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Abstract

We consider the problem of component selec-
tion in a functional ANOVA model. A non-
parametric extension of the nonnegative gar-
rote (Breiman, 1996) is proposed. We show
that the whole solution path of the proposed
method can be efficiently computed, which,
in turn , facilitates the selection of the tun-
ing parameter. We also show that the fi-
nal estimate enjoys nice theoretical proper-
ties given that the tuning parameter is appro-
priately chosen. Simulation and a real data
example demonstrate promising performance
of the new approach.

1 Introduction

Consider a multivariate nonparametric regres-
sion problem where we have n observations
(y1,x1), . . . , (yn,xn) on a dependent variable Y
and p predictors X = (X1, X2, ..., Xp), and we
want to estimate the conditional mean function
f(X) = E(Y |X). In the functional ANOVA frame-
work (Wahba, 1990), we write the regression function
f(X) as

f(X) = µ +
p∑

j=1

fj(Xj) +
∑

1≤j1<j2≤p

fj1j2(Xj1 , Xj2)

+ . . . + f1...p(X1, . . . , Xp), (1)

where µ is a constant, f ′js are the main effects, f ′j1j2
s

are the two way interactions, and so on. The func-
tional ANOVA provides a general framework for non-
parametric multivariate function estimation. The se-
ries on the right hand side of (1) is usually truncated
somewhere to enhance interpretability. The identifi-
ability of the terms in (1) is assured by side condi-
tions through averaging operators. The most popular
example of functional ANOVA is the additive model

proposed by Hastie and Tibshirani (1990) where only
main effects are retained in (1).

Similar to variable selection in the multiple linear re-
gression where

f(X) = β0 + X1β1 + . . . + Xpβp, (2)

some of the components on the right hand side of (1)
may not be significant and therefore an unknown but
usually small subset of the the components are ade-
quate to describe f(X). By effectively identifying the
subset of important components, we can improve esti-
mation accuracy and enhance model interpretability.

Component selection for (1) is most commonly stud-
ied in the special case of the multiple linear regression
where fi(Xi) = Xiβi for i = 1, . . . p and other compo-
nents are zero. A number of variable selection methods
have been introduced for this problem in recent years
(George and McCulloch, 1993; Foster and George,
1994; Breiman, 1995; Tibshirani, 1996; George and
Foster, 2000; Fan and Li, 2001; Shen and Ye, 2002;
Efron, Johnston, Hastie and Tibshirani, 2004; Yuan
and Lin, 2005a; Zou and Hastie, 2005; Yuan and Lin,
2006). In particular, Breiman (1995) showed that the
traditional subset selection methods are not satisfac-
tory in terms of prediction accuracy and stability, and
proposed the nonnegative garrote which is shown to
be more accurate and stable.

In recent years, selection of important components
in a nonparametric setting such as (1) has also at-
tracted much attention. In a series of papers, Kohn
and coauthors (Shively, Kohn and Wood, 1999; Wood,
Kohn, Shively and Jiang, 2002; Yau, Kohn and Wood,
2003; Yau and Kohn, 2003) introduced a MCMC based
Bayesian variable selection paradigm for additive mod-
els. Despite the elegance of their approach and promis-
ing performance reported, the implementation requires
a great deal of expertise and it could be very compu-
tationally demanding for relatively large scale prob-
lems. Zhang, Wahba, Lin, Voelker, Ferris, Klein and
Klein (2004) suggested a likelihood basis pursuit ap-



proach to model selection and estimation in the func-
tional ANOVA for exponential families where after
model fitting, a sequential Monte Carlo bootstrap test
algorithm is applied for the purpose of model selec-
tion. Their approach potentially can also be expensive
to compute and no theoretical properties are known
about the resulting estimator so far. More recently,
Lin and Zhang (2006) proposed the so-called COSSO
estimator where model fitting and selection can be
done simultaneously.

In this paper, we propose an alternative method for
component selection in functional ANOVA models.
The estimator can be seen as a generalization of a
very successful estimator for the multiple linear regres-
sion, the nonnegative garrote estimator introduced by
Breiman (1995). We show that the new estimator can
be computed very efficiently and enjoys very nice the-
oretical properties.

The rest of the paper is organized as follows. We in-
troduce the new method in the next section. Section 3
gives a fast algorithm for constructing the whole solu-
tion path for our estimate. The asymptotic properties
of the proposed method are studied in Section 4. Sec-
tion 5 presents some numerical examples. We conclude
with some discussions in Section 6.

2 Method

Like other nonparametric settings, instead of assuming
a parametric form of f , we allow it to reside in some
Hilbert space

H =
p⊗

j=1

Hj (3)

of smooth functions. Here Hj is a function space of
univariate functions over [0, 1]. A particular choice of
Hj that is commonly used in practice is the Soblev-
Hilbert space. For a nonnegative integer m, the
Soblev-Hilbert space of order m is given as:

{f : f (m) ∈ L2[0, 1], f, f (v)(v = 1, . . . , m− 1)
are absolutely continuous} (4)

Write
Hj = {1}

⊕
H̄j (5)

Similar to (1), the reproducing kernel Hilbert space
H of functions on [0, 1]d admits the following tensor-
product decomposition

H = {1}
⊕

H̄1

⊕
. . .

⊕
H̄p

⊕ (
H̄1

⊗
H̄2

)

⊕
...

⊕



p⊗

j=1

H̄j


 (6)

Therefore the ANOVA decomposition (1) can be
uniquely determined with fj ∈ H̄j , fjk ∈ H̄j ⊗ H̄k

and so on.

The original nonnegative garrote estimator is devel-
oped for the multiple linear regression where H̄j =
{xj}, and defined as a scaled version of the ordinary
least square estimate. The shrinking factor d(λ) =
(d1(λ), . . . , dp(λ))′ is given as the minimizer to

1
2

n∑

i=1

(yi − zid)2 + nλ

p∑

j=1

dj , (7)

subject to dj ≥ 0 for all j,where zi = (zi1, . . . , zip),
zij = xij β̂

LS
j and β̂LS

j is the ordinary least square
estimate. Here λ > 0 is a tuning parameter. The
nonnegative garrote estimate of the regression coeffi-
cient is subsequently defined as β̂NG

j (λ) = dj(λ)β̂LS
j ,

j = 1, ..., p. Hereafter, we omit subscript or/and su-
perscript n if no confusion occurs.

The mechanism of the nonnegative garrote can be il-
lustrated under orthogonal designs, where

∑
i xix′i =

In. In this case, the minimizer of (7) has an explicit
form:

dj(λ) =


1− λ(

β̂LS
j

)2




+

, j = 1, . . . , p. (8)

Therefore, for those coefficients whose full least square
estimate is large in magnitude, the shrinking factor
will be close to 1. But for a redundant predictor, the
least square estimate is likely to be small and conse-
quently the shrinking factor will have a good chance
to be exactly zero. This effect is illustrated in Figure
1.

Figure 1: Shrinkage Effect
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The idea of the nonnegative garrote can be natu-
rally generalized to the functional ANOVA models.



We begin with an initial estimate of the components
f̃ init
1 , . . . , f̃ init

1...p. Our generalized nonnegative garrote
estimate is then given as d1(λ)f̃ init

1 , . . . , d1...p(λ)f̃ init
1...p

where d′s are the minimizer of (7) with zi =
(f̃ init

1 (xi1), . . . , f̃ init
1...p(xi))′.

One good choice of the initial estimate is the smooth-
ing spline estimate which is given as the minimizer of

n∑

i=1

[yi − f(xi)]
2 + τ1J1(f1) + . . . + τpJp(fp)

+ . . . + τ1...pJ1...p(f1...p). (9)

where τ ′s are tuning parameters and J ′s are squared
norms defined over the subspace where the correspond-
ing function comes from. The tuning parameters τ ′s
are commonly selected by minimizing the GCV score.
For more detailed discussions, the readers are referred
to Wahba (1990).

To fix ideas, we shall focus on the additive model in the
rest of paper. But the argument should easily be ex-
tended to the more general functional ANOVA model
as well.

3 Computing the Solution Path

Similar to other methods of regularization, the non-
negative garrote estimation procedure proceeds in two
steps once the initial estimate is chosen. First the so-
lution path d(λ) indexed by the tuning parameter λ
is constructed. The second step, oftentimes referred
to as tuning, selects the final estimate on the solution
path. For most methods of regularization, it is very ex-
pensive to compute the exact solution path. One has
to approximate the solution path by evaluating the es-
timate for a fine grid of tuning parameters and there
is a tradeoff between the approximation accuracy and
the computational cost in determining how fine a grid
of tuning parameters to be considered. In particular,
the nonnegative garrote solution path can be approxi-
mated by solving the quadratic programming problem
(7) for a series of λ′s, as done in Breiman (1995).

It can be shown that the solution path of (7) is piece-
wise linear, and use this to construct an efficient algo-
rithm of building the exact nonnegative garrote solu-
tion path. The following algorithm is quite similar to
the modified LARS algorithm (Osborne et al., 2000;
Efron et al., 2004) for the LASSO (Tibshirani, 1996)
in the multiple linear regression, with a complicating
factor being the nonnegative constraints in (7).

Algorithm – Nonnegative Garrote

(1) Start from d[0] = 0, k = 1 and r[0] = Y

(2) Compute the current active set

Ck = arg max
j

(
Z ′jr

[k−1]
)

(10)

(3) Compute the current direction γ, which is a p
dimensional vector defined by γCc

k
= 0 and

γCk
=

(
Z ′Ck

ZCk

)−
Z ′Ck

r[k−1]

(4) For every j /∈ Ck, compute how far the group
nonnegative garrote will progress in direction γ
before Xj enters the active set. This can be mea-
sured by a αj such that

Z ′j
(
r[k−1] − αjZγ

)
= Z ′j′

(
r[k−1] − αjZγ

)

(11)
where j′ is arbitrarily chosen from Ck.

(5) For every j ∈ Ck, compute αj = min(βj , 1) where
βj = −d

[k−1]
j /γj , if nonnegative, measures how

far the group nonnegative garrote will progress
before dj becomes zero.

(6) If αj ≤ 0, ∀j or minj:αj>0{αj} > 1, set α = 1.
Otherwise, denote α = minj:αj>0{αj} ≡ αj∗ .
Set d[k] = d[k−1] +αγ. If j∗ /∈ Ck, update Ck+1 =
Ck ∪ {j∗}; else update Ck+1 = Ck − {j∗}.

(7) Set r[k] = Y − Zd[k] and k = k + 1. Go back to
step (3) until α = 1.

The following theorem justifies the algorithm, and the
sketch of its proof is given in the appendix. More
detailed proof can be found in Yuan and Lin (2005b).

Theorem 1 Under the “one at a time” condition dis-
cussed below, the trajectory of this algorithm coincides
with the nonnegative garrote solution path.

The same condition as we assumed in Theorem 1, re-
ferred to as “one at a time”, was used in deriving
the connection between the LASSO and the LARS by
Efron et al. (2004). With the current notation, the
condition states that j∗ in Step (6) is uniquely de-
fined. This assumption basically means that (i) the
addition occurs only for one variable a time at any
stage of the above algorithm; (ii) no variable vanishes
at the time of addition; and (iii) no two variables van-
ish simultaneously. This is generally true in practice
and can always be enforced by slightly perturbing the
response. For more detailed discussions, the readers
are referred to Efron et al. (2004).

4 Asymptotic Properties

Since the final estimate comes from the solution path,
it is of great importance to make sure that the solution



path indeed contains at least one “desirable” candidate
estimate. In our context, an estimate f̂ is considered
“desirable” if it is consistent in terms of both coef-
ficient estimate and component selection. We call a
solution path “path consistent” if it contains at least
one such “desirable” estimate. The following theorem
states that such consistency holds for the nonnegative
garrote solution path. A sketch of the proof is rele-
gated to the appendix. A more detailed proof can be
found in Yuan and Lin (2005b).

Theorem 2 Assume that the initial estimate is δ2
n

consistent in `2 norm , i.e.,

E
(
fj(Xj)− f̃ init

j (Xj)
)2

= Op(δ2
n) (12)

for some δn → 0, where pj(·) is the density of Xj. If
λ tends to zero in a fashion such that δn = o(λ), then
P (f̂NG

j = 0) → 1 for any j such that fj = 0, and

sup
j

E
(
fj(Xj)− f̂NG

j (Xj)
)2

= Op(λ2). (13)

Theorem 2 shows that as long as the initial estimates
f̃ init
1 , . . . , f̃ init

p are consistent in terms of estimation, the
nonnegative garrote estimate f̂NG

1 , . . . , f̂NG
p are consis-

tent in terms of both estimation and model selection
given that the tuning parameter λ is appropriately
chosen. In other words, the nonnegative garrote has
the ability to turn a consistent estimate into an esti-
mate that is not only consistent in terms of estimation
but also in terms of variable selection.

In achieving the consistency in variable selection, we
show in Theorem 2 that the nonnegative garrote es-
timate of a nonzero coefficient converges at a slower
rate than its initial estimate. It is not clear to us
whether this is the unavoidable price one has to pay
for the purpose of variable selection in general. A sim-
ple remedy is to add another layer to the estimating
procedure. After running our nonnegative garrote, we
can run a nonparametric regression such as (9) only on
those selected components to obtain a final estimate.
We shall adopt this strategy in the numerical examples
presented in the next section.

5 Numerical Examples

5.1 Simulations

The example setup is the same as Example 1 from
Lin and Zhang (2006). Ten covariates were simu-
lated in the following fashion. First W1, . . . ,W10 and
U were independently simulated from U [0, 1]. Then
Xj = (Wj + tU)/(1 + t), where parameter t controls

the amount of correlation among predictors. We con-
sider t = 0, 1, 3 in our simulation. The true model
is

y = 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4) + ε (14)

where

g1(t) = t; g2(t) = (2t− 1)2;

g3(t) =
sin(2πt)

2− sin(2πt)
;

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt)
+0.4 cos3(2πt) + 0.5 sin3(2πt). (15)

We chose the noise variance σ2 = 1.74 to give a signal
to noise ratio 3:1. We used smoothing spline estimate
(9) as the initial estimate.

The solution path of the shrinkage factor d(λ) is given
in Figure 2. The true components f1, . . . , f4 enter the
model first, followed by the redundant components.
Five fold cross-validation chooses a model with only
the true component.

Figure 2: Solution Path of the Shrinkage Factor
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The final estimate of the four components are also
given in Figure 3.

To further investigate the performance of the proposed
method, we estimate the MSE using a test set of size
10000. The sizes of the training and validation sets
are 100. Table 1 documents the median MSE averaged
over 200 runs. We also report its standard deviation
estimated using 500 bootstrap samples (numbers in
parentheses).

We also recorded the frequency of different model sizes
in Table 2.



Figure 3: Estimated Nonzero Components
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Table 1: Median MSE for the Additive Model Example

t=0 t=1 t=3
0.57 (0.02) 0.62 (0.03) 0.63 (0.02)

5.2 Real Data

To further illustrate our results, we re-analyze the
prostate cancer dataset from the study by Stamey et.
al. (1989). This dataset, previously used in Tibshi-
rani (1996), consists the medical records of 97 male
patients who were about to receive a radical prostate-
ctomy. The response variable is the level of prostate
specific antigen. The predictors are eight clinical
measures: log(cancer volume) (lcavol), log(prostate
weight) (lweight), age, log(benign prostatic hyper-
plasia amount) (lbph), seminal vesicle invasion (svi),
log(capsular penetration) (lcp), Gleason score (glea-
son) and percentage Gleason scores 4 or 5 (pgg45).

One of the main interests here is to identify which
predictors are more important in predicting the re-
sponse. This task has been carried for the multiple
linear model previously (Tibshirani, 1996). We apply
the nonparametric method on the data. As discussed
in Hastie, Tibshirani and Friedman (2003), the dataset
was split into training set with 67 observations and
test set with 30 observations. We compute the esti-
mate using the training data and the solution path of
the shrinking factor is presented in Figure 4.

Five fold cross validation suggests a model with four
components corresponding to lcavol, lweight, lbph and
svi. The fitted components are given in Figure 5. We
see clear nonlinearity for the effect of lbph, which sug-
gests that our nonparametric approach might be more
appropriate than a multiple linear model. To further
demonstrate the predictive performance of the esti-

Table 2: Frequency of Model Sizes for the Additive
Model Example

2 3 4 5 6 7 8 9 10
t=0 0 0 40 91 47 14 2 4 2
t=1 1 11 39 65 49 19 10 4 2
t=3 1 16 41 36 44 33 16 9 4

Figure 4: Solution Path of the Shrinkage Factor
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mate, we compute the prediction error on the test set,
which is 0.55. In contrast, if a multiple linear regres-
sion is applied, one of the best variable selection and
estimation method, the LASSO, selects seven effects
with only gleason being excluded. The corresponding
prediction error is 0.57.

Figure 5: Effects of the Selected Variables
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6 Conclusion

Variable selection in an additive model, or more gen-
erally component selection in a functional ANOVA
model is an important problem in practice. Extending
a successful variable selection and estimation in multi-
ple linear regression models, we introduced an efficient
method for this purpose. Although we have focused on
mean regression problem, the proposed approach can
naturally be extended to more general likelihood based
learning problems. Given an initial estimate, we scale
each component by a factor that minimizes a penalized
likelihood. We leave such extension for future studies.
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Appendix

Sketch of Proof for Theorem 1. Karush-Kuhn-Tucker
Theorem suggests that a necessary and sufficient con-
dition for a point d to be on the solution path of (7) is



that there exists a λ ≥ 0 such that for any j = 1, . . . , p,

{−Z ′j(Y − Zd) + λ}dj = 0 (16)
−Z ′j(Y − Zd) + λ ≥ 0 (17)

dj ≥ 0 (18)

We first show by induction that (16)-(18) are satisfied
by any point on the solution path constructed by the
algorithm. Obviously, they are satisfied by d[0]. Now
suppose that they hold for any point prior to d[k]. It
suffices to show that they are also true for any point be-
tween d[k] and d[k+1]. There are three possible actions
at step k: (i) a variable is added to active set: j∗ /∈ Ck;
(ii) a variable is deleted from the active set: j∗ ∈ Ck;
and (iii) α = 1. It is easy to see that (16)-(18) will
continue to hold for any point between d[k] and d[k+1]

if α = 1. Now we consider the other two possibilities.
When addition occurs, it can be shown that d

[k+1]
j∗ > 0

and therefore the addition will preserve (16)-(18) un-
til at least d[k+1]. When deletion occurs, it can be
shown that Z ′j∗r

[k+1] < λ and therefore (16)-(18) are
still satisfied. In summary, in all three situations, it
can be shown that (16)-(18) are satisfied by any point
until d[k+1]. The readers are referred to Yuan and Lin
(2005b) for a detailed proof.

Next, we need to show that for any λ ≥ 0, the solution
to (16)-(18) is on the solution path. By the continuity
of the solution path and the uniqueness of the solution
to (7), it is evident that for any λ ∈ [0,maxj Z ′jY ], the
solution to (16)-(18) is on the path. The proof is now
completed by the fact that for any λ > max Z ′jY , the
solution to (16)-(18) is 0 which is also on the solution
path.

Sketch of Proof for Theorem 2 For brevity, we suppress
the dependence on λ in the proof. Let

Λ01 = {j : dj = 0, fj 6= 0} ,

Λ00 = {j : dj = 0, fj = 0} ,

Λ11 = {j : dj > 0, fj 6= 0} ,

Λ10 = {j : dj > 0, fj = 0} ,

and pij = #(Λij). Denote event A = {p10 > 0}. First
we show that P (A) → 0 as n →∞. Write dij = dΛij ,
i, j = 0, 1 and other vectors and matrices be defined
in the same fashion unless otherwise indicated. Note
that d1· is also the unconstrained minimizer of

1
2
||Y − Z1·γ||2 + nλ

∑

j

γj , (19)

where γ ∈ Rp1· . Therefore
(

d11

d10

)
=

(
Z ′11Z11/n Z ′11Z10/n
Z ′10Z11/n Z ′10Z10/n

)−
×

(
Z ′11Y/n− λ1p11

Z ′10Y/n− λ1p10

)
(20)

Denote

A = Z ′1·Z1·,

Aij = Z ′1iZ1j , i, j = 0, 1,

A00.1 = A00 −A01A
−
11A10.

Then

A− =
( ∗ ∗
−A−00.1A01A

−
11 A−00.1

)
.

This implies that

d10 = −A−00.1A01A
−
11 (Z ′11Y/n− λ1p11)

+A−00.1 (Z ′10Y/n− λ1p10) ≡ A−00.1w (21)

Rewrite w as

w = Z ′10
[
Ip11 − Z11 (Z ′11Z11)

−
Z ′11

]
Y/n− λ1p10

+λA01A
−
111p11 . (22)

Because f̃ init is δn consistent,

w = Z ′10
[
Ip11 − Z11 (Z ′11Z11)

−
Z ′11

]
Y/n

−λ (1 + Op (δn))1p10 . (23)

Now note that∣∣∣
∣∣∣
[
Ip11 − Z11 (Z ′11Z11)

−
Z ′11

]
Y

∣∣∣
∣∣∣
2

≤ Y ′Y = Op(n), (24)

since Z11 (Z ′11Z11)
−

Z ′11 is a projection matrix. Thus
by Cauchy-Schwartz inequality,∣∣∣

∣∣∣Z ′10
[
Ip11 − Z11 (Z ′11Z11)

−
Z ′11

]
Y

∣∣∣
∣∣∣

≤ ||Z10||
∣∣∣
∣∣∣
[
Ip11 − Z11 (Z ′11Z11)

−
Z ′11

]
Y

∣∣∣
∣∣∣

= Op

(√
n ||Z10||

)

= Op(nδn) = op(nλ).

This leads to w = −λ(1 + op(1))1p10 . Since dj > 0 for
any j ∈ Λ10, we have w′d10 < 0. This contradicts with
(21) which implies that w′d10 = w′A−00.1w ≥ 0. Thus,
when n →∞, P (A) → 0.

Denote B = {p01 = 0}. It now suffices to show that
P (B|Ac) → 1. Assume that p10 = 0. Let du be the
unconstrained minimizer of

1
2
||Y − Z·1γ||2 + nλγ′1p·1 , (25)

where γ ∈ Rp·1 . Note that

du = (Z ′·1Z·1/n)− (Z ′·1Y/n− λ1p·1) . (26)

Similar as before, we have

du = 1p·1 (1 + Op(λ)) . (27)

Thus, with probability tending to 1, du → 1p·. Now
the proof is completed since f̃ init

j is δn consistent.


