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Abstract

In this paper, we investigate the problem of binary classification with a reject option in which one
can withhold the decision of classifying an observation at acost lower than that of misclassifi-
cation. Since the natural loss function is non-convex so that empirical risk minimization easily
becomes infeasible, the paper proposes minimizing convex risks based on surrogate convex loss
functions. A necessary and sufficient condition for infinitesample consistency (both risks share the
same minimizer) is provided. Moreover, we show that the excess risk can be bounded through the
excess surrogate risk under appropriate conditions. Thesebounds can be tightened by a generalized
margin condition. The impact of the results is illustrated on several commonly used surrogate loss
functions.

Keywords: classification, convex surrogate loss, empirical risk minimization, generalized margin
condition, reject option

1. Introduction

In binary classification, one observes independent realizations(X1,Y1), . . . ,(Xn,Yn) of the random
pair (X,Y) whereX ∈ X andY ∈ Y = {−1,1}. The goal is to learn from these training data a clas-
sification ruleg : X 7→ Y that classifies an observationX into the two classes. It is recognized that
in many applications the consequences of misclassification can be substantial.In such situations,
a less specific response that reserves the right of not making a decision, sometimes referred to as
a reject option (see, e.g., Herbei and Wegkamp, 2006), may even be more preferable than risking
misclassification. This, for example, is typical in medical studies where screening of a certain dis-
ease can be done based on relatively inexpensive clinical measures. If the classification based on
these measurements are satisfactory, nothing further needs to be done. But in the event that there are
ambiguities, it would be more desirable to take a rejection option and seek more expensive studies
to identify a subject’s disease status. Similar approaches are often adoptedin DNA sequencing or
genotyping applications, where the rejection option is commonly referred to asa “no-call”. Similar
problems have attracted much attention in various application fields and also received increasing
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amount of interest more recently in machine learning literature. See Ripley (1996) and Bartlett and
Wegkamp (2008) and references therein.

To accommodate the reject option, we now seek a classification ruleg : X → Ỹ whereỸ =
{−1,1,0} is an augmented response space andg(X) = 0 indicates that no definitive classification
will be made forX or a reject option is taken. To measure the performance of a classification
rule, we employ the following loss function that generalizes the usual 0-1 loss to account for reject
option:

ℓ[g(X),Y] =






1 if g(X) 6= Y andg(X) 6= 0
d if g(X) = 0
0 if g(X) = Y

.

In other words, an ambiguous response (g(X) = 0) incurs a loss ofd whereas misclassification
incurs a loss of 1. Note thatd is necessarily smaller than 1/2. Otherwise, rather than taking a
rejection option with a lossd, we can always flip a fair coin to randomly assign±1 as the value of
g(X), which incurs an average loss of 1/2 ≤ d. For this reason, we shall assume thatd < 1/2 in
what follows.

For any classification ruleg : X → Ỹ , the risk function is then given byR(g) = E(ℓ[g(X),Y])
where the expectation is taken over the joint distribution ofX andY. It is not hard to show that the
optimal classification ruleg∗ := argminR(g) is given by (see, e.g., Bartlett and Wegkamp, 2008)

g∗(X) =






1 if η(X) > 1−d
0 if d ≤ η(X) ≤ 1−d
−1 if η(X) < d

whereη(X) = P(Y = 1|X). The corresponding risk is

R∗ := inf R(g) = R(g∗) = E(min{η(X),1−η(X),d}) .

Thus, the performance of any classification ruleg : X → Ỹ can be measured by the excess risk
∆R(g) := R(g)−R∗.

Appealing to the general empirical risk minimization strategy, one could attempt to derive a
classification rule from the training data by minimizing the empirical risk

Rn(g) =
1
n

n

∑
i=1

ℓ[g(Xi),Yi ].

Similar to the usual 0-1 loss, however,ℓ is not convex ing; and direct minimization ofRn is typically
an NP-hard problem. A common remedy is to consider a surrogate convex loss function. To this
end, letφ : R 7→ R be a convex function. Denote by

Q( f ) = E[φ(Y f(X))]

the corresponding risk for a discriminant functionf : X 7→ R. Let f̂n be the minimizer of

Qn( f ) =
1
n

n

∑
i=1

φ(Yi f (Xi))
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over a certain functional spaceF consisting of functions that map fromX to R. f̂n can be conve-
niently converted to a classification ruleC( f̂n;δ) as follows:

C( f (X);δ) =






1 if f (X) > δ
0 if | f (X)| ≤ δ
−1 if f (X) < −δ

whereδ > 0 is a parameter that as we shall see plays a critical role in determining the performance
of C( f̂n,δ).

In this paper, we investigate the statistical properties of this general convex risk minimization
technique. To what extentC( f̂n,δ) mimics the optimal classification ruleg∗ plays a critical role in
the success of this technique. Letf ∗φ be the minimizer ofQ( f ). We shall assume throughout the

paper thatf ∗φ is uniquely defined. Typicallyf ∗φ reflects the limiting behavior of̂fn whenF is rich
enough and there are infinitely many training data. Therefore the first question is whether or notf ∗φ
can be used to recover the optimal ruleg∗. A surrogate loss functionφ that satisfies this property
is often called infinite sample consistent (see, e.g., Zhang, 2004) or classification calibrated (see,
e.g., Bartlett, Jordan and McAuliffe, 2006). A second question further concerns the relationship
between the excess risk∆R[C( f ,δ)] and the excessφ risk ∆Q( f ) = Q( f )− inf Q( f ): Can we find
an increasing functionρ : R 7→ R such that for allf ,

∆R[C( f ,δ)] ≤ ρ(∆Q( f )) ? (1)

Clearly the infinite sample consistency ofφ implies thatρ(0) = 0. Such a bound on the excess risk
provides useful tools in bounding the excess risk off̂n. In particular, (1) indicates that

∆R[C( f̂n,δ)] ≤ ρ
(
∆Q( f̂n)

)
= ρ

[
∆Q( f̄ )+

(
Q( f̂n)−Q( f̄ )

)]
,

where f̄ = argminf∈F Q( f ). The first term∆Q( f̄ ) on the right-hand side exhibits the approximation
error of functional classF whereas the second termQ( f̂n)−Q( f̄ ) is the estimation error.

In the case when there is no reject option, these problems have been well investigated in recent
years (Lin, 2002; Zhang, 2004; Bartlett, Jordan and McAuliffe, 2006). In this paper, we establish
similar results when there is a reject option. The most significant differencebetween the two situa-
tions, with or without the reject option, is the role ofδ. As we shall see, for some loss functions such
as least squares, exponential or logistic, a good choice ofδ yields classifiers that are infinite sample
consistent. For other loss functions, however, such as the hinge loss, no matter howδ is chosen, the
classification ruleC( f ,δ) cannot be infinite sample consistent.

The remainder of the paper is organized as follows. We first examine in Section 2 the infinite
sample consistency for classification with reject option. After establishing a general result, we
consider its implication on several commonly used loss functions. In Section 3,we establish bounds
on the excess risk in the form of (1), followed by applications to the popularloss functions. We also
show that under an additional assumption on the behavior ofη(X) neard and 1−d as in Herbei
and Wegkamp (2006), generalizing the condition in the case ofd = 1/2 of Mammen and Tsybakov
(1999) and Tsybakov (2004), the bound (1) can be tightened considerably. Section 4 discusses
rates of convergence of the empirical risk minimizerf̂n that minimizes the empirical riskQn( f )
over a bounded classF . Section 5 considers extension to asymmetric loss where one type of
misclassification may be more costly than the other. All proofs are relegated to Section 6.
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2. Infinite Sample Consistency

We first give a general result on the infinite sample consistency of the classification ruleC( f ∗φ ,δ).

Theorem 1 Assume thatφ is convex. Then the classification rule C( f ∗φ ,δ) for someδ > 0 is infinite
sample consistent, that is, C( f ∗φ ,δ) = g∗ if and only ifφ′(δ) andφ′(−δ) both exist,φ′(δ) < 0, and

φ′(δ)

φ′(δ)+φ′(−δ)
= d. (2)

When there is no reject option, it is known that the necessary and sufficient condition for the
infinite sample consistency is thatφ is differentiable at 0 andφ′(0) < 0 (see, e.g., Bartlett, Jordan
and McAuliffe, 2006). As indicated by Theorem 1, the differentiability ofφ at ±δ plays a more
prominent role in the general case when there is a reject option.

From Theorem 1 it is also evident that the infinite sample consistency depends on bothφ and
the choice of thresholding parameterδ. Observe that for anyδ1 < δ2,

φ′(−δ2) ≤ φ′(−δ1) ≤ φ′(δ1) ≤ φ′(δ2),

which implies that the left-hand side of (2) is a decreasing function ofδ. If φ is strictly convex,
then it is strictly decreasing; and therefore there is at most one value ofδ that satisfies (2). In other
words, for strictly convexφ, there is at most one thresholding parameterδ such thatC( f ∗φ ,δ) = g∗.
On the other hand, ifφ is twice differentiable such thatφ′(0) < 0 andφ′(z) ≥ 0 asz→ +∞, then
for anyd < 1/2, there always exists aδ > 0 such that (2) holds. This is because the left-hand side
of (2) is a decreasing function ofδ, which approaches its supremum 1/2 whenδ ↓ 0 and 0 whenδ
increases. Moreover, the twice differentiability ofφ ensures that the left-hand side of (2) is also a
continuous function ofδ. The following is therefore a direct consequence of Theorem 1:

Corollary 2 If φ is strictly convex, then either there is a uniqueδ > 0 such that C( f ∗φ ,δ) is infinite
sample consistent; or C( f ∗φ ,δ) is not infinite sample consistent for anyδ > 0. In addition to convex-
ity, if φ is twice differentiable such thatφ′(0) < 0 andφ′(z) ≥ 0 as z→ +∞, then there always exists
a δ > 0 such that C( f ∗φ ,δ) is infinite sample consistent.

Theorem 1 provides a general guideline on how to chooseδ for common choices of convex
losses. Below we look at several concrete examples.

2.1 Least Squares Loss

We first examine the least squares lossφ(z) = (1−z)2. Observe that

φ′(δ)

φ′(−δ)+φ′(δ)
=

1−δ
2

.

All conditions of Theorem 1 are met if and only ifδ = 1−2d.

Corollary 3 For the least squares loss,

C( f ∗φ ,1−2d) = g∗.

114



CLASSIFICATION WITH REJECTIONOPTION

2.2 Exponential Loss

Exponential loss,φ(z) = exp(−z), is connected with boosting (Friedman, Hastie and Tibshirani,
2000). Because

φ′(δ)

φ′(−δ)+φ′(δ)
=

1
1+exp(2δ)

,

Therefore all conditions of Theorem 1 are met if and only if

δ =
1
2

log

(
1
d
−1

)
.

Corollary 4 For the exponential loss,

C

(
f ∗φ ,

1
2

log

(
1
d
−1

))
= g∗.

2.3 Logistic Loss

Logisitic regression employs lossφ(z) = ln(1+exp(−z)). Similar to before,

φ′(δ)

φ′(−δ)+φ′(δ)
=

1
1+exp(δ)

,

which suggests that all conditions of Theorem 1 are met if

δ = log

(
1
d
−1

)
.

Corollary 5 For the logistic loss,

C

(
f ∗φ , log

(
1
d
−1

))
= g∗.

2.4 Squared Hinge Loss

Squared hinge loss,φ(z) = (1−z)2
+, is another popular choice for which

φ′(δ)

φ′(−δ)+φ′(δ)
=

1−δ
2

.

Similar to the least squares loss, we have the following corollary.

Corollary 6 For the squared hinge loss,

C
(

f ∗φ ,1−2d
)

= g∗.
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2.5 Distance Weighted Discrimination

Marron, Todd and Ahn (2007) recently introduced the so-called distance weighted discrimination
method where the following loss function (see, e.g., Bartlett, Jordan and McAuliffe, 2006) is used

φ(z) =

{ 1
z if z≥ γ
1
γ

(
2− z

γ

)
if z< γ , (3)

whereγ > 0 is a constant. It is not hard to see thatφ is convex. Moreover,

φ′(z) =

{
−1/z2 if z≥ γ
−1/γ2 if z< γ .

Thus,
φ′(δ)

φ′(−δ)+φ′(δ)
=

{
1/2 if δ < γ

1/δ2

1/δ2+1/γ2 if δ > γ .

In other words, we have the following result for the distance weighted discrimination loss.

Corollary 7 For the loss (3),

C
(

f ∗φ , [(1−d)/d]1/2 γ
)

= g∗.

2.6 Hinge Loss

The popular support vector machine employs the hinge loss,φ(z) = (1− z)+. The hinge loss is
differentiable everywhere except 1. Therefore

φ′(δ)

φ′(−δ)+φ′(δ)
=

{ 1
2 if 0 < δ < 1
0 if δ > 1

.

Because 0< d < 1/2, there does not exist aδ such that all conditions of Theorem 1 are met. As a
matter of fact, for anyδ > 0, C( f ∗φ ,δ) 6= g∗. Motivated by this observation, Bartlett and Wegkamp
(2008) introduce the following modification to the hinge loss:

φ(z) =






1−az if z≤ 0
1−z if 0 < z≤ 1
0 if z> 1

, (4)

wherea > 1. Note that with this modification,

φ′(δ)

φ′(−δ)+φ′(δ)
=

{
1/(a+1) if 0 < δ < 1
0 if δ > 1

.

Therefore, we have the following corollary.

Corollary 8 For the modified hinge loss (4) and anyδ < 1, if a = (1−d)/d, then

C
(

f ∗φ ,δ
)

= g∗.

It is interesting to note that for the examples we considered previously, a specific choice ofδ
is needed to ensure the infinite sample consistent. Whereas for the modified hinge loss, a range
of choice ofδ can serve the same purpose. However, as we shall see in the next section, different
choices ofδ for the modified hinge loss may result in slightly different bound on the excess risk
with δ = 1/2 appearing to be more preferable in that it yields the smallest upper bound of the excess
risk.
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3. Excess Risk

We now turn to the excess risk∆R[C( f ,δ)] and show how it can be bounded through the excessφ
risk

∆Q( f ) := Q( f )−Q( f ∗φ ).

Recall that the infinite sample consistency established in the previous section means that∆Q( f ) = 0
implies throughout this section that∆R(C( f ,δ)) = 0. For brevity, we shall assume implicitly thatδ
is chosen in accordance with Theorem 1 to ensure infinite sample consistency. Write

Qη(X)(z) = η(X)φ(z)+(1−η(X))φ(−z).

By definition,
Qη(X)( f ∗φ (X)) = inf

z
Qη(X)(z).

Denote
∆Qη( f ) = Qη( f )−Qη( f ∗φ )

where we suppress the dependence ofη, f and f ∗φ onX for brevity.

Theorem 9 Assume thatφ is convex,φ′(δ) and φ′(−δ) both exist,φ′(δ) < 0, and (2) holds. In
addition, suppose that there exist constants C> 0 and s≥ 1 such that

|η−d|s ≤ Cs∆Qη(−δ);

|(1−η)−d|s ≤ Cs∆Qη(δ).

Then
∆R[C( f ,δ)] ≤ 2C[∆Q( f )]1/s. (5)

It is immediate from Theorem 9 that∆Q( f̂n) →p 0 implies∆R( f̂n) →p 0. In other words, con-
sistency in terms ofφ risk implies the consistency in terms of lossℓ. It is worth noting that the
constant in the upper bound can be tightened under stronger conditions.

Theorem 10 In addition to the assumptions of Theorem 9, assume that

(2η−1)s
+ ≤ Cs∆Qη(−δ);

(1−2η)s
+ ≤ Cs∆Qη(δ).

Then
∆R[C( f ,δ)] ≤C[∆Q( f )]1/s.

We can improve the bounds even further by the following margin condition. Assume that for
someα ≥ 0 andA≥ 1

P{|η(X)−z| ≤ t} ≤ Atα (6)

for all 0≤ t < d at z= d andz= 1−d. This assumption was introduced in Herbei and Wegkamp
(2006) and generalizes the margin condition of Mammen and Tsybakov (1999) and Tsybakov
(2004). It is always met forα = 0 andA = 1. The other extreme is forα → +∞ - the case where
η(X) stays away fromd and 1−d with probability one.

117



YUAN AND WEGKAMP

Theorem 11 In addition to the assumptions of Theorem 9, assume that (6) holds for some α ≥ 0
and A≥ 1. Then, for some K depending on A andα,

∆R[C( f ,δ)] ≤ K [∆Q( f )]1/(s+β−βs) , (7)

whereβ = α/(1+α).

In caseα = 0, the exponent 1/(s+ β−βs) is 1/s on the right hand side in (7) above, and the
situation is as in Theorem 9. Forα → +∞, the bound (7) improves upon the one in Theorem 9 as
the exponent 1/(s+β−βs) converges to 1.

We now examine the consequences of Theorems 9, 10 and 11 on severalcommon loss functions.

3.1 Least Squares

Note that for the least squares loss

∆Qη( f ) = (2η−1− f )2.

Simple algebraic manipulations show that

∆Qη(−δ) = 4|η−d|2;

∆Qη(δ) = 4|(1−η)−d|2.

Therefore, by Theorems 9 and 11,

Corollary 12 For the least squares loss,

∆R[C( f ,1−2d)] ≤ [∆Q( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

∆R[C( f ,1−2d)] ≤ K [∆Q( f )]
1+α
2+α

for some constant K> 0.

3.2 Exponential Loss

An application of Taylor expansion yields (see, e.g., Zhang, 2004)

∆Qη( f ) ≥ 2

(
η− 1

1+exp(−2 f )

)2

.

Therefore,

∆Qη(−δ) ≥ 2|η−d|2;

∆Qη(δ) ≥ 2|(1−η)−d|2.

Therefore, by Theorems 9 and 11,
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Corollary 13 For the exponential loss,

∆R

[
C

(
f ,

1
2

log

(
1
d
−1

))]
≤
√

2[∆Q( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

∆R

[
C

(
f ,

1
2

log

(
1
d
−1

))]
≤ K [∆Q( f )]

1+α
2+α

for some constant K> 0.

3.3 Logistic Loss

Similar to exponential loss, an application of Taylor expansion yields

∆Qη( f ) ≥ 2

(
η− 1

1+exp(− f )

)2

.

Therefore,

∆Qη(−δ) ≥ 2|η−d|2;

∆Qη(δ) ≥ 2|(1−η)−d|2.
Therefore, by Theorems 9 and 11,

Corollary 14 For the logistic loss,

∆R

[
C

(
f , log

(
1
d
−1

))]
≤
√

2[∆Q( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

∆R

[
C

(
f , log

(
1
d
−1

))]
≤ K [∆Q( f )]

1+α
2+α

for some constant K> 0.

3.4 Squared Hinge Loss

Simple algebraic derivation shows

∆Qη( f ) = (2η−1− f )2−η( f −1)2
+− (1−η)( f +1)2

−.

Therefore,

∆Qη(−δ) = 4|η−d|2;

∆Qη(δ) = 4|(1−η)−d|2.
By Theorems 9 and 11,

Corollary 15 For the squared hinge loss,

∆R[C( f ,1−2d)] ≤ [∆Q( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

∆R[C( f ,1−2d)] ≤ K [∆Q( f )]
1+α
2+α

for some constant K> 0.
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3.5 Distance Weighted Discrimination

Observe that

Qη(z) =






η
z + (1−η)z

γ2 + 2(1−η)
γ if z≥ γ

2
γ + z

γ2 (1−2η) if |z| < γ
2η
γ − ηz

γ2 − 1−η
z if z≤−γ

.

Hence

inf Qη(z) =
2
γ

(√
η(1−η)+min{η,1−η}

)

and

f ∗φ =






(η/(1−η))1/2 γ if η > 1/2
any value in[−γ,γ] if η = 1/2
((1−η)/η)1/2 γ if η < 1/2

.

Recall thatδ = ((1−d)/d)1/2γ. Then

∆Qη(δ) ≥
(

η
δ

+
(1−η)δ

γ2 −2
√

η(1−η)/γ
)

=

((η
δ

)1/2
−
(

(1−η)δ
γ2

)1/2
)2

=
ηδ
γ2

((
d

1−d

)1/2

−
(

1−η
η

)1/2
)2

=
ηδ
γ2

((
d

1−d

)1/2

+

(
1−η

η

)1/2
)−2(

d
1−d

− 1−η
η

)2

=
δ

γ2(1−d)2

[(
d

1−d

)1/2

η1/2 +(1−η)1/2

]−2

(1−η−d)2.

Observe that (
d

1−d

)1/2

η1/2 +(1−η)1/2 ≤ (1−d)−1/2.

Thus,
(1−η−d)2 ≤ γ(1−d)1/2d1/2∆Qη(δ).

Similarly,
(η−d)2 ≤ γ(1−d)1/2d1/2∆Qη(−δ).

From Theorems 9 and 11, we conclude that

Corollary 16 For the distance weighted discrimination loss,

∆R
[
C( f ,((1−d)/d)1/2γ)

]
≤ γ1/2(1−d)1/4d1/4[∆Q( f )]1/2.

Furthermore, if the margin condition (6) holds, then

∆R
[
C( f ,((1−d)/d)1/2γ)

]
≤ K [∆Q( f )]

1+α
2+α

for some constant K> 0.
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3.6 Hinge Loss with Rejection Option

As shown by Bartlett and Wegkamp (2008), for the modified hinge loss (4),

argmin
z

Qη(z) =






−1 if η ≤ d
0 if d < η < 1−d
1 if η > 1−d

.

Simple algebraic manipulations lead to

∆Qη(−δ) =






(1−δ)(d−η)/d if η ≤ d
(η−d)δ/d if d < η < 1−d
1− (1−η)/d+(η−d)δ/d if η > 1−d

,

and

∆Qη(δ) =






1−η/d+(1−η−d)δ/d if η ≤ d
(1−η−d)δ/d if d < η < 1−d
(δ−1)(1−η−d)/d if η > 1−d

.

Therefore,

min{δ,1−δ}
d

|η−d| ≤ ∆Qη(−δ);

min{δ,1−δ}
d

|(1−η)−d| ≤ ∆Qη(δ).

Furthermore,

min{δ,1−δ}
d

(2η−1)+ ≤ ∆Qη(−δ);

min{δ,1−δ}
d

(1−2η)+ ≤ ∆Qη(δ).

From Theorems 10 and 11, we conclude that

Corollary 17 For the modified hinge loss and anyδ < 1,

∆R[C( f ,δ)] ≤ d
min{δ,1−δ}∆Q( f ). (8)

Furthermore, if the margin condition (6) holds, then

∆R[C( f ,δ)] ≤ K∆Q( f ) (9)

for some constant K> 0.

Notice that the corollary also suggests thatδ = 1/2 yields the best constant 2d in the upper
bound. A similar result has also been recently established by Bartlett and Wegkamp (2008). It is
also interesting to see that (8) cannot be further improved by the generalized margin condition (6)
as the bounds (8) and (9) only differ by a constant.
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4. Rates of Convergence for Empirical Risk Minimizers

In this section we briefly review the possible rates of convergence for minimizers of the empirical
risk Qn( f ) = (1/n)∑n

i=1 φ(Yi f (Xi)) over a convex class of discriminant functionsF ; and show
the implications of the excess risk bounds obtained in the previous section. The analysis of the
generalized hinge loss is complicated and is treated in detail in Wegkamp (2007)and Bartlett and
Wegkamp (2008). The other loss functionsφ considered in this paper have in common that the
modulus of convexity ofQ,

δ(ε) = inf

{
Q( f )+Q(g)

2
−Q

(
f +g

2

)
: E[( f −g)2(X)] ≥ ε2

}

satisfiesδ(ε) ≥ cε2 for somec > 0 and that, for someL < ∞,

|φ(x)−φ(x′)| ≤ L|x−x′| for all x,x′ ∈ R.

We have the following result that imposes a restriction on the 1/n-covering number
Nn = N(1/n,L∞,F ), the cardinality of the set of closed balls with radius 1/n in L∞ needed to
coverF .

Theorem 18 Assume that| f | ≤ B for all f ∈ F and let0 < γ < 1. With probability at least1− γ,

Q( f̂n) ≤ inf
f∈F

Q( f )+
3L
n

+8

(
L2

2c
+

B
6

)
log(Nn/γ)

n

Together with the excess risk bounds from Theorems 9 and 11, we have

Corollary 19 Under the assumptions of Theorems 9 and 18, we have, with probability atleast1−γ,

∆R(C( f̂n,δ)) ≤ 2C

{
inf
f∈F

∆Q( f )+
3L
n

+8

(
L2

2c
+

LB
3

)
log(Nn/γ)

n

}1/s

.

Furthermore, if the generalized margin condition (6) holds, then with probability at least1− γ,

∆R(C( f̂n,δ)) ≤ K

{
inf
f∈F

∆Q( f )+
3L
n

+8

(
L2

2c
+

LB
3

)
log(Nn/γ)

n

}1/(s+β−βs)

for some constant K> 0.

In the special case whereF consists of linear combinations

fλ(x) =
M

∑
j=1

λ j f j(x)

of simple discriminant functions (decision stumps)f1, . . . , fM with ∑M
j=1 |λ j | ≤ B and| f j | ≤ 1, we

obtain the rate(M logn/n)1/(s+β−βs). We can viewB as a tuning parameter here, and if the functions
f j are near orthogonal in the sense that

max
1≤i 6= j≤M

E[ fi(X) f j(X)]√
E[ f 2

i (X)]E[ f 2
j (X)]

≤ c
|λ0|0

for some smallc > 0, a small modification of Theorem 1 in Wegkamp (2007) shows that we
also adapt to the unknown sparsity of the minimizerλ0 of Q(fλ) over λ in that the rate becomes
(|λ0|0 logn/n)1/(s+β−βs) for suitably chosenB = B(n).
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5. Asymmetric Loss

We have focused thus far on the case where misclassifying from one class to the other, eitherg(X) =
1 whileY =−1 org(X) =−1 whileY = 1, is assigned the same loss. In many applications, however,
one type of misclassification may incur a heavier loss than the other. Such situations naturally arise
in risk management or medical diagonsis. To this end, the following loss function can be adopted
in place ofℓ:

ℓθ[g(X),Y] =






1 if g(X) = −1 andY = 1
θ if g(X) = 1 andY = −1
d if g(X) = 0
0 if g(X) = Y

.

We shall assume thatθ < 1 without loss of generality. It can be shown that the rejection option
is only available ifd < θ/(1+ θ) (see, e.g., Herbei and Wegkamp, 2006), which we shall assume
throughout the section. When this holds, the corresponding Bayes rule isgiven by (see, e.g., Herbei
and Wegkamp, 2006)

g∗θ(X) =






1 if η(X) > 1−d/θ
0 if d ≤ η(X) ≤ 1−d/θ
−1 if η(X) < d

.

Instead ofC( f̂n,δ), an asymmetrically truncated classification rule,f̂n, C( f̂n;δ1,δ2), can be used
for our purpose here where

C( f (X);δ1,δ2) =






1 if f (X) > δ1

0 if −δ2 ≤ f (X) ≤ δ1

−1 if f (X) < −δ2

.

The behavior of the asymmetically truncated classification ruleC( f̂n;δ1,δ2) can be studied in a
similar fashion as before. In particular, we have the following results in parallel to Theorems 1 and
9.

Theorem 20 Assume thatφ is convex. Then C( f ∗φ ,δ1,δ2) for someδ1,δ2 > 0 is infinite sample
consistent, that is, C( f ∗φ ,δ1,δ2) = g∗θ if and only if φ′(±δ1) and φ′(±δ2) exist; φ′(δ1),φ′(δ2) < 0;
and

φ′(δ1)

φ′(−δ1)+φ′(δ1)
=

d
θ

;

φ′(δ2)

φ′(−δ2)+φ′(δ2)
= d.

Furthermore, if C( f ∗φ ,δ1,δ2) is infinite sample consistent and

|θ(1−η)−d|s ≤ Cs∆Qη(δ1);

|η−d|s ≤ Cs∆Qη(−δ2),

then
∆Rθ[C( f ,δ1,δ2)] ≤ 2C[∆Q( f )]1/s,

where∆Rθ(g) = Rθ(g)−Rθ(g∗θ) and Rθ(g) = E[ℓθ(g(X),Y)].

Theorem 20 can be proved in the same fashion as Theorems 1 and 9 and is therefore omitted for
brevity.
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6. Proofs

Proof of Theorem 1. We first show the “if” part. Recall that

Q( f ) = E[φ(Y f(X))]

= E(E [φ(Y f(X))|X])

= E [η(X)φ( f (X))+(1−η(X))φ(− f (X))] .

With slight abuse of notation, write

Qη(X)( f (X)) = η(X)φ( f (X))+(1−η(X))φ(− f (X)).

Then f ∗φ (X) minimizesQη(X)(·).
We now proceed by separately considering three different scenarios: (a) η(X) < d; (b) η(X) >

1−d; and (c)d < η(X) < 1−d. For brevity, we shall abbreviate the dependence ofη and f ∗φ on X
in the reminder of the proof when no confusion occurs.

First consider the case whenη < d. Recall thatφ′(−δ) < φ′(δ) < 0, and

φ′(δ)

φ′(−δ)+φ′(δ)
= d.

Therefore,
ηφ′(−δ)− (1−η)φ′(δ) > 0.

By the convexity ofφ, for anyz> 0,

φ(z−δ)−φ(−δ) ≥ φ′(−δ)z;

φ(−z+δ)−φ(δ) ≥ −φ′(δ)z.

Hence
Qη(z−δ)−Qη(−δ) ≥

[
ηφ′(−δ)− (1−η)φ′(δ)

]
z> 0,

which implies thatf ∗φ ≤−δ.
It now suffices to show thatf ∗φ 6=−δ. By the definition ofφ′(−δ) andφ′(δ), for anyε > 0, there

exists aζ > 0 such that for any 0< z< ζ,

φ(−z−δ)−φ(−δ)

−z
≥ φ′(−δ)− ε;

φ(z+δ)−φ(δ)

z
≤ φ′(δ)+ ε.

Therefore for any 0< z< ζ,

Qη(−z−δ)−Qη(−δ) = η [φ(−z−δ)−φ(−δ)]+(1−η) [φ(z+δ)−φ(δ)]

≤ −η
[
φ′(−δ)− ε

]
z+(1−η)

[
φ′(δ)+ ε

]
z

=
([

(1−η)φ′(δ)−ηφ′(−δ)
]
+ ε
)

z.

Recall that(1−η)φ′(δ)−ηφ′(−δ)< 0. By settingε small enough, we can ensure that(1−η)φ′(δ)−
ηφ′(−δ)+ ε remains negative. Hence

Qη(−z−δ) < Qη(−δ),
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which implies thatf ∗φ 6= −δ.
Now consider the case whenη > 1−d. Observe thatQη(z) = Q1−η(−z). From the previous

discussion,
f ∗φ = argmin

z
Qη(z) = −argmin

z
Q1−η(−z) > δ.

At last, consider the case whend < η < 1−d. Observe that in this case,

ηφ′(δ)− (1−η)φ′(−δ) > 0;

ηφ′(−δ)− (1−η)φ′(δ) < 0.

Hence for anyz> 0,

Qη(z+δ)−Qη(δ) ≥
[
ηφ′(δ)− (1−η)φ′(−δ)

]
z> 0,

which implies thatf ∗φ ≤ δ. Similarly,

Qη(−z−δ)−Qη(−δ) ≥
[
−ηφ′(−δ)+(1−η)φ′(δ)

]
z> 0,

which implies thatf ∗φ ≥−δ. In summary,f ∗φ ∈ [−δ,δ].
We now consider the “only if” part. Let[a−,b−] and [a+,b+] be the subdifferential ofφ at

−δ and δ respectively. We need to show thata− = b−, a+ = b+ and a+/(a+ + a−) = d. We
begin by showing thatb+ ≤ 0. Assume the contrary. The infinite sample consistency implies that
for any η > 1− d, f ∗φ > δ. Becauseb+ > 0, we haveφ( f ∗φ ) > φ(δ). Together with the fact that
Qη( f ∗φ ) < Qη(δ), this implies thatφ(− f ∗φ ) < φ(−δ). Subsequently, we havea− > 0. The convexity
of φ also suggests thata− ≤ a+ ≤ b− ≤ b+. Because

φ( f ∗φ )−φ(δ) ≥ b+( f ∗φ −δ);

φ(−δ)−φ(− f ∗φ ) ≤ a−( f ∗φ −δ),

we have
Qη( f ∗φ )−Qη(δ) ≥ (ηb+− (1−η)a−)( f ∗φ −δ) > 0.

This contradiction suggests thatb+ ≤ 0.
Given thata− ≤ a+ ≤ b− ≤ b+ ≤ 0, we have|a−| ≥ |a+| ≥ |b−| ≥ |b+|, which implies that

b+

a− +b+
≤ a+

b− +a+
.

It suffices to show that
b+

a− +b+
≥ d and

a+

b− +a+
≤ d.

Assume the contrary. First consider the case whenb+/(a− +b+) < d. Let η be such that
b+/(a− +b+) < η < d. By definition, for anyf < −δ,

φ( f )−φ(−δ) ≥ a−( f +δ);

φ(− f )−φ(δ) ≥ b+(− f −δ).

Hence
Qη( f )−Qη(−δ) ≥ [ηa−− (1−η)b+] ( f +δ) > 0,
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which implies that argminQη(z)≥−δ. This contradicts with the infinite sample consistency. There-
fore, b+/(a− +b+) ≥ d. Next we deal with the case ofa+/(b− +a+) > d. Let η be such that
a+/(b− +a+) > η > d. Following a similar argument as before, one can show thatQ1−η( f )−
Q1−η(δ) > 0 for any f > δ, which implies that argminQη(z) ≤ δ. This again contradicts infinite
sample consistency because 1−η < 1−d. Therefore,a+/(b− +a+) ≤ d.

The proof is now concluded.

Proof of Theorem 9. Recall that

Qη( f ) = ηφ( f )+(1−η)φ(− f ).

Similarly, write
Rη[C( f ,δ)] = ηℓ(C( f ,δ),1)+(1−η)ℓ(C( f ,δ),−1).

Also write ∆Qη( f ) = Qη( f )− inf Qη( f ) and∆Rη( f ) = Rη( f )− inf Rη( f ). It suffices to show that

∆Rη[C( f ,δ)] ≤ 2C[∆Qη( f )]1/s. (10)

The theorem can be deduced from (10) by Jensen’s inequality:

∆R[C( f ,δ)] = E
[
∆Rη(X)[C( f (X),δ)]

]

≤ 2CE
[
∆Qη(X)( f (X))

]1/s

≤ 2C
(
E
[
∆Qη(X)( f (X))

])1/s

= 2C[∆Q( f )]1/s.

To show (10), we consider separately the different combinations of values of η and f . For
brevity, we shall abbreviate their dependence onX in what follows.

Case 1.η < d and f < −δ. As shown before, in this casef ∗φ (X) < −δ. Thus,

∆Rη[C( f ,δ)] = 0≤C[∆Qη( f )]1/s.

Case 2.η < d and| f | < δ. Observe that

Qη( f )−Qη(−δ) ≥
[
ηφ′(−δ)− (1−η)φ′(δ)

]
( f +δ) =

−φ′(δ)

d
(d−η)( f +δ) ≥ 0.

Together with the fact thatCs∆Qη(−δ) ≥ |η−d|s, we have

∆Qη( f ) ≥ ∆Qη(−δ) ≥C−s|η−d|s.

Note that
∆Rη[C( f ,δ)] = d−η.

We have
∆Rη[C( f ,δ)] ≤C[∆Qη( f )]1/s.
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Case 3.η < d and f > δ. Observe that

Qη( f )−Qη(δ) ≥
[
ηφ′(δ)− (1−η)φ′(−δ)

]
( f −δ) =

−φ′(δ)

d
(1−η−d)( f −δ) ≥ 0.

Together with the facts thatd < 1/2 andCs∆Qη(δ) ≥ |1−η−d|s, we have

∆Qη( f ) ≥ ∆Qη(δ) ≥C−s|1−η−d|s ≥ (2C)−s|1−2η|s.

Note that
∆Rη[C( f ,δ)] = 1−2η.

Therefore,
∆Rη[C( f ,δ)] ≤ 2C[∆Qη( f )]1/s.

Case 4.d < η < 1−d and f < −δ. Following a similar argument as before,

Qη( f )−Qη(−δ) ≥ −φ′(δ)

d
(d−η)( f +δ) ≥ 0.

Therefore,
∆Qη( f ) ≥ ∆Qη(−δ) ≥C−s|η−d|s,

which, together with the fact that∆Rη[C( f ,δ)] = η−d, implies that

∆Rη[C( f ,δ)] ≤C[∆Qη( f )]1/s.

Case 5.d < η < 1−d and| f | < δ. In this case,

∆Rη[C( f ,δ)] = 0≤C[∆Qη( f )]1/s.

Case 6.d < η < 1−d and f > δ. Observe that

Qη( f )−Qη(δ) ≥ −φ′(δ)

d
(1−η−d)( f −δ) ≥ 0.

Hence
∆Qη( f ) ≥ ∆Qη(δ) ≥C−s|1−η−d|s,

which, together with the fact that∆Rη[C( f ,δ)] = 1−η−d, implies that

∆Rη[C( f ,δ)] ≤C[∆Qη( f )]1/s.

Case 7.η > 1− d. Observe thatRη[C( f ,δ)] = R1−η[C(− f ,δ)], andQη( f ) = Q1−η(− f ). Because
1−η < d, from Cases 1, 2 and 3, we have

∆Rη[C( f ,δ)] = ∆R1−η[C(− f ,δ)]

≤ 2C[∆Q1−η(− f )]1/s

= 2C[∆Qη( f )]1/s.

The proof is therefore completed.
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Proof of Theorem 10. The proof follows from the same argument as that of Theorem 9. The only
difference takes place in Case 3 where under the current assumptions

∆Rη( f ) = 1−2η ≤C[∆Qη(δ)]1/s.

Proof of Theorem 11. The last part of the proof is based on the proof of Theorem 3 in Bartlett,
Jordan and McAuliffe (2006). Letg = C( f ,δ) be the classification rule with reject option based on
f : X → R and setg∗ = C( f ∗φ ,δ). We have shown above that under the assumptions of Theorem 9,

|d−η|1{g 6= g∗}(1{g = −1}+1{g∗ = −1}) ≤C[∆Qη( f )]1/s

|1−d−η|1{g 6= g∗}(1{g = 1}+1{g∗ = 1}) ≤C[∆Qη( f )]1/s.

Moreover, Lemma 1 in Herbei and Wegkamp (2006) states that

∆R(g) = E [|d−η(X)|1{g(X) 6= g∗(X)}(1{g(X) = −1}+1{g∗(X) = −1})] (11)

+E [|1−d−η(X)|1{g(X) 6= g∗(X)}(1{g(X) = 1}+1{g∗(X) = 1})] .

Hence, for anyε > 0,

∆R(g)

= E [|d−η(X)|1{d−η(X)| ≤ ε}1{g(X) 6= g∗(X)}(1{g(X) = −1}+1{g∗(X) = −1})]
+E [|d−η(X)|1{d−η(X)| > ε}1{g(X) 6= g∗(X)}(1{g(X) = −1}+1{g∗(X) = −1})]
+E [|1−d−η(X)|1{|1−d−η(X)| ≤ ε}1{g(X) 6= g∗(X)}(1{g(X) = 1}+1{g∗(X) = 1})]
+E [|1−d−η(X)|1{|1−d−η(X)| > ε}1{g(X) 6= g∗(X)}(1{g(X) = 1}+1{g∗(X) = 1})]
≤ 2εP{g∗(X) 6= g(X)}+2ε1−s∆Q( f )

where we used (11) and the inequality|x|1{|x| ≥ ε} ≤ |x|rε1−r for r ≥ 1. Using the bound

P{g(X) 6= g∗(X)} ≤
[
2(8A)1/α∆R(g)

]β

from the proof of Lemma 4 of Herbei and Wegkamp (2006), and choosing

ε = c[∆R(g)]1−β

with c = [2(8A)1/α]β/4 readily gives the desired claim withK = 4Cc1−s.

Proof of Theorem 18. Recall thatf̄ ∈F minimizesQ( f ) over f ∈F . Leth(y f(x)) = φ(y f(x))−
φ(yf̄ (x)). Since

Q( f )+Q( f̄ )
2

≥ Q

(
f + f̄

2

)
+cE

[
( f − f̄ )2(X)

]

≥ Q( f̄ )+cE
[
( f − f̄ )2(X)

]
,

we have

E
[
h2(Y f(X))

]
≤ L2

E
[
( f − f̄ )2(X)

]

≤ L2

2c
{Q( f )−Q( f̄ )}

=
L2

2c
E [h(Y f(X))] ,
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see, for example, Bartlett, Jordan and McAuliffe (2006). Sincef̂n minimizesQn( f ), we have

Q( f̂n)−Q( f̄ ) = Ph(yf̂n(x))

= 2Pnh(Y f̂n(X))+(P−2Pn)h(Y f̂n(X))

≤ 2Pnh(Y f̄ (X))+(P−2Pn)h(Y f̂n(X))

≤ sup
f∈F

(P−2Pn)h(Y f(X))

wherePh(Y f(X)) = E[h(Y f(X))] andPnh(Y f(X)) = (1/n)∑n
i=1h(Yi f (Xi)) for any f ∈ F . Next

we observe that

sup
f∈F

(P−2Pn)h(Y f(X)) ≤ 3L
n

+max
f∈Fn

(P−2Pn)h(Y f(X))

whereFn is the minimal 1/n-net ofF . By Bernstein’s inequality, we get

P

{
sup
f∈Fn

(P−2Pn)h(Y f(X)) ≥ t

}
≤ Nnexp

[
− n{t +Ph(Y f(X))}2/8

Ph2(Y f(X))+(2LB){t +Ph(Y f(X))}/6

]

≤ Nnexp

[
−nt

8

(
L2

2c
+

LB
3

)−1
]

and the conclusion follows easily.
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