 =

∑n
`=1(Rk`+1)/2 is equal to the total number of random vari-

ables Rk1, · · · , Rkn taking eigenvalue 1, and thus n(Nk+1)/2 follows a bino-
mial distribution with n trials and cell probability P (Rk1 = 1) = tr(ρQk+).
From (5.4)-(5.5) and Proposition 1 we have for k = 2, · · · , p,

tr(ρQk+) =
1 + βk

2
, E(Nk) = E(Rk1) = tr(ρBk) = βktr(B

2
k)/d = βk,

V ar(Nk) =
1− β2

k

n
.
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5.2. Proof of Theorem 1: Upper bound.

Lemma 1. If βj satisfy sparsity condition (2.7), then for any a,

p∑
j=2

|βj |1(|βj | ≤ a$) ≤ a1−qπn(p)$1−q,

p∑
j=2

1(|βj | ≥ a$) ≤ a−qπn(p)$−q.

Proof. Simple algebraic manipulation shows

p∑
j=2

|βj |1(|βj | ≤ a$) ≤ (a$)1−q
p∑
j=2

|βj |q1(|βj | ≤ a$)

≤ a1−qπn(p)$1−q,

and

p∑
j=2

1(|βj | ≥ a$) ≤
p∑
j=2

[|βj |/(a$)]q1(|βj | ≥ a$)

≤ (a$)−q
p∑
j=2

|βj |q ≤ a−qπn(p)$−q.

Lemma 2. With $ = ~n−1/2
√

2 log p for some positive constant ~, we
have for any a 6= 1,

P (Nj−βj ≤ −|a−1|$) ≤ 2 p−~
2|a−1|2 , P (Nj−βj ≥ |a−1|$) ≤ 2 p−~

2|a−1|2 .

Proof. From Proposition 2 and (5.4)-(5.5) we have that Nj is the average
of Rj1, · · · , Rjn, which are i.i.d. random variables taking values ±1, P (Rj1 =
±1) = (1±βj)/2, E(Rj1) = βj and V ar(Rj1) = 1−β2

j . Applying Bernstein’s
inequality we obtain for any x > 0,

P (|Nj − βj | ≥ x) ≤ 2 exp

(
− nx2

2(1− β2
j + x/3)

)
≤ 2 exp

(
−nx

2

2

)
.

Both P (Nj − βj ≤ −|a − 1|$) and P (Nj − βj ≥ |a − 1|$) are less than
P (|Nj − βj | ≥ |a− 1|$), which is bounded by

2 exp

(
−n|a− 1|2$2

2

)
= 2 exp

(
−~2|a− 1|2 log p

)
= 2 p−~

2|a−1|2 .
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Lemma 3.

E‖ρ̂− ρ‖2F = p−1/2
p∑
j=2

E|β̂j − βj |2,(5.6)

p1/2E‖ρ̂− ρ‖2 ≤
p∑
j=2

E|β̂j − βj |,(5.7)

pE‖ρ̂− ρ‖22 ≤
p∑
j=2

E[|β̂j − βj |2] +


p∑
j=2

E[|β̂j − βj |]


2

(5.8)

−
p∑
j=2

{E(|β̂j − βj |)}2.

Proof. Since Pauli matrices Bj are orthogonal under the Frobenius norm,
with ‖Bj‖F = d1/2, and ‖Bj‖2 = 1, we have

‖ρ̂− ρ‖2F = ‖
p∑
j=2

(β̂j − βj)Bj‖2F /d2 =

p∑
j=2

|β̂j − βj |2‖Bj‖2F /d2(5.9)

=

p∑
j=2

|β̂j − βj |2/d,

p1/2‖ρ̂− ρ‖2 = ‖
p∑
j=2

(β̂j − βj)Bj‖2 ≤
p∑
j=2

|β̂j − βj |‖Bj‖2(5.10)

=

p∑
j=2

|β̂j − βj |,

p‖ρ̂− ρ‖22 = ‖
p∑
j=2

(β̂j − βj)Bj‖22(5.11)

≤
p∑
j=2

|β̂j − βj |2‖Bj‖22 + 2

p∑
i<j

|(β̂i − βi) (β̂j − βj)|‖BiBj‖2

≤
p∑
j=2

|β̂j − βj |2‖Bj‖2 + 2

p∑
i<j

|(β̂i − βi) (β̂j − βj)|‖Bi‖2‖Bj‖2

=

p∑
j=2

|β̂j − βj |2 + 2

p∑
i<j

|(β̂i − βi) (β̂j − βj)|.

As N2, · · · , Np are independent, β̂2, · · · , β̂p are independent. Thus, from
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(5.9)-(5.11) we obtain (5.6)-(5.7), and

pE‖ρ̂− ρ‖22 ≤
p∑
j=2

E|β̂j − βj |2 + 2

p∑
i<j

E|(β̂i − βi) (β̂j − βj)|

=

p∑
j=2

E|β̂j − βj |2 + 2

p∑
i<j

E|β̂i − βi|E|β̂j − βj |

=

p∑
j=2

E[|β̂j − βj |2] +


p∑
j=2

E[|β̂j − βj |]


2

−
p∑
j=2

{E(|β̂j − βj |)}2.

Lemma 4.
p∑
j=2

E|β̂j − βj | ≤ C1πn(d)$1−q,(5.12)

p∑
j=2

[E|β̂j − βj |]2 ≤
p∑
j=2

E[|β̂j − βj |2] ≤ C2πn(d)$2−q.(5.13)

Proof. Using (2.8) we have

E|β̂j − βj | ≤ E [(|Nj − βj |+$)1(|Nj | ≥ $)] + |βj |P (|Nj | ≤ $)

≤ [E|Nj − βj |2P (|Nj | ≥ $)]1/2 +$P (|Nj | ≥ $) + |βj |P (|Nj | ≤ $)

≤
[
n−1(1− β2

j )P (|Nj | ≥ $)
]1/2

+$P (|Nj | ≥ $) + |βj |P (|Nj | ≤ $)

≤ 2$ [P (|Nj | ≥ $)]1/2 + |βj |P (|Nj | ≤ $)

= 2$ [P (|Nj | ≥ $)]1/2 {1(|βj | > a1$) + 1(|βj | ≤ a1$)}
+ |βj |P (|Nj | ≤ $){1(|βj | > a2$) + 1(|βj | ≤ a2$)}

≤ 2$1(|βj | > a1$) + 2$ [P (|Nj | ≥ $)]1/2 1(|βj | ≤ a1$)

+P (|Nj | ≤ $)1(|βj | > a2$) + |βj |1(|βj | ≤ a2$),

where a1 and a2 are two constants satisfying a1 < 1 < a2 whose values will
be chosen later, and

p∑
j=2

E|β̂j − βj | ≤ 2$

p∑
j=2

1(|βj | > a1$)(5.14)

+2$

p∑
j=2

[P (|Nj | ≥ $)]1/2 1(|βj | ≤ a1$)

+

p∑
j=2

P (|Nj | ≤ $)1(|βj | > a2$) +

p∑
j=2

|βj |1(|βj | ≤ a2$).
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Similarly,

[E(|β̂j − βj |)]2 ≤ E[|β̂j − βj |2]

≤ E[2(|Nj − βj |2 +$2)1(|Nj | ≥ $)] + |βj |2P (|Nj | ≤ $)

≤ 2[E|Nj − βj |4P (|Nj | ≥ $)]1/2 + 2$2P (|Nj | ≥ $) + |βj |2P (|Nj | ≤ $)

≤ c$2[P (|Nj | ≥ $)]1/2 + |βj |2P (|Nj | ≤ $)}
= c$2[P (|Nj | ≥ $)]1/2{1(|βj | > a1$) + 1(|βj | ≤ a1$)}

+ |βj |2P (|Nj | ≤ $)}[1(|βj | > a2$) + 1(|βj | ≤ a2$)]

≤ c$21(|βj | > a1$) + c$2 [P (|Nj | ≥ $)]1/2 1(|βj | ≤ a1$)

+P (|Nj | ≤ $)1(|βj | > a2$) + |βj |21(|βj | ≤ a2$),

and

p∑
j=2

E[|β̂j − βj |2] ≤ c$2
p∑
j=2

1(|βj | > a1$)(5.15)

+c$2
p∑
j=2

[P (|Nj | ≥ $)]1/2 1(|βj | ≤ a1$)

+

p∑
j=2

P (|Nj | ≤ $)1(|βj | > a2$) +

p∑
j=2

|βj |21(|βj | ≤ a2$).

By Lemma 1, we have∑
j=2

|βj |1(|βj | ≤ a2$) ≤ a1−q
2 πn(d)$1−q,(5.16)

∑
j=2

|βj |21(|βj | ≤ a2$)(5.17)

≤ (a2$)2−q
∑
j=2

|βj |q1(|βj | ≤ a2$) ≤ a2−q
2 πn(d)$2−q,

$

p∑
j=2

1(|βj | ≥ a1t) ≤ πn(d)$1−q.(5.18)
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On the other hand,

p∑
j=2

P (|Nj | ≤ $)1(|βj | > a2$)(5.19)

≤
∑
j

P (−$ − βj ≤ Nj − βj ≤ $ − βj)1(|βj | > a2$)

≤
p∑
j=2

[P (Nj − βj ≤ −|a2 − 1|$) + P (Nj − βj ≥ |a2 − 1|$)]

≤ 4 p1−~2|a2−1|2 = 4 p−1−(2−q)/(2c0) ≤ 4p−1n−(q−2)/2 = o(πn(d)$2−q),

where the third inequality is from Lemma 2, the first equality is due the
fact that we take a2 = 1 + {2 + (2 − q)/(2c0)}1/2/~ so that ~2(1 − a2)2 =
2 + (2− q)/(2c0), and c0 is the constant in Assumption p ≥ nc0 . Finally we
can show

$

p∑
j=2

[P (|Nj | ≥ $)]1/21(|βj | ≤ a1$)(5.20)

≤ $
p∑
j=2

[P (Nj − βj ≤ −$ − βj)

+P (Nj − βj ≥ $ − βj)]1/21(|βj | ≤ a1$)

≤ $
p∑
j=2

[P (Nj − βj ≤ −|1− a1|$) + P (Nj − βj ≥ |1− a1|$)]1/2

≤ 2$p1−~2(1−a1)2/2 = 2$p−1 = o(πn(d)$1−q),

where the third inequality is from Lemma 2, and the first equality is due
to the fact that we take a1 = 1 − 2/~ so that ~2(1 − a1)2 = 4. Plugging
(5.16)-(5.20) into (5.15) and (5.15) we prove the lemma.

Proof of Theorem 1. Combining Lemma 4 and (5.6)-(5.7) in Lemma 3
we easily obtain

E[‖ρ̂− ρ‖2] ≤ C1
πn(d)

p1/2

(
log p

n

) 1−q
2

,

E[‖ρ̂− ρ‖2F ] ≤ C0πn(d)
1

d

(
log p

n

)1−q/2
.
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Using Lemma 4 and (5.9) in Lemma 3 we conclude

E[‖ρ̂− ρ‖22] ≤ C2

[
π2
n(d)

1

p

(
log p

n

)1−q
+ πn(d)

(
log p

n

)1−q/2
]

(5.21)

≤ Cπ
2
n(d)

d2

(
log p

n

)1−q
,

where the last inequality is due to the fact that the first term on the right
hand side of (5.21) dominates its second term.

5.3. Proofs of Theorems 2 and 3: Lower bound. Proof of Theorem 2
for the lower bound under the spectral norm.

We first define a subset of the parameter space Θ. It will be shown later
that the risk upper bound under the spectral norm is sharp up a constant
factor, when the parameter space is sufficiently sparse. Consider a subset of
the Pauli basis, {σl1 ⊗ σl2 ⊗ · · · ⊗ σlb}, where σl1 = σ0 or σ3. Its cardinality
is d = 2b = p1/2. Denote each element of the subset by Bj , j = 1, 2, . . . , d,
and let B1 = Id. We will define each element of Θ as a linear combination
of Bj . Let γj ∈ {0, 1}, j ∈ {1, 2, . . . , d}, and denote η =

∑
j γj = ‖γ‖0. The

value of η is either 0 or K, where K is the largest integer less than or equal

to πn (d) /
(

log p
n

)q/2
. By Assumption (3.3) we have

(5.22) 1 ≤ K = O (dv) , with v < 1/2.

Let ε2 = (1− 2v) /4 and set a = ε
√

log p
n . Now we are ready to define Θ,

(5.23) Θ =

ρ (γ) : ρ (γ) =
Id
d

+ a
d∑
j=2

γj
Bj

d
, and η = 0 or K

 .

Note that Θ is a subset of the parameter space, since

d∑
j=2

(aγj)
q ≤ Kaq ≤ εqπn (d) ≤ πn (d) ,

and its cardinality is 1 +
(
d−1
K

)
.

We need to show that

inf
ρ̂

sup
Θ
E ‖ρ̂− ρ‖22 & π2

n (d)
1

p

(
log p

n

)1−q
.
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Note that for each element in Θ, its first entry ρ11 may take the form 1/d+
a
∑d

j=2 γj/d = 1/d+ (a/d)η. It can be shown that

inf
ρ̂

sup
Θ
E ‖ρ̂− ρ‖22 ≥ inf

ρ̂11
sup

Θ
E (ρ̂11−ρ11)2 ≥ a2

d2
inf
η̂

sup
Θ
E (η̂−η)2 .

It is then enough to show that

(5.24) inf
η̂

sup
Θ
E (η̂−η)2 & K2,

which immediately implies

inf
ρ̂

sup
Θ
E ‖ρ̂− ρ‖22 & K2a

2

d2
& π2

n (d)
1

p

(
log p

n

)1−q
.

We prove Equation (5.24) by applying Le Cam’s lemma. From observa-

tionsNj , j = 2, . . . , d, we define Ñj = n (Nj + 1) /2, which isBinomial
(
n,

1+aγj
2

)
.

Let Pγ be the joint distribution of independent random variables Ñ2, Ñ3, . . . , Ñd.

The cardinality of {Pγ} is 1 +
(
d−1
K

)
. For two probability measures P and Q

with density f and g with respect to any common dominating measure µ,
write the total variation affinity ‖P ∧ Q‖ =

∫
f ∧ gdµ, and the Chi-Square

distance χ2 (P,Q) =
∫ g2

f − 1. Define

P̄ =

(
d− 1

K

)−1 ∑
‖γ‖0=K

Pγ .

The following lemma is a direct consequence of Le Cam’s lemma (cf. Le Cam
(1973) and Yu (1997)).

Lemma 5. Let η̂ be any estimator of η based on an observation from a
distribution in the collection {Pγ}, then

inf
k̂

sup
Θ
E (η̂−η)2 ≥ 1

4

∥∥P0 ∧ P̄
∥∥2 ·K2.

We will show that there is a constant c > 0 such that

(5.25)
∥∥P0 ∧ P̄

∥∥ ≥ C,
which, together with Lemma 5, immediately imply Equation (5.24).



OPTIMAL QUANTUM STATE TOMOGRAPHY 25

Lemma 6. Under conditions (5.22) and (5.23), we have

inf
ρ̂

sup
Θ
E (η̂−η)2 & K2,

which implies

inf
ρ̂

sup
Θ
E ‖ρ̂− ρ‖22 & π2

n (d)
1

p

(
log p

n

)1−q
.

Proof. It is enough to show that

χ2
(
P0, P̄

)
→ 0,

which implies
∥∥P0 − P̄

∥∥
TV
→ 0, then we have

∥∥P0 ∧ P̄
∥∥ → 1. Let J

(
γ, γ

′
)

denote the number of overlapping nonzero coordinates between γ and γ
′
.

Note that

χ2
(
P0, P̄

)
=

∫ (
dP̄
)2

dP0
− 1

=

(
d− 1

K

)−2 ∑
0≤j≤K

∑
J(γ,γ′)=j

(∫
dPγ · dPγ′

dP0
− 1

)
.

When J
(
γ, γ

′
)

= j, we have

∫
dPγ · dPγ′

dP0

=

(
n∑
l=0

[(
n

l

)
1

2l
1

2n−l
· (1 + a)2l (1− a)2n−2l

])j

=

 n∑
l=0

(n
l

)(
(1 + a)2

2

)l(
(1− a)2

2

)n−lj

=

(
(1 + a)2

2
+

(1− a)2

2

)nj
=

(
1 + a2

)nj ≤ exp
(
na2j

)
,
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which implies

χ2
(
P0, P̄

)
≤

(
d− 1

K

)−2 ∑
0≤j≤K

∑
J(γ,γ′)=j

(
exp

(
na2j

)
− 1
)

≤
(
d− 1

K

)−2 ∑
1≤j≤K

∑
J(γ,γ′)=j

exp
(
na2j

)

=
∑

1≤j≤K

(
K
j

)(
d−1−K
K−j

)(
d−1
K

) d2ε2j .

Since(
K
j

)(
d−1−K
K−j

)(
d−1
K

) =
[K · . . . · (K − j + 1)]2 · (d− 1−K) · . . . · (d− 2K + j)

j! · (d− 1) · . . . · (d−K)

≤ K2j (d− 1−K)K−j

(d−K)K
≤
(

K2

d−K

)j
,

and ε2 = (1− 2v) /4, we then have

χ2
(
P0, P̄

)
≤

∑
1≤j≤K

[
K2

d−K
d2ε2

]j

≤
∑

1≤j≤K

[
d2v+(1−2v)/2

d−K

]j
→ 0.

Proof of Theorem 3 for the lower bound under the Frobenius norm.
Recall that Θ is the collection of density matrices such that

ρ =
1

d

Id +

p∑
j=2

βjBj

 ,

where
p∑
j=2

|βj |q ≤ πn(p).

Apply Assouad’s lemma we show below that

inf
ρ̌

sup
ρ∈Θ

E[‖ρ̌− ρ‖2F ] ≥ C πn(p)

(
log p

n

)1−q/2
,
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where ρ̌ denotes any estimator of ρ based on measurement data N2, · · · , Np,
and C is a constant free of n and p.

To this end, it suffices to construct a collection of M + 1 density matrices
{ρ0 = Id/d,ρ1, · · · ,ρM} ⊂ Θ such that (i) for any distinct k and k0,

‖ρk − ρk0‖
2
F ≥ C1 πn(p)

1

d

(
log p

n

)1−q/2
,

where C1 is a constant; (ii) there exists a constant 0 < C2 < 1/8 such that

1

M

M∑
k=1

DKL(Pρk
, Pρ0

) ≤ C2 logM,

where DKL denotes the Kullback-Leibler divergence.
By the Gilbert-Varshamov bound (cf. Nielsen and Chuang (2000)) we have

that for any h < p/8, there exist M binary vectors γk = (γk2, · · · , γkp)′ ∈
{0, 1}p−1, k = 1, · · · ,M , such that (i) ‖γk‖1 =

∑p
j=2 |γkj | = h, (ii) ‖γk −

γk0‖1 =
∑p

j=2 |γkj − γk0j | ≥ h/2, and (iii) logM > 0.233h log(p/h). Let

ρk =
1

d

Id + ε

p∑
j=2

γkjBj

 ,

where

ε = C3

(
πn(p)

h

)1/q

.

Since
∑p

j=2 |εγkj |q = εqh = C3πn(p), ρk ∈ Θ whenever C3 ≤ 1. Moreover,

‖ρk − ρk0‖
2
F = ε2‖γk − γk0‖1 ≥

ε2 h

4
.

On the other hand,

DKL(Pρk
, Pρ0

) = hDKL

(
Bin

(
n,

1 + ε

2

)
, Bin

(
n,

1

2

))
= hn

ε

2
log

1/2 + ε

1/2− ε
≤ C4 hn ε

2.

Now the lower bound can be established by taking

h = πn(p)

(
log p

n

)−q/2
,
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and then

ε = C3

(
log p

n

)1/2

,
ε2 h

4
= C3 πn(p)

(
log p

n

)1−q/2
,

C4 hn ε
2 = C4 h log p, h log(p/h) = h log p− h log h,

log h ∼ log πn(p) +
q

2
log n− q

2
log log p,

which are allowed by the assumption log πn(p) + q
2 log n < v′ log p for v′ < 1.
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