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Abstract

In this paper, we investigate the problem of binary classiifbe with a reject option in which one
can withhold the decision of classifying an observation abst lower than that of misclassifi-
cation. Since the natural loss function is non-convex sb éhapirical risk minimization easily
becomes infeasible, the paper proposes minimizing cong&s based on surrogate convex loss
functions. A necessary and sufficient condition for infisiéenple consistency (both risks share the
same minimizer) is provided. Moreover, we show that the excisk can be bounded through the
excess surrogate risk under appropriate conditions. Thmseds can be tightened by a generalized
margin condition. The impact of the results is illustratedseveral commonly used surrogate loss
functions.

Keywords: classification, convex surrogate loss, empirical risk mimation, generalized margin
condition, reject option

1. Introduction

In binary classification, one observes independent realizatdény1), ..., (X, Yn) of the random
pair (X,Y) whereX € X andY € 9 = {—1,1}. The goal is to learn from these training data a clas-
sification ruleg : X — 9 that classifies an observatiohinto the two classes. It is recognized that
in many applications the consequences of misclassification can be substimgath situations,

a less specific response that reserves the right of not making a deasiortimes referred to as
a reject option (see, e.g., Herbei and Wegkamp, 2006), may even be neéeeaple than risking
misclassification. This, for example, is typical in medical studies whereragef a certain dis-
ease can be done based on relatively inexpensive clinical meastites.classification based on
these measurements are satisfactory, nothing further needs to be doirethH® event that there are
ambiguities, it would be more desirable to take a rejection option and seek np@esiye studies
to identify a subject’s disease status. Similar approaches are often adoisidh sequencing or
genotyping applications, where the rejection option is commonly referredadrascall”. Similar
problems have attracted much attention in various application fields and aéseedincreasing
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amount of interest more recently in machine learning literature. See Riplég)&8d Bartlett and
Wegkamp (2008) and references therein.

To accommaodate the reject option, we now seek a classificatiorgruke — 5’ where9~/ =
{-1,1,0} is an augmented response space @) = 0 indicates that no definitive classification
will be made forX or a reject option is taken. To measure the performance of a classification
rule, we employ the following loss function that generalizes the usual Oslidosccount for reject
option:

1 ifg(X)#Y andg(X) #0
f9(X),Y] =4 d ifg(X)=0 :
0 ifgX)=Y

In other words, an ambiguous respongéX() = 0) incurs a loss ofl whereas misclassification
incurs a loss of 1. Note that is necessarily smaller thary2. Otherwise, rather than taking a
rejection option with a losd, we can always flip a fair coin to randomly assigjfi as the value of
g(X), which incurs an average loss of2.< d. For this reason, we shall assume ttat 1/2 in
what follows.

For any classification rulg: X — 9, the risk function is then given biR(g) = E(¢[g(X),Y])
where the expectation is taken over the joint distributioX @ndY. It is not hard to show that the
optimal classification rulg* := argminR(g) is given by (see, e.g., Bartlett and Wegkamp, 2008)

1 ifn(X)
g(X)=¢ 0 ifd<n
-1 ifn(X)
wheren(X) =P(Y = 1|X). The corresponding risk is
R*:=infR(g) = R(g") = E(min{n(X),1-n(X),d}).
Thus, the performance of any classification rgleX — 9" can be measured by the excess risk
AR(g) :==R(g) -R".

Appealing to the general empirical risk minimization strategy, one could attemprioeda
classification rule from the training data by minimizing the empirical risk

RiG) = 5 3 A190%). Y]

Similar to the usual 0-1 loss, howevérs not convex irg; and direct minimization oR, is typically
an NP-hard problem. A common remedy is to consider a surrogate congefulogion. To this
end, letg: R — R be a convex function. Denote by

Q(f) = Ele(Y f(X))]

the corresponding risk for a discriminant functién X — RR. Let f, be the minimizer of
1 n
Q) =5 3 @)
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over a certain functional spacg consisting of functions that map fromi to R. f,, can be conve-
niently converted to a classification rulg f,; d) as follows:

1 iff(X)>3
C(f(X);é){ 0 if[f(X)|<5
—1 i f(X)< -8

whered > 0 is a parameter that as we shall see plays a critical role in determining tloerpanice
of C(f,,5).

In this paper, we investigate the statistical properties of this general xaoigkeminimization
technique. To what exte( fn,é) mimics the optimal classification rulg plays a critical role in
the success of this technique. Ligtbe the minimizer ofQ(f). We shall assume throughout the

paper thatfg is uniquely defined. Typicallyfy reflects the limiting behavior of, when 7 is rich
enough and there are infinitely many training data. Therefore the firstignés whether or not(;
can be used to recover the optimal rgfe A surrogate loss functiop that satisfies this property
is often called infinite sample consistent (see, e.g., Zhang, 2004) or cdassiii calibrated (see,
e.g., Bartlett, Jordan and McAuliffe, 2006). A second question furtbecerns the relationship
between the excess riddR[C(f, )] and the excesg risk AQ(f) = Q(f) —infQ(f): Can we find
an increasing functiop : R — R such that for allf,

ARIC(f,8)] < p(AQ(f)) ? (1)

Clearly the infinite sample consistency@implies Ehatp(O) = 0. Such a bound on the excess risk
provides useful tools in bounding the excess riskpfin particular, (1) indicates that

ARIC(fh,8)] < p (8Q(fn)) = p [AQ(F) + (Q(Fn) — Q(F))],

wheref = argmin,_ - Q(f). The first termAQ( f) on the right-hand side exhibits the approximation
error of functional clas§ whereas the second te@{ f,) — Q(f) is the estimation error.

In the case when there is no reject option, these problems have beenwestigated in recent
years (Lin, 2002; Zhang, 2004; Bartlett, Jordan and McAuliffe, 2006 this paper, we establish
similar results when there is a reject option. The most significant differlesivecen the two situa-
tions, with or without the reject option, is the role®@fAs we shall see, for some loss functions such
as least squares, exponential or logistic, a good choideg/iglds classifiers that are infinite sample
consistent. For other loss functions, however, such as the hinge tosgtter howd is chosen, the
classification rul&( f, ) cannot be infinite sample consistent.

The remainder of the paper is organized as follows. We first examine in 8&cthe infinite
sample consistency for classification with reject option. After establishingnargl result, we
consider its implication on several commonly used loss functions. In Sectwa &stablish bounds
on the excess risk in the form of (1), followed by applications to the popasarfunctions. We also
show that under an additional assumption on the behavig(Xj neard and 1—d as in Herbei
and Wegkamp (2006), generalizing the condition in the case-ofl/2 of Mammen and Tsybakov
(1999) and Tsybakov (2004), the bound (1) can be tightened coabigle Section 4 discusses
rates of convergence of the empirical risk minimiZgrthat minimizes the empirical risQn(f)
over a bounded clas$. Section 5 considers extension to asymmetric loss where one type of
misclassification may be more costly than the other. All proofs are relegatexttiois6.
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2. Infinite Sample Consistency

We first give a general result on the infinite sample consistency of theifatasion ruleC( f(;, d).

Theorem 1 Assume thapis convex. Then the classification rul¢fg, 3) for somed > Ois infinite
sample consistent, that is( €, 8) = g if and only if¢/(3) and¢/(—d) both existg/(3) < 0, and

@(9)
(3 +9(-9)

When there is no reject option, it is known that the necessary and soffaadition for the
infinite sample consistency is thatis differentiable at 0 ang/(0) < O (see, e.g., Bartlett, Jordan
and McAuliffe, 2006). As indicated by Theorem 1, the differentiabilityqgoét +6 plays a more
prominent role in the general case when there is a reject option.

From Theorem 1 it is also evident that the infinite sample consistency depeniothg and
the choice of thresholding parame®erObserve that for any; < &,

@ (—d2) <@ (—d1) < g (d1) < ¢ (),

which implies that the left-hand side of (2) is a decreasing functiod. of @ is strictly convex,
then it is strictly decreasing; and therefore there is at most one valu¢hat satisfies (2). In other
words, for strictly convexp, there is at most one thresholding paraméteuch thatC( f(};,é) =g

On the other hand, ip is twice differentiable such thaf(0) < 0 and@(z) > 0 asz— +o, then

for anyd < 1/2, there always exists@> 0 such that (2) holds. This is because the left-hand side
of (2) is a decreasing function &f which approaches its supremuni2lwhend | 0 and 0 wherd
increases. Moreover, the twice differentiability @ensures that the left-hand side of (2) is also a
continuous function od. The following is therefore a direct consequence of Theorem 1:

=d. )

Corollary 2 If @is strictly convex, then either there is a uniqdie- 0 such that Qf(;, 0) is infinite
sample consistent; or @, ) is not infinite sample consistent for ady- 0. In addition to convex-
ity, if @is twice differentiable such thagt(0) < 0 and@(z) > 0 as z— +, then there always exists
ad > 0such that ¢f;,d) is infinite sample consistent.

Theorem 1 provides a general guideline on how to chd&® common choices of convex
losses. Below we look at several concrete examples.

2.1 Least Squares Loss

We first examine the least squares Ig&8 = (1—z)%. Observe that

¢@© _1-3

¢(-0)+@(0 2

All conditions of Theorem 1 are met if and onlydf= 1 — 2d.

Corollary 3 For the least squares loss,

C(fs,1—2d)=g".
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2.2 Exponential Loss

Exponential lossp(z) = exp(—z), is connected with boosting (Friedman, Hastie and Tibshirani,
2000). Because

@(d) _ 1
@(—0)+@(d) 1+exp2d)’

Therefore all conditions of Theorem 1 are met if and only if

1 1

Corollary 4 For the exponential loss,
C(f(p,zlog <d—1>> =g

Logisitic regression employs logkz) = In(1+ exp(—z)). Similar to before,

¢ 1
@(-8)+@(3) 1+expd)’

2.3 Logistic Loss

which suggests that all conditions of Theorem 1 are met if

6:Iog<3—l>.

Corollary 5 For the logistic loss,

2.4 Squared Hinge Loss

Squared hinge losg(z) = (1—2)2, is another popular choice for which

@(3) 1-3
¢(-d)+¢@©) 2

Similar to the least squares loss, we have the following corollary.
Corollary 6 For the squared hinge loss,
C(fg,1—2d) =g".
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2.5 Distance Weighted Discrimination

Marron, Todd and Ahn (2007) recently introduced the so-called distamsighted discrimination
method where the following loss function (see, e.g., Bartlett, Jordan andilifi@2006) is used

9(2) { : 2=y (3)
Z) = 1 z . 5

3 (2 — \7) ifz<y
wherey > 0 is a constant. It is not hard to see tlpas convex. Moreover,

~1/7 ifz>y
wz):{ 12 ifz<y

@ (d) ]2 ifo<y
(-3 +d0®) | gy o>V’

In other words, we have the following result for the distance weightedidistation loss.

Thus,

Corollary 7 For the loss (3),
C(fy.[(1-d)/d*2y) =g

2.6 Hinge Loss

The popular support vector machine employs the hinge lpg3,= (1—2z),.. The hinge loss is
differentiable everywhere except 1. Therefore
@ (d) B % ifo<d<1
@(-d)+¢@® |0 ifé>1
Because < d < 1/2, there does not exist&such that all conditions of Theorem 1 are met. As a

matter of fact, for any > 0, C( f(;;,é) = g*. Motivated by this observation, Bartlett and Wegkamp
(2008) introduce the following modification to the hinge loss:

l-az ifz<O0
P2)=4¢ 1-z if0O<z<1 4)
0 ifz>1
wherea > 1. Note that with this modification,
@ (d) [ 1/(a+1) if0O<d<1
@(—90)+¢(d) 0 ifod>1
Therefore, we have the following corollary.
Corollary 8 For the modified hinge loss (4) and ady 1, ifa= (1—d)/d, then
C(fy:0) =g

It is interesting to note that for the examples we considered previousledfispchoice ofd
is needed to ensure the infinite sample consistent. Whereas for the modifiedldssg a range
of choice ofd can serve the same purpose. However, as we shall see in the next sdiftément
choices ofé for the modified hinge loss may result in slightly different bound on the exdek
with & = 1/2 appearing to be more preferable in that it yields the smallest upper béthelexcess
risk.
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3. Excess Risk
We now turn to the excess riglR[C( f,d)] and show how it can be bounded through the exgess
risk
AQ(f) :=Q(f) —Q(fy).
Recall that the infinite sample consistency established in the previous sectos tha\Q(f) =0

implies throughout this section thAR(C( f,d)) = 0. For brevity, we shall assume implicitly that
is chosen in accordance with Theorem 1 to ensure infinite sample congistérite

Qnx)(2) =Nn(X)@(2) + (1 -n(X))@(—2).
By definition,
Qnx) (fo(X)) = nfQyx)(2)-
Denote
AQn () = Qn(f) —Qn(fy)
where we suppress the dependence,df and f;; on X for brevity.
Theorem 9 Assume that is convex,@(d) and ¢f(—9d) both exist,@ () < 0, and (2) holds. In
addition, suppose that there exist constants Gand s> 1 such that
n—df° < CAQ(-93);
[(1-n)—df® < CAQ(d).

Then
AR[C(f,3)] < 2C[AQ(f)]Y/s. (5)

It is immediate from Theorem 9 thAIQ( f}) —p 0 impliesAR( ﬂ,) —p 0. In other words, con-
sistency in terms ol risk implies the consistency in terms of lo&s It is worth noting that the
constant in the upper bound can be tightened under stronger conditions.

Theorem 10 In addition to the assumptions of Theorem 9, assume that

Then
AR[C(f,3)] < C[AQ(f)]YS.

We can improve the bounds even further by the following margin conditiorsuie that for
somea >0andA>1

P{In(X) -7 <t} <At* (6)

forall0 <t <datz=dandz=1-d. This assumption was introduced in Herbei and Wegkamp
(2006) and generalizes the margin condition of Mammen and TsybakoW) sl Tsybakov
(2004). Itis always met fon = 0 andA = 1. The other extreme is far — + - the case where
n(X) stays away fronad and 1— d with probability one.
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Theorem 11 In addition to the assumptions of Theorem 9, assume that (6) holds f& sonD
and A> 1. Then, for some K depending on A amd

AR[C(f,8)] < K [AQ( )]/ (5+F~Ps). (7)
wheref =a/(1+a).

In casea = 0, the exponent A(s+ 3 —Bs) is 1/s on the right hand side in (7) above, and the
situation is as in Theorem 9. Far— +oo, the bound (7) improves upon the one in Theorem 9 as
the exponent A(s+ 3 — s) converges to 1.

We now examine the consequences of Theorems 9, 10 and 11 on sevenabn loss functions.

3.1 Least Squares
Note that for the least squares loss
AQq(f)=(2n—1—f)%
Simple algebraic manipulations show that
AQ(—8) = 4n—df
AQ(3) = 4/(1-n)-df

Therefore, by Theorems 9 and 11,

Corollary 12 For the least squares loss,
AR[C(f,1—2d)] < [AQ(f)]Y/2.

Furthermore, if the margin condition (6) holds, then

1+a

ARC(f,1-2d)] < K[AQ()]7¢
for some constant kK 0.

3.2 Exponential Loss

An application of Taylor expansion yields (see, e.g., Zhang, 2004)

1 2
AQy(f) = 2<n_l+exp(—2f)) :

Therefore,

2.

AQn(-9)
AQn(3)

2In—d
2/(1-n)—df*.

(AVANAYS

Therefore, by Theorems 9 and 11,
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Corollary 13 For the exponential loss,

AR [C<f,;log (3-1))] < V2[Q(H)]Y2.

Furthermore, if the margin condition (6) holds, then

AR [C(f,ilog (;—1»] <K[AQ(f)ES

for some constant kK 0.

3.3 Logistic Loss

Similar to exponential loss, an application of Taylor expansion yields

Aqmnzz<n :L)>?

C 1+exp—f
Therefore,
AQy(-3) > 2In—df%
AQy(8) > 2|(1-n)—d.

Therefore, by Theorems 9 and 11,
Corollary 14 For the logistic loss,

AR [c <f,|og <3 —1>>] < V2AQ(F)]Y2.

Furthermore, if the margin condition (6) holds, then
1 Lia
AR {C <f,|og (d — 1))] < K[AQ(f)] 2+

for some constant kK 0.

3.4 Squared Hinge Loss
Simple algebraic derivation shows
AQy(f)=(2n—1-F)?—n(f—1)7 —(1—-n)(f+1)%.
Therefore,
AQy(=3) = 4jn—df
AQq(3) = 4/(1-n)—dJ
By Theorems 9 and 11,
Corollary 15 For the squared hinge loss,
AR[C(f,1—2d)] < [AQ()]Y2.
Furthermore, if the margin condition (6) holds, then
ARIC(f,1—2d)] < K [AQ(f)]?

for some constant K 0.
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3.5 Distance Weighted Discrimination

Observe that
%+ (1—71)2_'_2(171) |f ZZV
Q@ =4 F+El-2n) if <y .
R if z< —y
Hence
infQn(2) = (\/ (1—n)+min{n,1- n})
and

(n/(1-n)*?y ifn>1/2
fo =14 anyvaluein—yy ifn=1/2 .

@
(L—n)/m*2y  ifn<1/2
Recall that = ((1—d)/d) 1/2y Then

AQn(3)

Y
A/

—2m/v>

n)6)1/2>2
2

_no
= 5 5
-2
- v2(1d)z[ 1d> n1/2+(1—n)1/2] (1-n—d)?
Observe that
d 1/2 1/2 1/2 1/2
(154) nera-n<a-gv
Thus,
(1—n—d)? <y(1-d)¥2dY2aQ,(3).
Similarly,

(n—d)? < y(1—d)Y2dY2AQq ().
From Theorems 9 and 11, we conclude that
Corollary 16 For the distance weighted discrimination loss,
AR [C(1, ((1—d)/d)M2y)| < y¥/2(1—d)/*d/4aQ(f)2
Furthermore, if the margin condition (6) holds, then
AR |C(F, (1 d)/d)"2y)| <K [aQ(F)]F

for some constant K 0.
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3.6 Hinge Loss with Rejection Option
As shown by Bartlett and Wegkamp (2008), for the modified hinge loss (4),

-1 ifn<d

argminQ(z)=< 0 ifd<n<1l-d .
z 1 ifn>1-d

Simple algebraic manipulations lead to

(1-8)(d—n)/d it n<d
AQn(é){ (n—d)d/d fd<n<i1-d ,
1-(1-n)/d+(n—d)d/d ifn>1-d

and

—n—d)d/d fd<n<1l-d .

1-n/d+(1-n—-d)d/d ifn<d
AQy(d) = { (1
(6-1)(1-n—-d)/d ifn>1-d

Therefore,

min{d,1— o}
d

ML= ) —d < aQy(8)

In—d|

IN

AQn(—9);

Furthermore,

min{d,1— &}
d

min{d,1— &}
d

From Theorems 10 and 11, we conclude that

(2n—-1)+ < AQy(-9);

(1-2n)+ < A (D).

Corollary 17 For the modified hinge loss and ady 1,

d
ARIC(1,8)] < (o5 AQ(1). (8)
Furthermore, if the margin condition (6) holds, then
AR[C(f,8)] < KAQ(T) 9

for some constant kK 0.

Notice that the corollary also suggests that 1/2 yields the best constanti2n the upper
bound. A similar result has also been recently established by Bartlett agklaviip (2008). It is
also interesting to see that (8) cannot be further improved by the gemeratiargin condition (6)
as the bounds (8) and (9) only differ by a constant.
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4. Rates of Convergence for Empirical Risk Minimizers

In this section we briefly review the possible rates of convergence for mieimid the empirical
risk Qn(f) = (1/n) 3L, @(Yif (X)) over a convex class of discriminant functiofi§ and show
the implications of the excess risk bounds obtained in the previous sectianandtysis of the
generalized hinge loss is complicated and is treated in detail in Wegkamp (@08 Bartlett and
Wegkamp (2008). The other loss functiopgonsidered in this paper have in common that the
modulus of convexity 06,

o(e) —int { AT o (178 w11 —g200) > 2}

satisfiesd(g) > ce? for somec > 0 and that, for some < oo,
|p(X) — @(X)| < L|x—X|forall x,X € R.

We have the following result that imposes a restriction on th&-covering number
Nh = N(1/n, L, F), the cardinality of the set of closed balls with radiusin L. needed to
coverF.

Theorem 18 Assume thaltf| < B for all f € # and letO < y < 1. With probability at least. —,
- : 3L L2 B) log(Nn/y)
< - — =V
iy < ppan % a5 2
Together with the excess risk bounds from Theorems 9 and 11, we have
Corollary 19 Under the assumptions of Theorems 9 and 18, we have, with probablkiysat —v,
A . 3L /L2 LB log(Nn/y)1"®
< — R .
AR(C(fn,0)) < ZC{gQ;AQ( )+ +8(2C 3 ) - }
Furthermore, if the generalized margin condition (6) holds, then with gibdlty at leastl — v,
- . 3L L2 10g(Nn/y) Y(stB-Ps)
AR(C(f < K fAQ(f)+— —
for some constant K 0.

In the special case whefg consists of linear combinations

M
X)= > Ajfj(x)
=1

of simple discriminant functions (decision stumgdsg). .., fu with Z'J'Vl:1|)\j| <Band|fj| <1, we
obtain the ratéM logn/n)Y/(StB=Bs) \We can viewB as a tuning parameter here, and if the functions
f; are near orthogonal in the sense that

E[fi(X) f;(X)] c

<
1S ROOJEI700] P

for some smallc > 0, a small modification of Theorem 1 in Wegkamp (2007) shows that we
also adapt to the unknown sparsity of the minimixgrof Q(f,) overA in that the rate becomes
(|Ao|ologn/n)Y/(stB=B9) for suitably chosei = B(n).
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5. Asymmetric Loss

We have focused thus far on the case where misclassifying from orsgclére other, eitheg(X) =
1whileY = —1org(X) =—1whileY =1, is assigned the same loss. In many applications, however,
one type of misclassification may incur a heavier loss than the other. Sudiosituaaturally arise

in risk management or medical diagonsis. To this end, the following loss funcéio be adopted

in place of?:

1 ifg(X)=—-1andY =1

0 ifgX)=1landY=-1
Ee[g(x)aY] = d if SEX§ -0 .

0 ifgX)=Y

We shall assume th& < 1 without loss of generality. It can be shown that the rejection option
is only available ifd < 8/(1+ 0) (see, e.g., Herbei and Wegkamp, 2006), which we shall assume
throughout the section. When this holds, the corresponding Bayes gileisby (see, e.g., Herbei

and Wegkamp, 2006)
1 ifnX)>1-d/6
gp(X)=< 0 ifd<n(X)<1-d/6 .
-1 ifnX)<d

Instead ofc( fn, 8), an asymmetrically truncated classification rifig C( fa; 81,3,), can be used
for our purpose here where

1 if £(X)>d&1
C(f(X);51,52){ 0 if —52§f(X)§61 .
-1 if f(X)< =&

The behavior of the asymmetically truncated classification @(Ié;él,éz) can be studied in a
similar fashion as before. In particular, we have the following results iallghto Theorems 1 and
9.

Theorem 20 Assume thatp is convex. Then 05,61,62) for somed;, &, > 0 is infinite sample
consistent, that is, (g, 1,82) = gg if and only if ¢(+81) and ¢(+£8) exist; ¢/(81), ¢ (&) < O;
and
@ (&)
@(—01) + @ (1)
(%2)
P (—3) +¢(3)

Furthermore, if G}, 81,87) is infinite sample consistent and
6(1—n)—d® < C°AQy(d1);
n—df < C%AQ (&),

o oo

then
ARg[C(f,81,8,)] < 2C[AQ(F)]Y/S,

whereARs(g) = Re(9) — Re(dp) and Ry(g) = E[e(9(X),Y)].
Theorem 20 can be proved in the same fashion as Theorems 1 and 9 ardfigrethomitted for
brevity.
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6. Proofs

Proof of Theorem 1. We first show the “if” part. Recall that

Q(f) = Ela(Yf(X))]
= E(E[OY f(X))[X])

= ENO (X)) + (1 n(X) o~ (X))].

With slight abuse of notation, write

Qnoo (F(X)) =n(X)e( (X)) + (1 -n(X)) o= F(X)).

Then fg(X) minimizesQyx; (-)-

We now proceed by separately considering three different scenéajog(X) < d; (b) n(X) >
1—d; and (c)d < n(X) < 1—d. For brevity, we shall abbreviate the dependence afd fo onX
in the reminder of the proof when no confusion occurs.

First consider the case whernk d. Recall thaty (—9) < ¢(d) < 0, and

_9e
¢(-9)+¢®)
Therefore,
ng(—3) —(1-n)¢(8) > 0.

By the convexity ofp, for anyz > 0,

®z—8)—9(-d) = ¢(-9)z
®-z+8) -8 > -¢(dz
Hence
Qn(z2—8) = Qn(-3) > [n¢@(-3) — (1-n)¢(8)| 2> 0,
which implies thatf;; < —0.
It now suffices to show thall; 7 —d. By the definition ofg (—d) andq (d), for anye > 0, there
exists a > 0 such that for any & z<

P(—2—9) —9(-9)
—Z
O(z+38) — 9(3)

z

> @(-0)—¢
@ (d) +¢.

IN

Therefore forany & z< ¢,

Qn(=2—98)—Qn(-3) = n[@(—z—3)— (=) +(1—n)[@(z+0) —@(9)]
—N[@(-8) —¢]z+(1-n) [¢(3) +¢] z
= ([A-n)¢g(d) —ng(-d)] +¢)z

Recall tha{1—n)@(d) —ng(—0) < 0. By settinge small enough, we can ensure thiat-n) @ (d) —
ng(—9d) + € remains negative. Hence

Qn(=2-98) <Qn(-9),

IN
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which implies thatfg # —9.
Now consider the case whep> 1—d. Observe thaQ,(z) = Q:1_n(—2). From the previous
discussion,

fo= argzminQn (2) =— argzmian_n(—z) > 0.
At last, consider the case whdn< n < 1—d. Observe that in this case,
ng(d) - ( )(d(—é) >0;
ng (-3 —N)¢¥(d) <0.

Hence for any > 0,

Qn(z+8) —Qn(8) = [N¢(3) — (1-n)¢(-3)] 2> 0,

which implies thatf(; < &. Similarly,

Qn(—=z—3) —Qn(—d) > [-n¥(-8)+ (1—n)d(3)] z> O,

which implies thatfg > —&. In summary,f&; €[-9,9].

We now consider the “only if” part. Lefa_,b_] and[a,,b;] be the subdifferential of at
—0 and d respectively. We need to show that =b_, a, = b, anda,/(a, +a )=d. We
begin by showing thab, < 0. Assume the contrary. The infinite sample consistency implies that
foranyn >1-d, f; > 3. Becauser, >0, we haveg( f(;;) > @(d). Together with the fact that
Qn(fy) < Qn(d), this implies thatp(—f;) < ¢(—9). Subsequently, we hage > 0. The convexity
of @also suggests that <a, <b_ <b,. Because

®(fg) — 9(0)
®(—=0) —a(—fy)

b.. (s —3);
a (f;—9),

IN IV

we have
Qn(fg) —Qn(d) > (Nby —(1—-n)a)(fy—8) > 0.
This contradiction suggests that < 0.
Giventhata. <a; <b_ <b; <0,we havda_| > |a,| > |b_| > |b,|, which implies that

b, <« &
a +b, ~“b_+a.

It suffices to show that
T > and & 4
a_ + b+ b_+ a,

Assume the contrary. First consider the case when(a_ +b,) < d. Letn be such that
b,/(a_+by) < n < d. By definition, for anyf < —§,
of)—9(-0) = a (f+9);
—f)—@(3) = bi(~f-9).

Hence
Qn(f) = Qn(=8) > [na- — (1 —n)b;](f+8) >0,
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which implies that arg mi@y (z) > —&. This contradicts with the infinite sample consistency. There-
fore, b, /(a-+b;) > d. Nextwe deal with the case @f, /(b_+a,) > d. Letn be such that
a,/(b-+a;) >n >d. Following a similar argument as before, one can show @at,(f) —
Q11 (d) > 0 for any f > 8, which implies that argmi@,(z) < d. This again contradicts infinite
sample consistency because f§ < 1—d. Thereforea, /(b- +a;) <d.

The proof is now concluded.

Proof of Theorem 9. Recall that

Qn(f) =ne(f) + (1 —n)o(—f).

Similarly, write
Rﬂ[c(fvé)] = ng(C(fvé)v l) + (l* n)f(c(faé)v *l)'

Also write AQq () = Qq(f) —infQ,(f) andAR, (f) = Ry(f) —infR,(f). It suffices to show that
AR, [C(f,8)] < 2C[AQy ()]Y/*. (10)
The theorem can be deduced from (10) by Jensen’s inequality:

AR[C(f,5)]

E [ARy ) [C(f(X),3)]]
2CE [AQy ) (f(X))]/®
2C (E [AQn ) (F(X))])®
2C[AQ(f)]M.

INIA

To show (10), we consider separately the different combinations otsadfin and f. For
brevity, we shall abbreviate their dependence<an what follows.

Case 1.n <dandf < —d. As shown before, in this cas‘g(X) < —0. Thus,
DRy [C(f,8)] = 0 < C[AQy (F)]*.
Case 2.n < d and|f| < 6. Observe that

(1)~ Qn(-8)= [1G(-8) - (1- ()] (1 +8) = 2 (d-n)(1+8) >0

Together with the fact tha°AQ, (—6) > |n —d|*, we have
AQn (f) > AQy(~8) > C9n —d.

Note that
AR, [C(f,0)]=d—n.
We have
ARy [C(f,8)] < CIAQy(F)]Y*.
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Case 3.n <dandf > &. Observe that

Q(1)~n(®) > N0(3) - - M-8 (-5 = 2 (1-n-a)(1-5) >0
Together with the facts that < 1/2 andC°AQ,(8) > |1—n —d|*, we have
AQn(f) = AQy(3) = C 51 —n —df* > (2C) |1 —2n]

Note that
AR, [C(f,8)] =1—2n.
Therefore,
ARy [C(1,8)] < 2C[AQq ()],

Case4.d<n<1-dandf < —d. Following a similar argument as before,

Qn(f) —Qn(-0) > _q:;@(d—n)(f +3)>0.

Therefore,
AQy(f) > AQn(—0) >C°In —d%,

which, together with the fact th&iR, [C(f,d)] = n —d, implies that
AR, [C(f,8)] < C[AQy (]S

Case5.d<n<1-—dand|f| <. Inthis case,

ARy [C(,8)] = 0 < C[AQy (F)]V°.

Case 6.d <n<1—dandf > d. Observe that

Qn(f) —Qn(8) > _(pc(j(a)(l—n—d)(f—é) > 0.

Hence
AQq(f) > AQn(8) >C°1—n—df,

which, together with the fact th&R,[C(f,d)] = 1—n —d, implies that
ARy [C(f,8)] < C[AQn ().

Case 7.n > 1—d. Observe thaR,[C(f,0)] = Ri_[C(—f,9)], andQ,(f) = Q1_n(—T). Because
1-n<d, from Cases 1, 2 and 3, we have

AR [C(f,8)] = AR1n[C(—f,3)]
< 2C[AQ ()Y

—  2C[AQy(f)]Ys.
The proof is therefore completed.
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Proof of Theorem 10. The proof follows from the same argument as that of Theorem 9. The only
difference takes place in Case 3 where under the current assumptions

ARy (f) = 1—2n < C[AQy(8)]Y°. N

Proof of Theorem 11. The last part of the proof is based on the proof of Theorem 3 in Bartlett,
Jordan and McAuliffe (2006). Leg = C(f,d) be the classification rule with reject option based on
f: X — R and seg" = C(f,d). We have shown above that under the assumptions of Theorem 9,

d-ni{g# g} (L{g= -1} +1{g’ = —1}) <C[AQy(F)]"/*
1-d-n1{g#g} (H{g=1} +1{g" = 1}) <C[AQy (N,
Moreover, Lemma 1 in Herbei and Wegkamp (2006) states that
AR(g) = E[/d—n(X)[1{g(X) #g"(X)} (1{g(X) = =1} + L1{g"(X) = —-1})] (11)
F+E[|1—d—n(X)|1{g(X) # g"(X)} (1{g(X) =1} + 1{g"(X) = 1})].
Hence, for ang > 0,
AR(g)
=E[|d—n(X)|1{d—n(X)| < e}1{g(X) # g"(X)} (H{g(X) = =1} + L{g"(X) = —1})]
+E(|d—n(X)|1{d ~n(X)| > e}1{g(X) # g"(X)} (1{g(X) = ~1} +1{g"(X) = ~1})]
F+E[[1-d=n(X)|1{[1=d—n(X)| < e}1{g(X) # g"(X)} (1{g(X) = 1} + 1{g"(X) = 1})]
F+E[|1-d—n(X)|1{|1-d—n(X)| > e} {g(X) # g"(X) } (H{g(X) = 1} + 1{g"(X) = 1})]
< 2eP{g"(X) # 9(X)} + 261 °AQ(f)

where we used (11) and the inequaliyl{|x| > &} < |x|"e'~" for r > 1. Using the bound

P(o(X) # 900} < [268)°0R(g)|”
from the proof of Lemma 4 of Herbei and Wegkamp (2006), and choosing
e =c[aR(g)]* P
with ¢ = [2(8A)1/%]B /4 readily gives the desired claim wikh= 4CclS. I

Proof of Theorem 18. Recall thatf € F minimizesQ(f) overf € F. Leth(yf(x)) = g(yf(x)) —
@(yf(x)). Since

AD2QD > (1) +en (- 0]

> Q(f)+cE[(f—f)*(X)],
we have
E[R(Yf(X))] < LZE[(f-f)*(X)]
L2 _
< 5 QU = Q(H}

LZ
S E[h(Y 100)],
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see, for example, Bartlett, Jordan and McAuliffe (2006). SiﬁpminimizesQn(f), we have
Qf))—Q(f) = Ph(yfa(x))

= 2Pah(Y Fa(X)) + (P )h( Y (X))
< 2Ph(YT(X))+ (P—2P,)h(Y fo(X))
< sup(P—2Pp)h(Y f(X ))

feF

wherePh(Y f(X)) = E[h(Y f(X))] andPyh(Y f(X)) = (1/n) 3L h(Yif (X)) for any f € F. Next
we observe that

SUB(P — 2ZP)A(Y (X)) < = 4+ max(P — 2P)h(Y f(X))
feF n fef

where 7, is the minimal ¥n-net of 7. By Bernstein’s inequality, we get

n{t + Ph(Y f(X))}2/8
F { SUP(P — 2Pn)N(Y (X)) 2 t} = M eXp[_ PR2(Y (X)) + (2LB) {t + Bh(Y f(X))} /6

12 B\ !
e

IN

and the conclusion follows easil.
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