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CD8 T cells are specialized immune cells that play an important role in
the regulation of antiviral immune response and the generation of protective
immunity. In this paper we investigate the differentiation of memory CD8 T
cells in the immune response using a short time course microarray experi-
ment. Structurally, this experiment is similar to many in that it involves mea-
surements taken on independent samples, in one biological group, at a small
number of irregularly spaced time points, and exhibiting patterns of temporal
nonstationarity. To analyze this CD8 T-cell experiment, we develop a hierar-
chical state space model so that we can: (1) detect temporally differentially
expressed genes, (2) identify the direction of successive changes over time,
and (3) assess the magnitude of successive changes over time. We incorporate
hidden Markov models into our model to utilize the information embedded
in the time series and set up the proposed hierarchical state space model in
an empirical Bayes framework to utilize the population information from the
large-scale data. Analysis of the CD8 T-cell experiment using the proposed
model results in biologically meaningful findings. Temporal patterns involved
in the differentiation of memory CD8 T cells are summarized separately and
performance of the proposed model is illustrated in a simulation study.

1. Introduction.

1.1. Background. Time course microarray experiments have become increas-
ingly popular in the study of dynamic biological processes due to their ability to
monitor tens of thousands of genes over time. As of June 2004 [Ernst, Nau and Bar-
Joseph (2005)], 80% of time course microarray experiments were short time series
with fewer than eight time points, according to the Stanford Microarray Database
[Gollub et al. (2003)]. In this paper we are particularly interested in a short time
course microarray experiment on memory CD8 T cell differentiation originally
described and analyzed in Kaech et al. (2002a). This CD8 T-cell experiment was
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done in the context of a large research effort to understand immune memory in
Rafi Ahmed’s laboratory of the Emory Vaccine Research Center. Here immune
memory refers to the ability of the immune system to remember its first exposure
to a specific antigen and to mount a rapid and aggressive response to a second
exposure. In the immune system, CD8 T cells are specialized immune cells that
play an important role in the regulation of antiviral response and the generation of
protective immunity. In response to a viral infection, naïve CD8 T cells differen-
tiate into effector CD8 T cells that control the infection and the effector CD8 T
cells that survive continue to differentiate into long-lived protective memory CD8
T cells [Kaech, Wherry and Ahmed (2002b)].

In this CD8 T-cell experiment, acute lymphocytic choriomeningitis virus Arm-
strong (LCMV) infection of mice was used as a model system to study memory
CD8 T cell differentiation. Genetically identical, uninfected mice were sacrificed
on the baseline day (naïve) to obtain naïve CD8 T cells. Other genetically identical
mice were infected with LCMV on the baseline day. Then mice were sacrificed at
day 8 (d8) and day 15 (d15) to obtain effector CD8 T cells, and at greater than day
30 (Imm) to obtain memory CD8 T cells. Affymetrix MG-U74AV2 arrays were
used to measure 12,488 genes in P14 CD8 T cells from mouse spleens at these
four time points. For each chip, cells from at least three mice were pooled to ob-
tain sufficient RNA for MG-U74AV2 hybridization. Structurally, this CD8 T-cell
experiment is similar to many in that it involves measurements taken on different
mice (independent sampling), in one biological group, at a small number of irreg-
ularly spaced time points, and exhibiting patterns of temporal nonstationarity. The
goal of the analysis is to assist investigators in understanding the underlying sys-
tem biology by identifying temporally differentially expressed (TDE) genes and
characterizing temporal changes involved in memory CD8 T cell differentiation.

In the original analysis, Kaech et al. (2002a) selected genes based on whether
their average gene expression levels changed (decreased or increased) at any time
point by at least 1.7 fold (original linear scale) compared to the first time point,
generating a set of 431 genes. They applied a K-means clustering algorithm on
the selected genes and found six major patterns out of 10 clusters. In this original
analysis, the temporal aspects of the data were ignored and both the fold change
cutoff in the selection method and the number of clusters in K-means clustering
were chosen arbitrarily. Although they identified several individual genes known
to be important in differentiating naïve, effector and memory CD8 T cells, the
biological meaning of the obtained clusters is not clear and the interpretation of
clustering results is not straightforward. To improve interpretation, we re-analyzed
this CD8 T-cell experiment by focusing on the direction (upregulation, downreg-
ulation and no change) and the magnitude of the gene-specific successive differ-
ences (changes) in the mean gene expression levels (log base 2 scale) over time.

1.2. Analysis of time course microarray data. Methods up to now for time
course microarray experiments can be divided into two classes: (1) methods ex-
tended from those for static microarray experiments, and (2) methods extended
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from time series analysis. Examples of the first type of methods include hierar-
chical clustering [Eisen et al. (1998) and Spellman et al. (1998)], K-means clus-
tering [Tavazoie et al. (1999), Kaech et al. (2002a) and Bar–Joseph et al. (2002)],
self-organizing maps [Tamayo et al. (1999)], singular value decomposition [Alter,
Brown and Botstein (2000) and Wall, Dyck and Brettin (2001)], ANOVA-based
analysis [Park et al. (2003)] and pairwise analysis. Ignoring the temporal aspects
of data, these types of methods have the potential to suffer from low sensitivity. Ex-
amples of methods inspired by time series analysis include Auto-Regression (AR)
based models, multivariate Normal models, B-splines based models, and hidden
Markov models (HMMs). Ramoni, Sebastiani and Cohen (2002) represented gene
expression sequences as stationary series produced from a finite number of AR
processes and applied an agglomerative Bayes clustering algorithm to search gene
clusters. Using the multivariate Normal distribution, Tai and Speed (2006) devel-
oped a multivariate hierarchical empirical Bayes model to identify TDE genes.
Storey et al. (2005) proposed a general framework for time course microarray ex-
periments by modeling a gene-specific expression sequence as a linear expansion
of B-spline basis functions. Hong and Li (2006) proposed to add a hierarchical
structure into a B-spline based model to identify genes temporally differentially
expressed between two biological groups [see Spellman et al. (1998), Klevecz
(2000) and Heard, Holmes and Stephens (2006) for other choices for basis func-
tions]. Schliep, Schönhuth and Steinhoff (2003, 2004) proposed to use a mixture of
hidden Markov models to model the gene expression level sequence and to cluster
genes where a heuristic cluster deletion and splitting procedure is utilized to deter-
mine the number of clusters. Yuan and Kendziorski (2006) constructed a hidden
Markov model to infer the gene-specific relative relationship of multiple biological
groups over time. Zhou and Wakefield (2006) proposed a first-order random walk
model to partition TDE genes where the optimal number of partitions is chosen
based on posterior probabilities via birth-death MCMC. Although these methods
are useful in the analysis of time course microarray experiments, none of them can
be used to investigate both the direction and the magnitude of successive changes
in the mean gene expression levels in the CD8 T-cell experiment.

To add to these useful methods, we develop a hierarchical state space model us-
ing the observed gene expression levels along with the direction and the magnitude
of successive changes in the mean gene expression levels. To improve the sensi-
tivity of detecting TDE genes, we incorporate HMMs into our model to utilize
the correlation information embedded in the time series [Yuan and Kendziorski
(2006)] and set up our model in an empirical Bayes framework to utilize infor-
mation from the gene population [Efron et al. (2001) and Newton et al. (2001)].
Analysis of the CD8 T-cell experiment using the proposed hierarchical state space
model results in the identification of more significant genes (over 1200 vs 431 in
the original analysis) and the discovery of new important temporal patterns such
as continuous upregulation over time (see Section 3).
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2. Hierarchical state space model.

2.1. Hierarchical state space model for the CD8 T-cell experiment. In the
CD8 T-cell experiment, expression levels were measured for G = 12,488 genes
at T = 4 time points where large G and small T are typical of many time course
microarray studies. Replicates were independently sampled with three replicates
at day 15 and four replicates at each of the other three time points. We denote by
xgtk the observed gene expression level (log base 2 scale) for gene g at the t th
time point on array k for k = 1, . . . , nt and denote by xgt = (xgt1, . . . , xgtnt ) all
the observed gene expression levels for gene g at the t th time point. The observed
gene expression levels can be represented by a 12,488 × 15 matrix whose rows
represent genes and columns represent arrays. The typical data layout is shown in
Table 1.

Our interest lies in the gene-specific mean expression levels over time, a latent
mean sequence denoted by µg = (µg1, . . . ,µgT ) where µgt = E(xgtk). Specif-
ically, we are interested in the magnitude of successive changes in µg , a latent
sequence composed by δgt = µgt − µg(t−1) for t = 2, . . . , T , and the direction of
successive changes in µg , a latent state sequence denoted by sg = (sg1, . . . , sgT ).
Here the state at the first time point is defined as “start” and the state at each of the
other time points could be upregulation (+ : δgt > 0), downregulation (− : δgt < 0),
or no change (=: δgt = 0). This definition leads to a total of 3T −1 possible tempo-
ral patterns for an experiment with T time points (denote by S) and thus a total of
27 possible temporal patterns for the CD8 T-cell experiment. The left panel of Fig-
ure 1 shows an example with three temporal patterns in an experiment with 4 time
points. The goal of detecting TDE genes is equivalent to finding genes with either
the upregulation or downregulation state at any time point after the first time point.
The goal of characterizing TDE genes can be achieved by finding all distinctive
temporal patterns.

For the CD8 T-cell experiment, we develop a hierarchical state space model
in three levels (the observation level, the mean level and the state level) as fol-
lows. In the observation level, the observed gene expression levels at time t (xgt )

TABLE 1
Data layout for microarray experiments with one biological group and independent sampling

Time 1 Time 2 . . . Time T

1 . . . n1 1 . . . n2 . . . 1 . . . nT

Gene 1 x111 . . . x11n1 x121 . . . x12n2 . . . x1T 1 . . . x1T nT

Gene 2 x211 . . . x21n1 x221 . . . x22n2 . . . x2T 1 . . . x2T nT

...
...

...
...

...
...

...
...

...
...

...

Gene G xG11 . . . xG1n1 xG21 . . . xG2n2 . . . xGT 1 . . . xGT nT
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FIG. 1. An example of three temporal patterns with independent sampling and illustration of the
first-order hierarchical state space model: In the left panel of the figure, the y-axis represents the gene
expression level (log base 2 scale) and the x-axis represents the time points. Solid lines represent the
underlying mean gene expression levels (log base 2 scale) over time and stars represent the observed
gene expression levels of three genes in an experiment with four replicates at each time point.

are regarded as a random sample independently produced from a Normal distrib-
ution with mean µgt and a common standard deviation σ , similar to Kendziorski
et al. (2003). In the mean level, the successive change of the mean gene expres-
sion level under the state of no change is 0 by definition and the successive change
of the mean gene expression level under the upregulation (downregulation) state
is regarded as a random sample independently produced from an unknown 0-left-
truncated (0-right-truncated) Normal distribution. In the state level, the state se-
quence is regarded as a random sample independently produced from an unknown
discrete Markov process in which various orders of Markov dependence are al-
lowed, similar to Yuan and Kendziorski (2006). The order of the proposed hierar-
chical state space model is defined by the order of the Markov process in the state
level. See the right panel of Figure 1 for an illustration of the first-order hierarchi-
cal state space model. The proposed model is established in an empirical Bayes
framework to utilize information from the large gene population. The marginal
distribution of xg = (xg1, . . . ,xgT ) in such case is

f (xg) = ∑
v∈S

Pr(sg = v)f (xg|sg = v),

a mixture of the conditional distributions of xg given state series v. Here Pr(sg =
v) = Pr(v) is the population proportion of the state series v with the constraint∑

v∈S Pr(v) = 1; f (xg|sg = v) = ∫
f (xg|µg)f (µg|sg = v) dµg is the conditional

distribution of xg given state series v. To simplify notation, f (·|·) and f (·) are
used throughout to denote a generic conditional and marginal density function
respectively. Likewise, Pr(·|·) and Pr(·) are used throughout to denote a generic
conditional and marginal probability function respectively.

To fit the proposed hierarchical state space model, we need to estimate parame-
ters specifying the Normal distribution in the observation level, parameters speci-
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fying the truncated Normal distributions in the mean level, and parameters speci-
fying the Markov process in the state level where all these parameters (denoted by
θ ) are universal for all genes. Model fitting proceeds by an implementation of the
EM algorithm [Dempster, Laird and Rubin (1977)] to produce estimates of fixed
effects θ and posterior distributions for latent mean sequences µg and latent state
sequences sg (see Appendix A).

2.2. Inference. After the model fitting procedure described above, inference
ultimately utilizes the gene-specific posterior probabilities of state sequences

Pr(sg = v|xg) = Pr(sg = v)f (xg|sg = v)/f (xg), v ∈ S(1)

(a gene-specific vector of the posterior probabilities of the 27 state sequences in
the case of the CD8 T-cell data) and the gene-specific posterior distribution of the
mean sequence

f (µg|xg) = ∑
v∈S

Pr(sg = v|xg)f (µg|xg, sg = v),(2)

a mixture of the conditional posterior distribution over all possible state sequences.
From (1) an optimal state sequence may be obtained either by separately maximiz-
ing the marginal posterior probability at each time point (MMP), or by maximizing
the joint posterior probability over all time points (MJP). A gene for which the op-
timal state sequence entails some temporal changes is a candidate for a short list of
interesting, temporally altered genes. The false discovery rate for such a list may
be derived from the posterior probabilities themselves, as shown in Appendix B
[see Benjamini and Hochberg (1995), Efron et al. (2001), Storey (2002, 2003),
Dudoit, Shaffer and Boldrick (2003) and Newton et al. (2004) for further details
about the false discovery rate]. From (2) a posterior summary statistic such as the
posterior mean can be obtained to summarize µg .

3. Results.

3.1. Analysis of the CD8 T-cell experiment. We re-analyzed the CD8 T-cell
experiment with the proposed hierarchical state space model to identify and
to cluster genes involved in the development of memory CD8 T cells. Back-
ground correction, normalization and probe-set summaries were performed on the
Affymetrix chip data using RMA from the Bioconductor affy package [Irizarry
et al. (2003)]. Expression values were obtained on the log base 2 scale. Here
data were analyzed using both a first-order hierarchical state space model (first-
order HST) and a full-order hierarchical state space model (full-order HST). MMP
and MJP were each applied to the gene-specific posterior probabilities of state
sequences separately to obtain the gene-specific optimal state sequence.

Plots of the estimated population distributions for successive changes under the
upregulation state and the downregulation state at each time point after the first
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FIG. 2. Estimated population distributions for successive changes under the upregulation and the
downregulation state over time. Here dashed (solid) lines represent the estimated population distrib-
ution for successive changes under the upregulation (downregulation) state.

time point are shown in Figure 2. Here dashed (solid) lines represent the estimated
population distribution for successive changes under the upregulation (downreg-
ulation) state. The first-order HST model and the full-order HST model provide
similar population distribution estimates.

Table 2 presents the estimated initial state probability vector and the state tran-
sition matrices of the discrete Markov process from the first-order HST model,
suggesting a high correlation across time. In detail, compared to genes with no
change at the previous time point, genes with change at the previous time point
(state =“−” or “+”) tend to have a much higher probability of change at the cur-
rent time point. This pattern indicates that utilizing the sequential information has
the potential of increasing the sensitivity of detecting TDE genes. The increase
in sensitivity is also demonstrated in a simulation study following the analysis of
the CD8 T-cell data. In addition, most genes that change in the first period (Naïve
to d8) tend to have an opposite pattern in the second period (d8 to d15) where
Pr(sg3 = “−”|sg2 = “+” = 0.68 and Pr(sg3 = “+”|sg2 = “−”) = 0.72. This pat-
tern indicates that utilizing the sequential information from the population has the
potential of reducing the misclassification rate.
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TABLE 2
Estimated parameters of the first-order Markov process in the state level

Naïve to d8 Transition from d8 to d15 Transition from d15 to Imm

+ − = d8\d15 + − = d15\Imm + − =
0.04 0.08 0.88 + 0.09 0.68 0.23 + 0.33 0.16 0.51

− 0.72 0.00 0.28 − 0.00 0.18 0.82
= 0.00 0.00 1.00 = 0.00 0.00 1.00

Table 3 shows the number of genes identified as TDE genes using different
models and different optimality criteria (MMP and MJP). These four approaches
yield similar numbers. More genes are identified as TDE in the earlier period than
in the later period. Given the same model, conducting inference using the MMP
results in more genes identified as TDE genes compared to conducting inference
using the MJP. Given the same optimality criteria, more genes were identified as
TDE genes under the full-order HST model than under the first-order HST model.

Clustering results from the first-order HST model are shown in Figure 3. The
first-order and the full-order HST models produce very similar results in the state
level. Using the MMP, for example, the first-order HST model identifies 13 pat-
terns and the full-order HST model identifies 15 patterns with a total of 11 patterns
in common. With respect to all the genes, about 97.7% of the genes share the same
optimal state series in these two models. Among genes identified as TDE in either
of these models (1318 genes for first-order HST model and 1342 genes for full-
order HST model), 1308 genes are in common. For these 1308 genes, about 81.5%
share the same optimal state series, about 98.3% share the same optimal state at
time point 2, about 87.7% share the same optimal state at time point 3, and about
92.0% share the same optimal state at time point 4, indicating a good consistency
between the first-order and the full-order HST models.

We compared our results from the first-order HST model with the MMP criteria
to the results obtained from the original analysis using the K-means clustering

TABLE 3
Number of genes identified as TDE genes between each two adjacent time points under different
models (first-order and full-order HST models) and different optimality criteria (MMP and MJP)

Model Criteria d8 d15 Imm Across time series

First-order model
MMP 1318 951 328 1318
MJP 1244 951 351 1244

Full-order model
MMP 1310 803 450 1342
MJP 1215 815 444 1245
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FIG. 3. Clustering results from the first-order HST model. Here x-axis represents time and y-axis
represents centered posterior mean so that they all start from 0.

algorithm [Kaech et al. (2002a)]. Both methods identify clusters “start,+,−,−,”
“start,−,+,+,” and “+,=,=.” Information on these clusters is shown below:

Cluster “start,+,−,−”: Upregulated at day 8 and gradually downregulated at
day 15 and memory stage. This cluster contains 46 genes including: genes re-
lated to T cell effector functions such as GZMA, GZMB and GZMK; genes
related to cell adhesion and migration such as CCR2; genes related to mem-
brane proteins such as KLRG1.

Cluster “start,−,+,+”: Downregulated at day 8 and gradually upregulated at
day 15 and memory stage. This cluster contains 192 genes including genes
related to T cell signal transduction such as IL7R; genes related to apopoto-
sis/survival such as BCL2; genes related to cell adhesion and migration such as
CXCR4 and CD62L.

Cluster “start ,+,=,= ”: Upregulated at day 8 with no change over the follow-
ing time points. This cluster contains 282 genes including genes related to cell
adhesion and migration such as CD44 and genes related to membrane proteins
such as LY6A.

Our method also identifies new clusters including the following:

Cluster “start,+,+,+”: Continuously upregulated at all time points after the
first time point and involved in the differentiation of memory CD8 T cells, this
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cluster of genes can be used to differentiate naïve, effector and memory CD8
T cells. This cluster contains 8 genes including genes related to T cell effector
functions such as IFNg and genes related to cell adhesion and migration such as
CXCR3.

Cluster “start,+,−,= ”: Upregulated at day 8, downregulated at day 15, and no
change at memory stage. This cluster contains 282 genes including genes related
to T cell effector functions such as FASL and genes related to cell adhesion and
migration such as CCR5.

In addition, no important biomarkers fall into the cluster with pattern “start,−,

+,−.” Examining genes that fall into this cluster, we found that few genes have
function or pathway related to the immune response, according to currently avail-
able annotation information from Gene Ontology [Vinayagam et al. (2004)]. These
observed changes may be just due to random variation. Compared to previous clus-
ters obtained by the K-means clustering, our model identified more clusters with
clearer and more meaningful patterns. Based on clusters produced from our model,
the investigators may more readily identify patterns involved in the CD8 T cell dif-
ferentiation and focus on genes with patterns similar to important biomarkers.

3.2. Simulation. In addition to the analysis of the CD8 T-cell data, a simula-
tion study was carried out to evaluate the performance of the proposed model. We
generated 100 data sets each with 4,000 genes and four replicates at each of 4 time
points. Data were produced from the first-order HST model in the order of state
series, mean gene expression series and gene expression levels. We simulated the
data using parameters estimated from the CD8 T-cell data to mimic the real sce-
nario. First, we draw state series independently from a first-order Markov process
(see Table 2). Then, we draw mean gene expression levels at the first time point
independently from a Normal distribution and draw relative changes under the
upregulation (downregulation) state independently from the 0-left-truncated (0-
right-truncated) Normal distribution (see Figure 2). In turn, observed gene expres-
sion levels were independently produced from a Normal distribution conditional
on the mean gene expression levels. Simulated data sets were analyzed using the
following three methods: (I) a first-order HST model, (II) a zero-order HST model
(independent HST model), and (III) a pairwise analysis method. Here the pairwise
analysis was done by comparing each of the three successive changes in mean gene
expression levels separately, ignoring changes at the other periods. Model parame-
ters were estimated using the EM algorithm and the MMP criterion was applied
to obtain the gene-specific optimal state sequence. Performance of these methods
was assessed in both the discrete state level and the continuous mean level.

In the state level, we evaluated these three methods by comparing specificity,
sensitivity, the false discovery rate, and the misclassification rate of the states at
each time point along with the misclassification rate of the state series. Here the
misclassification rate of the states (state series) is the proportion of genes whose



452 H. WU, M. YUAN, S. M. KAECH, M. E. HALLORAN

optimal state (state series) does not match the true state (state series). Define the
state of no change (“=’) as the temporally nondifferentially expressed (TNDE)
state and the other two states (“+” or “−”) as the temporally differentially ex-
pressed (TDE) state. At each time point after the first time point, the sensitivity is
the proportion of TDE states that are correctly identified as TDE, the specificity is
the proportion of TNDE states that are correctly identified as TNDE, and the false
discovery rate is the proportion of false TDE states among those identified as TDE.

Table 4 and Figure 4 summarize the simulation results in the state level. The
first-order HST model has a lower misclassification rate than the independent HST
model, which in turn has a lower misclassification rate than the pairwise method.
Noticeably, the first-order HST model reduces the misclassification rate of state se-
ries by 32% (49%) compared to the independent HST model (the pairwise analy-
sis). In addition, the first-order HST model increases the sensitivity by as much
as 22% compared to the pairwise analysis. Compared to the pairwise analysis, the
hierarchical state space model helps to improve the specificity, reduce the false
discovery rate, and reduce the misclassification rate. Using a first-order HMM
structure in the state level in the first-order HST model helps to reduce the misclas-
sification rate and improve the sensitivity. In summary, these results indicate that

TABLE 4
Summary of simulation results in the state level. Here I represents the first-order HST model,

II represents the independent HST model, and III represents the pairwise method. MR is
the misclassification rate of states at each time point and SMR is the misclassification

rate of state series

Method Time 1 to Time 2 Time 2 to Time 3 Time 3 to Time 4

FDR
I 0.158 (0.026) 0.091 (0.020) 0.119 (0.036)
II 0.197 (0.031) 0.066 (0.022) 0.164 (0.047)
III 0.191 (0.027) 0.397 (0.038) 0.506 (0.047)

Sensitivity
I 0.760 (0.024) 0.678 (0.030) 0.683 (0.043)
II 0.639 (0.024) 0.407 (0.025) 0.581 (0.044)
III 0.667 (0.024) 0.556 (0.027) 0.647 (0.042)

Specificity
I 0.980 (0.004) 0.993 (0.002) 0.997 (0.001)
II 0.979 (0.004) 0.997 (0.001) 0.996 (0.002)
III 0.978 (0.004) 0.964 (0.006) 0.976 (0.005)

MR
I 0.047 (0.003) 0.035 (0.003) 0.014 (0.002)
II 0.063 (0.004) 0.056 (0.002) 0.019 (0.002)
III 0.059 (0.004) 0.073 (0.005) 0.035 (0.004)

SMR
I 0.069 (0.004) 0.069 (0.004) 0.069 (0.004)
II 0.102 (0.004) 0.102 (0.004) 0.102 (0.004)
III 0.136 (0.008) 0.136 (0.008) 0.136 (0.008)
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FIG. 4. Summary of simulation results in the state level.

the first-order HST model outperforms the other two methods in the state level. In
addition, we investigate the performance of our model in the mean level. Using the
mean from the posterior distribution of the mean gene expression level obtained
from (2) in the first-order HST model as the summary, we find that posterior mean
gene expression level reduces the variance and mean square error by 53% (from
0.019 to 0.009) compared to the sample mean gene expression level.

4. Discussion. In this article we analyzed a short time course microarray ex-
periment to investigate the differentiation of memory CD8 T cells. To understand
the differentiation of memory CD8 T cells, we need to detect TDE genes, iden-
tify the direction of successive changes over time, and characterize the magnitude
of successive changes over time. Considering this, we develop a hierarchical state
space model. To improve inference, a HMM structure is exploited to utilize the
correlation of states across time and an empirical Bayes framework is utilized to
borrow information from the large gene population. Results from the CD8 T-cell
data indicate a strong correlation over time in the state level and an empirical Bayes
analysis helps us to capture this theme from the large gene population (see Table 2
for details). Results from a simulation study show that incorporating this correla-
tion may help to increase the sensitivity of detecting TDE genes and to reduce the
misclassification rate (see Table 4 for details).

To analyze the CD8 T-cell experiment, we developed a specific hierarchical state
space model. The proposed model can also be easily applied to other short time
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course microarray experiments which share a similar structure to the CD8 T-cell
experiment (one biological condition and independent sampling). In addition, the
specifications of the proposed model could be adjusted to suit different situations.
For example, in the observation level, we could allow the sampling variance to
vary over time instead of being time-independent. In the mean level, we could use
a Gamma distribution, instead of a truncated Normal distribution, to model the
successive changes over time. More details can be found in Wu (2007).

The proposed model can be extended in a straightforward manner to experi-
ments with a longitudinal sampling design where subjects involved in experiments
have repeated observations over time. For example, in a study of monkeys infected
with simian immunodeficiency virus, the same group of monkeys were observed
over time after infection [see Wu (2007) for more details]. The proposed hierar-
chical state space model could also be extended to time course microarray exper-
iments with long time series. However, since the number of possible state series
increases exponentially with the number of the time points (3T −1), inference using
the EM algorithm would be computationally intensive. Updating the posterior dis-
tribution using Monte Carlo simulation with a sequential strategy [Liu and Chen
(1998)] could be a promising approach for analyzing time course microarray data
with long time series.

Analysis of the CD8 T-cell data using the proposed hierarchical state space
model produces biologically meaningful results. With explicit optimal state series,
genes can be easily grouped and studied, either marginally or jointly. Important
temporal patterns involved in biological processes can be quickly identified and
genes that have a pattern similar to known important biomarkers can be easily ex-
tracted for further investigation. These results may also be used for further high
level analysis, such as network and pathway reconstruction. Analysis of the im-
mune response suggests that multiple pathways are involved in the differentiation
of memory CD8 T cells, including cell adhesion/migration, signal transduction and
effector response. Here we want to emphasize that this analysis is conducted at the
genetic level. Providing rich insight into biological processes, these results also
require careful interpretation to answer questions of interest. For example, a high
level of gene expression does not necessarily yield a high level of its functional
protein. In immune response experiments, the gene expression levels for some
genes related to antigen-killing functions such as GZMB and IFNG are higher in
memory CD8 T cells than in naïve CD8 T cells. However, there is no correspond-
ing high production of effector response-related proteins. This amazing strategy
enables memory CD8 T cells to have a quick recall response without releasing im-
proper cytotoxic proteins harming healthy cells [Veiga-Fernandes et al. (2000)]. It
is desirable to combine information from other biological studies to obtain a com-
plete understanding of the differentiation of memory CD8 T cells in response to a
viral infection.
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APPENDIX A: MODEL FITTING

Under the gene-wise independence assumption, the complete log-likelihood is

G∑
g=1

logf (xg,µg, sg)

=
G∑

g=1

logf (xg|µg) +
G∑

g=1

∑
v∈S

I [sg = v][logf (µg|sg = v) + log Pr(v)].

One may question this gene-wise independence assumption. However, considering
that parameter estimates in the proposed model are driven largely by the marginal
distribution of the data, parameter estimates in a large-scale study like the microar-
ray study ought to be reliable (though probably estimated less well than expected)
in the presence of modest among-gene dependence. Treating (µ1, . . . ,µG) and
(s1, . . . , sG) as missing data, we employ the EM algorithm to find the MLE itera-
tively. Here we use the proposed parametric first-order HST model to illustrate the
fitting procedure. Given thousands of genes in the experiments, σ 2 can be reliably
estimated using the usual unbiased estimator

σ̂ 2 = 1

G × (
∑T

t=1 nt − T )

G∑
g=1

T∑
t=1

nt∑
k=1

(xgtk − x̄gt )
2,

where x̄gt is the sample mean of the gene expression level for gene g at the t th
time point.

In the expectation step, we can estimate Pr(sg = v|xg) by

P̂r(sg = v|xg) = P̂r(sg = v)f̂ (xg|sg = v)

f̂ (xg)
, v ∈ S.

From P̂r(sg|xg), we can estimate Pr(sgt = i|xg) by
∑

vt=i P̂r(sg = v|xg) and
Pr(sg(t−1) = i, sgt = j |xg) by

∑
vt−1=i,vt=j P̂r(sg = v|xg) for i, j = +,−,= and

t = 2, . . . , T . In the maximization step, the initial state probabilities and the state
transition matrices can be updated by

π̂i = P̂r(St = i) = 1

G

G∑
g=1

P̂r(sgt = i|xg),

∏̂t

ij
= P̂r(St−1 = i, St = j) = 1

G

G∑
g=1

P̂r
(
sg(t−1) = i, sgt = j |xg

)

and model parameters in the mean level can be updated by maximizing

G∏
g=1

∑
i=+,−,=

P̂r(sgt = i|xg)f
(
xg(t−1), xgt |sgt = i

)
.
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Iterate between the expectation step and the maximization step until convergence.
To focus on the successive changes over time, a simple center transformation,

x̃gtk = xgtk − x̄g1, can be used to simplify the proposed model. After the center
transformation, the proposed model can be rewritten as

x̃gtk = µ̃gt + εgtk,

µ̃g1 ∼ N(0, σ 2/n1),

µ̃gt = µ̃g(t−1) + δgt ,

with other parts of the proposed hierarchical state space model unchanged. Here
x̃gtk represents the gene expression level after the center transformation and µ̃gt

represents the latent mean after the center transformation. Centering may induce
some dependence as discussed in Dahl and Newton (2007).

APPENDIX B: CONDITIONAL FDR

Denoting by Ct the set of genes identified as TDE at each time point and denot-
ing by C the combined set of genes identified as TDE, the expected FDR at each
time point can be estimated by

F̂DRt =
∑G

g=1 P̂r(sgt = “=”|xg)I (g ∈ Ct)∑G
g=1 I (g ∈ Ct)

,

the average of the conditional false discovery rate at time t for genes in Ct . Simi-
larly, the overall expected FDR can be estimated by

F̂DR =
∑G

g=1 P̂r(no change over time|xg)I (g ∈ C)∑G
g=1 I (g ∈ C)

,

the average of the conditional false discovery rate over all time points for genes
in C [see Newton et al. (2004) for further elaboration on this point].
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