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Summary. Although both clustering and identification of differentially expressed genes are equally essen-
tial in most microarray studies, the two tasks are often conducted without regard to each other. This is
clearly not the most efficient way of extracting information. The main aim of this article is to develop a co-
herent statistical method that can simultaneously cluster and detect differentially expressed genes. Through
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genes and is more sensitive in identifying differentially expressed genes. The improvement over existing
methods is illustrated in both our simulation results and a case study.
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1. Introduction
In contrast to traditional methods that analyze just tens
of genes at any one time, microarrays can simultaneously
measure the expression level for thousands, often the entire
repertoire of a cell population or tissue under investigation.
This innovation presents a powerful tool for studies of diverse
biological systems.

With such a large number of genes monitored, clustering
is one of the foremost tasks for microarray data analysis. It
identifies groups of genes that have similar expression profiles
across samples. Clustering can reduce the effort of studying
individual genes and more importantly it can unmask the
functional groups among genes. Since the seminal work by
Eisen et al. (1998), various approaches have been developed
to fulfill this task in the context of microarray experiments. To
name a few, hierarchical clustering, K-means, and partition-
ing around medoids have all been applied in high throughput
studies.

When gene expression measurements come from multiple
biological conditions, a fundamental goal is to identify those
genes that are differentially expressed under different condi-
tions. This practice often helps investigators identify specific
diagnostic, prognostic, and predictive factors for disease which
can ultimately lead to the development of molecular-based
therapies. The development of statistical methods to identify
differentially expressed genes has received much attention, es-

pecially methods to identify genes that are differentially ex-
pressed between two conditions. For detailed discussion re-
garding this subject, the readers are referred to Parmigiani et
al. (2003) and the references therein.

Although both clustering and differentially expressed gene
identification are equally essential in most microarray stud-
ies, the two tasks are often conducted without regard to each
other. This is clearly not the most efficient way of making
inferences. Certainly, which cluster a gene belongs to has a
great deal to do with whether or not the gene is differentially
expressed. On the other hand, the knowledge of gene clusters
provides valuable aids in determining a gene’s differential ex-
pression pattern. It is the main aim of this article to develop a
coherent statistical framework that can be used to simultane-
ously cluster and detect differentially expressed genes. To this
end, we use a two-level mixture model to describe the way in
which expression measurements arise. Comparing with the ex-
isting methods, the proposal here shares information between
the tasks of clustering and detecting differentially expressed
genes.

Like many other model-based clustering approaches, each
cluster is represented by a mixture component in the first
level of our statistical framework. Many advantages of the
model-based clustering method, for example, those described
in Yeung et al. (2001), are therefore inherited by our method.
Different from the existing clustering methods, though, we
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base our clustering decision not only on the average expres-
sion level and/or the sample variances of certain genes, but
also on how likely a gene is to be differentially expressed. In
the second level of the model, each cluster is further repre-
sented by a mixture model, each component representing the
expression pattern of a gene. In this way, decision criteria
of differential expression are allowed to vary among clusters;
and, as a result, the approach introduced here is expected to
outperform previously proposed methods that assume homo-
geneity among genes.

The article is organized as follows. The proposed statisti-
cal framework is detailed in the next section. Section 3 ad-
dresses issues of model fitting and posterior inferences. In
Section 4, we conduct simulations to show advantages of the
new method over existing approaches. A data set is analyzed
in Section 5 for illustrative purposes, followed by a discussion
in Section 6.

2. Unified Mixture Modeling Approach
Following the model-based clustering method proposed by
Fraley and Raftery (2002), our modeling strategy is to cap-
ture the probability distribution of expression measurements
taken on a set of genes g = 1, . . . ,G by a finite mixture. Often,
replicate measurements are obtained under different biologi-
cal conditions. We assume that some preprocessing technique
has been used to adequately normalize the data to remove
systematic effects and provide a summary score of expres-
sion for each gene on each array. Appropriate normalization
schemes exist for both single- and two-color arrays. In the lat-
ter case, a reference sample is often used for one of the colors
to facilitate a normalization scheme that provides the required
summary score of expression (Yang et al., 2002). However, for
some two-color designs, obtaining scores of expression that are
comparable across multiple conditions may not be possible,
particularly if the experiment measures ratios of expression
that are not connected by common samples.

For simplicity of presentation, we consider comparing two
conditions, for example, control and treatment, with data
xg = (xg1, . . . ,xgn1) from the n1 replicate measurements in
the first condition and yg = (yg1, . . . , ygn2) from the sec-
ond condition. This simplification is not required and is
relaxed in the web-based Appendix available at http://

www.tibs.org/biometrics.

2.1 Model-Based Clustering
For a moment, suppose we know a priori that there are C
clusters among the genes. Expression measurements for genes
from the same cluster are expected to have similar profiles,
and therefore can be reasonably modeled as observations from
the same distribution. More specifically, if gene g comes from
the kth cluster, then

(xg,yg) ∼ fk(xg,yg). (1)

Under this notion, measurements of a randomly picked gene
g from the G genes we observed should follow

(xg,yg) ∼ π1f1(xg,yg) + · · · + πCfC(xg,yg), (2)

where πk is the prior probability that g comes from the kth
cluster (π1 + · · · + πC = 1).

Different choices of the component distribution of (2) have
been researched in the literature. The most common choices

are variants of the multivariate normal. Yeung et al. (2001)
systematically documented various options within this family.
The structure of the multivariate normal distribution allows
an efficient algorithm to compute the posterior probability
that a gene belongs to a certain cluster. The main disadvan-
tage of this specification, however, is that it lacks an intuitive
way to model the information that the measures are taken
under different biological conditions. In this article, we ex-
plore the flexibility of (2) further and propose a component
distribution that not only accounts for the multiple biological
conditions but also incorporates the likelihood for a gene to
be differentially expressed among different conditions.

2.2 Differential Expression Pattern
To account for the fact that the expression measurements
come from different biological conditions and a gene can there-
fore have different expression patterns (defined below), we use
a nested mixture model for each component density of (2).

fk(xg,yg) =
∑
j∈S

pkjfkj(xg,yg), (3)

where S is the collection of all possible differential expression
patterns, and pkj is the prior probability that a gene from the
kth cluster has expression pattern Sj(pk1 + · · · + pk|S| = 1, |S|
represents the cardinality of S).

Expression measurements for a gene can be regarded as
noisy observations of a vector of latent expression levels for
different biological conditions. In the current setup, the vector
for g would be (μgx, μgy). Equality and inequality relation-
ships among these expression levels (referred to as expression
patterns) represent the biological differences and similarities
among conditions.

One way of specifying S is as follows: Because we are only
concerned with two conditions here, there could be three pos-
sibilities for a gene g. It is either equivalently expressed (EE),
μgx = μgy; overexpressed, (OE) μgx > μgy; or underexpressed
(UE), μgx < μgy. Usually, we call a gene differentially ex-
pressed (DE) if it is either OE or UE.

In each scenario, fkj in (3) can be interpreted as the condi-
tional distribution fk (xg, yg |Sj ). As the biological informa-
tion is completely contained in (μgx, μgy), we assume that xg

and yg are conditionally independent given (μgx, μgy). There-
fore, the component distribution fkj can be rewritten as

fkj(xg,yg) = fk(xg,yg |Sj)

=

∫
μgx

∫
μgy

fk(xg,yg, μgx, μgy |Sj) dμgx dμgy

=

∫
μgx

∫
μgy

fk(xg,yg |μgx, μgy)

× fk(μgx, μgy |Sj) dμgx dμgy

=

∫
μgx

∫
μgy

fk(xg |μgx)fk(yg |μgy)

× fk(μgx, μgy |Sj) dμgx dμgy

≡
∫
μgx

∫
μgy

n1∏
i=1

g0k(xgi |μgx)

n2∏
i=1

g0k(ygi |μgy)

× fk(μgx, μgy |Sj) dμgx dμgy. (4)
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The observational distribution g0k represents how the expres-
sion measurement is observed for genes from the kth cluster.
Furthermore, we assume that under EE, μgx = μgy is sam-
pled from a prior distribution hk , that is, fk (μgx, μgy |EE) =
hk (μgx)I(μgx = μgy); and under DE, μgx and μgy are inde-
pendently sampled from the same prior distribution hk with
the additional constraint that μgx > (<)μgy depending on
whether the gene is OE (or UE), that is, fk (μgx, μgy |EE)=
2hk (μgx)hk (μgy)I(μgx > (<)μgy). Following the discussion
above, we can compute the marginal distribution of (xg, yg)
under different expression patterns. If a gene is EE, then

fk,EE(xg,yg) =

∫
μg

n1∏
i=1

g0k(xgi |μg)

×
n2∏
i=1

g0k(ygi |μg)hk(μg) dμg. (5)

If we consider OE and UE instead, the marginal distributions
are

fk,OE(xg,yg) = 2

∫ ∫
μgx>μgy

n1∏
i=1

g0k(xgi |μgx)

×
n2∏
i=1

g0k(ygi |μgy)hk(μgx)hk(μgy) dμgx dμgy,

(6)

fk,UE(xg,yg) = 2

∫ ∫
μgx<μgy

n1∏
i=1

g0k(xgi |μgx)

×
n2∏
i=1

g0k(ygi |μgy)hk(μgx)hk(μgy) dμgx dμgy.

(7)

In this article, we focus on two parametric specifications for
g0k and hk . In the so-called gamma-gamma model (GG), we
consider g0 as a gamma distribution with mean value μgx or
μgy and a common unknown shape parameter αk . h is chosen
so that the rate parameter of g0k follows a gamma distribu-
tion with shape parameter α0k and rate parameter νk . The
lognormal-normal model (LNN) is an alternative specifica-
tion, where g0k is a lognormal distribution such that log xgi and
log ygi have means μgx and μgy , respectively, and a common
unknown variance σ2

k, and hk is another normal distribution
N(μ0k, τ

2
k).

Under either the GG or the LNN model, the marginal dis-
tribution under EE has been obtained in closed form as doc-
umented in Kendziorski et al. (2003). Readily computable
formulae for the marginal distributions under OE and UE
can also be derived for both GG and LNN models. Write
αx =

∫
μgx

gk0(xg |μgx)hk(μgx) dμgx and αy =
∫
μgy

gk0(yg |
μgy)hk(μgy) dμgy. Under the GG model

fk,OE(xg,yg) = αxαyP (B > bx/(bx + by)), (8)

fk,UE(xg,yg) = αxαyP (B < bx/(bx + by)), (9)

where B ∼ Be(ax, ay), ax = n1α + α0, ay = n2α + α0, bx =∑
j
xgj + ν, and by =

∑
j
ygj + ν. Under the LNN:

fk,OE(xg,yg) = αxαyΦ

(
cx − cy√
d2
x + d2

y

)
, (10)

fk,UE(xg,yg) = αxαyΦ

(
cy − cx√
d2
x + d2

y

)
, (11)

where

cx =
σ2/n1μ0 + τ 2x̄∗

g

σ2/n1 + τ 2 dx =
σ2τ 2/n1

σ2/n1 + τ 2 (12)

cy =
σ2/n2μ0 + τ 2ȳ∗

g

σ2/n2 + τ 2 dy =
σ2τ 2/n2

σ2/n2 + τ 2 (13)

and x̄∗ and ȳ∗ are averaged log-transformed expression mea-
sures. Technical details of the derivation are available in the
web-based Appendix.

3. Posterior Inferences
There are three different ways to view the unified model. De-
scribed by (2), we are able to make inference on which cluster
a gene belongs to. An application of Bayes theorem gives us
the posterior probability that gene g comes from a specific
cluster:

P (g ∈ kth cluster |xg,yg)

=
πkfk(xg,yg)

π1f1(xg,yg) + · · · + πCfC(xg,yg)
. (14)

These posterior probabilities can guide us in separating clus-
ter from cluster.

Alternatively, we can rewrite the unified model as

(xg,yg) ∼
∑
j∈S

pj

(
C∑

k=1

π∗
kjfkj(xg,yg)

)
, (15)

where pj =
∑

k
πkpkj and π∗

kj = πkpkj/pj . Now we can also
make inference on a gene’s differential expression pattern ac-
cording to the posterior probability:

P (g has pattern Sj |xg,yg)

=

pj

(
C∑

k=1

π∗
kjfkj(xg,yg)

)
∑
j′∈S

pj′

(
C∑

k=1

π∗
kj′fkj′(xg,yg)

) . (16)

At last, we can also write the unified model as

(xg,yg) ∼
C∑

k=1

∑
j∈S

πkjfkj(xg,yg), (17)

where πkj = πkpkj . Using this formulation, we are able to
make joint inference on the cluster membership and the ex-
pression pattern for a gene. Similar to (14),

P (g ∈ cluster k, g has pattern Sj |xg,yg)

=
πkjfkj(xg,yg)

C∑
k=1

∑
j∈S

πkjfkj(xg,yg)

. (18)

Once the posterior probabilities (14), (16), and (18) are
obtained, inferences can be made based on these quantities.
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For example, under 0–1 loss, we shall assign gene g to a clus-
ter and/or an expression pattern with the highest posterior
probability. Certainly, in practice, other thresholds might also
be used to give more conservative lists of potential differen-
tially expressed genes. A natural question is how we measure
the effectiveness of a cutoff probability τ . The false discovery
rate (FDR) introduced by Benjamini and Hochberg (1995) is
a common criterion in the multiple testing setup. In the con-
text of determining whether a gene is differentially expressed,
it can be interpreted as P(a gene is EE | its posterior proba-
bility of DE > τ). Simple mathematical derivation leads to
the following estimate of the FDR (Newton et al., 2004):

F̂DR =

∑
g:P (DE |xg,yg)>τ

P (EE |xg,yg)

card{g : P (DE |xg,yg) > τ} . (19)

Using (19), we can estimate FDR for a specific cutoff τ , that
is, τ = 0.5. Alternatively, for a given FDR level α, that is,
α = 0.05, we can also identify a cutoff τ , which leads to the
most powerful list of genes with FDR controlled at the given
level.

In order to carry out the inferences formulated above, one
needs to first know the parameters associated with the unified
model: the number of clusters C; the prior probabilities for
clusters π1, . . . ,πC ; prior probabilities for different expression
patterns; and parameters associated with fkj . Ideally, these
parameters should be set based on scientific knowledge. In
practice, such prior information is oftentimes not available.
In these situations, we suggest these parameters be estimated
in an empirical Bayes fashion. An expectation-maximization
(EM) algorithm is described in the web-based Appendix.

4. Simulations
Accounting for the heterogeneity among the genes, the unified
approach can potentially increase the sensitivity in detecting
those genes that are differentially expressed. To investigate
the advantage of respecting the heterogeneity in terms of iden-
tifying differentially expressed genes, we generated 4500 genes
under two conditions from two clusters. One cluster contains
3000 genes following the LNN model with parameters μ0 =
8, τ = 1.39, and σ = 0.3. Another group contains 1500 genes
following the LNN model with parameters μ0 = 5.7, τ = 0.8,
and σ = 0.9. These parameters are chosen to be similar to
those obtained from the data set discussed in the next sec-
tion. Among the first cluster of genes, a randomly selected
5% were chosen to be differentially expressed; for the second
cluster, the proportion of differentially expressed genes was
varied from 5% to 50%. Varying the second proportion al-
lowed us to see how the difference between the two clusters
affected the performance of different methods. We considered
four different implementations of the proposed approach (for
details on these, see the web-based Appendix).

(1) AIC: LNN model with number of clusters selected us-
ing the Akaike information criterion;

(2) BIC: LNN model with number of clusters selected us-
ing the Bayesian information criterion;

(3) HQ: LNN model with number of clusters selected
using the criterion proposed by Hannan and Quinn
(1979);

(4) TC: LNN model with number of clusters fixed at the
true value, in this case, 2.

For each implementation, we consider the number of clus-
ters from 1 to 20 and control the false discovery rate at 5%
as discussed in the last section. We compared these imple-
mentations with several others in the literature. The methods
compared include,

(1) EBarrays: The method given in Kendziorski et al.
(2003) with false discovery controlled in the same fash-
ion as the proposed method.

(2) Qval: Two-sample t-test with p value adjustment made
by the q-value to control the overall FDR at 0.05.
This approach is proposed in a series of articles by
Storey and coauthors (see Storey, 2002 and references
therein).

(3) LIMMA: The approach proposed by Smyth (2004)
with FDR controlled at 5%. The FDR is calibrated
in the same fashion as Qval.

Figure 1 reports the FDR, sensitivity, and specificity aver-
aged over 100 simulated data sets. From the figure, we can
see that in this example, all four implementations of the pro-
posed method perform essentially the same. All four imple-
mentations of the proposed methods, as well as Qval and
LIMMA, successfully controlled the FDR. However, the pro-
posed method is much more sensitive than Qval and LIMMA.
This could be due to the fact that the simulation favors the
proposed approach in that the model assumptions are satis-
fied. It is worth investigating whether the advantage of the
proposed method persists if the model assumptions do not
hold.

For this reason, we conducted another set of simulations,
which were motivated by the example used in Newton et al.
(2004). The data set is a synthesis of three sets of gene ex-
pressions. In each cluster, we have N = 2000 genes, n1 = n2 =
3 replicates per condition, and a gamma observation compo-
nent with shape parameters a1 = a2 = 20 that are common to
all genes. Each cluster differs in the status of the underlying
mixing components in f:

(1) Inverse gamma, shape parameter a0 = 2, location
x0 = 10;

(2) Uniform on 5 ≤ A ≡ log((μg,1μg,2)
1
2 ) ≤ 11 and −1 ≤

M ≡ log(μg,1/μg,2) ≤ 1; and M = 0 if μg,1 = μg,2;

(3) Uniform on 5 ≤ A ≡ log((μg,1μg,2)
1
2 ) ≤ 11 and −2 ≤

M ≡ log(μg,1/μg,2) ≤ 2; and M = 0 if μg,1 = μg,2.

The proportions of differential expression are 0.05, 0.1, and
0.2, respectively, for the three clusters. Table 1 documents the
operating characteristics of each of the above methods based
on 100 runs. The numbers in the brackets are the standard
errors. Except for the number of DE calls, all other standard
errors are less than 0.001, and are therefore not reported here.
Again, we see that the proposed method is much more sensi-
tive than the other methods. Slightly elevated FDRs are ob-
served for AIC and HQ. A more careful examination reveals
that the reason is that they tend to select too many clusters to
overcome the model misspecification. The more conservative
BIC protected against this problem.
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Figure 1. Operating characteristics for simulation I.

The unified approach is also capable of identifying coreg-
ulated clusters among genes. To demonstrate this ability, we
generated genes from 10 clusters. The cluster sizes were uni-
formly sampled from 300 to 600. The expression data were
then simulated from the LNN model with parameters μ0 =
1, . . . , 10. Parameters τ and σ for each cluster are randomly
sampled from 0.5δ(1) + 0.5δ(1.39) and 0.5δ(1) + 0.5δ(0.3), re-
spectively. The proportions of differential expression for clus-
ters were uniformly sampled from 5% to 45%. Figure 2 shows
a typical simulated gene expression data set and the clustered
version of the same expression data.

5. Application
To further investigate the utility of this approach, we here
consider a real data set obtained from an experiment de-
signed to study the genetic basis for differences between two
inbred mouse populations (B6 and BTBR) that show diverse
response to a mutation in the leptin gene. Leptin is a protein

Table 1
Operating characteristics for simulation II

EBarrays BIC AIC HQ Qval LIMMA

Number of DE calls 361.05 494.15 535.20 528.40 367.50 453.90
(0.2055) (0.3705) (0.2770) (0.3422) (0.19445) (0.2134)

Sensitivity 0.2860 0.4110 0.4410 0.4360 0.3090 0.3740
Specificity 0.9900 0.9930 0.9910 0.9910 0.9960 0.9902
FDR 0.0970 0.0520 0.0620 0.0600 0.0430 0.0600

hormone with important effects in regulating body weight,
metabolism, and reproductive function (Zhang et al., 1994).
A mutation in the leptin gene causes only mild and transient
type 2 diabetes in B6 mice (Coleman and Hummel, 1973), but
severe diabetes in BTBR mice (Stoehr et al., 2000). To gain
insight into the genetic basis for these differences, Affymetrix
MGU74Av2 microarrays were used to probe liver tissues in
two pools of two mice in each condition; the data were pro-
cessed using the DNA-Chip Analyzer (Li and Wong, 2001).
Further details can be found in Lan et al. (2003).

An analysis of these data using EBarrays identifies 185
genes to be differentially expressed when FDR is controlled
at 5%; the unified approach finds 294. Interestingly, the
q-value calculations implemented as in the Qval and LIMMA
approaches ((2) and (3) of Section 4) estimate the propor-
tion of differentially expressed genes at 31.5% and 35%, re-
spectively; but no individual genes are called differentially
expressed when FDR is controlled at 5%.
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Figure 2. Clustering results for simulation III.

To further investigate the genes identified using EBarrays
and the unified approach, we tested for enrichment in func-
tional categories recorded in the Gene Ontology database
(http://www.geneontology.org/). In GO, transcripts are
categorized at varying levels of biological detail (the three
broadest levels are molecular function, cellular component,
and biological process—there are many subcategories within
each). For the two sets of transcripts (those identified by
EBarrays and those identified using the unified approach),
we tested for enrichment of a common biological process
using GOHyperG in Bioconductor (Gentleman, 2005). For
each biological process considered, the proportion of tran-
scripts on the array labeled with that process was com-
pared with the proportion on the list of genes identified by
EBarrays (or the unified approach) labeled with the process.
GOHyperG carries out a hypergeometric calculation to de-
termine whether there is significant overrepresentation of the
biological process among the identified transcripts. Interpre-
tation of the resulting p values is not straightforward due
to the many dependent hypotheses tested. Furthermore, the
hypergeometric calculation for a particular biological process
will tend to result in a small p value when few transcripts on
the array are labeled with that process. For these reasons, it
has been suggested that one only consider interesting small
p values obtained for processes with a relatively large number
of transcripts across the array (>10) (Gentleman, 2005). For
similar reasons, we further restrict to cases where the number
of identified transcripts labeled with the process is relatively
large (>5).

Considering processes with at least 10 labeled transcripts
across the array, at least 5 labeled transcripts on the iden-

tified list, and p < 10−4, we found that the genes identi-
fied using EBarrays were most enriched for response to pest,
pathogen, or parasite (p = 8.4 × 10−5). It is not clear how
these genes might be involved in diabetes or obesity. Low-
ering our thresholds slightly did not improve the results.
Considering the genes identified using the unified approach,
we found highest enrichment for carbohydrate metabolism
(p = 8.5 × 10−5). Reducing our thresholds slightly, we
found enrichment for glucose metabolism at p = 1.5 × 10−4.
These results make sense as both carbohydrate and glucose
metabolism are clearly involved in diabetes and obesity. This
suggests improved specificity for the list of genes identified
using the unified approach. Improvements in sensitivity are
also suggested if we consider the set of genes identified by the
unified approach, but not by EBarrays. This list is enriched
for only one process—carbohydrate metabolism (p = 1.1 ×
10−3—the slightly elevated p value here is due to the fact that
carbohydrate metabolism genes found by both methods are
removed prior to analysis). As argued above, these improve-
ments are likely due, at least in part, to the fact that the
unified approach accounts for clusters inherent in the data
thereby improving DE inferences. Figure 3 shows clear clus-
ters in this data set.

6. Discussion
Two of the most important tasks in microarray data analysis
are clustering and identifying differentially expressed genes.
Although related, each task is most often addressed without
regard to the other. In this article, we propose a unified ap-
proach that can simultaneously cluster and identify differen-
tially expressed genes. Results can be used to make inferences
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Figure 3. Clustering results for the B6/BTBR data set.

on clusters only, on differentially expressed genes only, or on
both.

When clustering is of primary interest, posterior probabil-
ities of cluster membership can be used for gene cluster as-
signment. In addition, they can be used to help address one of
the hardest questions regarding clustering—that of evaluat-
ing and interpreting a clustering result. In practice, a unique
correct clustering does not exist and cluster validity depends
on whether the cluster provides useful information in visu-
alizing and further analyzing the data. Recently, Tseng and
Wong (2005) proposed the concept of tight clustering, which
is motivated by a similar argument. Instead of forcing every
gene into one of the clusters, it might be more reasonable in
many applications to identify the “cores” of clusters, namely,
those genes which are believed to form the centers of clus-
ters. Our method can achieve the same goal naturally. For
example, the core of a cluster can be defined by those genes
whose posterior probability of being in the cluster is among
the highest or greater than 1 − α with a prespecified level
α. To illustrate this utility, for each of five clusters identified
in the B6/BTBR data (Figure 3), Figure 4 provides 20 genes
that have the highest posterior probabilities. Clear coexpres-
sions are observed for genes forming the same cluster.

In addition to providing interpretable cluster assignments,
derived posterior probabilities of differential expression im-
prove upon those obtained from existing empirical Bayes
methods. The particular hierarchical empirical Bayes method
we focused on is similar to that introduced by Newton et al.
(2001) and further developed by Kendziorski et al. (2003).
Their approach, EBarrays, is useful as it allows for infor-

mation sharing across genes and provides an adjustment for
multiple tests. A disadvantage of their approach, however, is
that the model assumptions do not always hold. We demon-
strated the price paid in increased FDR when the model is
misspecified. The proposed approach was much less sensitive
to model misspecification, largely because the flexible clus-
ter structure can appropriately accommodate both paramet-
ric and nonparametric distributions.

We note that in practice, model misspecification can often
be identified and other methods can be used. For example, a
key assumption made by the LNN model for EBarrays is the
constant coefficient of variation (CCV) across genes. Figure 5
(left panel) shows a plot of the sample standard deviation
versus the sample mean for a typical simulated data set of
simulation I. The line represents the lowess fit (Cleveland,
1979) indicating that the assumption is not met. As a result,
the inflated levels of FDR observed are not surprising. Simi-
lar structure is observed in the B6/BTBR data set (Figure 5,
right panel). If diagnostics such as these were checked in prac-
tice, EBarrays would not be recommended and an alternative
approach would be required. Although our model is not di-
rectly motivated to specifically address cases of model mis-
specification, it does inherit much flexibility in allowing for
cluster-specific hyperparameters, thereby relaxing the CCV
assumption. Improved model fit is perhaps responsible for
the increase in sensitivity and specificity observed for the
gene lists identified by the unified approach applied to the
B6/BTBR data.

An approach proposed by Newton et al. (2004) specifi-
cally addresses cases where the parametric assumptions of
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Figure 4. Core genes for clusters.

EBarrays are not met. The approach is a semiparametric ex-
tension of EBarrays (SPfit) that models h nonparametrically.
The modification certainly robustifies EBarrays, but it is com-
putationally demanding. Furthermore, it fails to address the
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Figure 5. Coefficient of variation as a function of the mean for the simulation I data set (left panel) and the B6/BTBR
data set (right panel).

relationship between which cluster a gene belongs to and how
likely it is to be differentially expressed. We note that our
approach inherits much of the flexibility provided by SPfit.
Some of the advantage gained is demonstrated using a data set
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Figure 6. Mixing distribution estimates obtained from a simulated data set with 4500 genes. The method of Newton
et al. (2004) completed in 138.77 seconds; the proposed method completed in 16.98 seconds on the same machine. True,
bimodal black; EBarrays, unimodal black; BIC, bimodal gray; SPfit, trimodal black.

simulated according to the model assumptions made in SPfit.
Consider a data set with observational distribution f following
a gamma distribution with shape parameter α = 20 and rate
parameter sampled from 1

3Ga(2, 0.1) + 2
3Ga(10, 0.2) (Ga(a, b)

represents a gamma distribution with shape parameter a and
rate parameter b). Figure 6 presents the estimated mixing
distribution for the latent rate parameter h using the proposed
method and SPfit. As shown, the proposed method provides
a more accurate estimate.

In summary, our proposed approach can be used to cluster
genes, to identify differentially expressed genes, or to make
inference on both cluster membership and differential expres-
sion status simultaneously. The approach preserves the com-
putational efficiency of parametric empirical Bayes methods
while at the same time allows for increased flexibility in model
assumptions. Improved performance was observed for both
simulated and case study data compared with methods that
treat these questions separately. As a result, we expect the
proposed approach will increase the utility of currently used
empirical Bayes methods for clustering and important gene
identification. Further work is required to develop diagnos-
tics and identify the conditions under which the proposed
approach is most useful.
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