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We propose a semiparametric approach called the nonparanormal
SKEPTIC for efficiently and robustly estimating high-dimensional undirected
graphical models. To achieve modeling flexibility, we consider the nonpara-
normal graphical models proposed by Liu, Lafferty and Wasserman [J. Mach.
Learn. Res. 10 (2009) 2295–2328]. To achieve estimation robustness, we ex-
ploit nonparametric rank-based correlation coefficient estimators, including
Spearman’s rho and Kendall’s tau. We prove that the nonparanormal SKEPTIC

achieves the optimal parametric rates of convergence for both graph recov-
ery and parameter estimation. This result suggests that the nonparanormal
graphical models can be used as a safe replacement of the popular Gaussian
graphical models, even when the data are truly Gaussian. Besides theoret-
ical analysis, we also conduct thorough numerical simulations to compare
the graph recovery performance of different estimators under both ideal and
noisy settings. The proposed methods are then applied on a large-scale ge-
nomic data set to illustrate their empirical usefulness. The R package huge
implementing the proposed methods is available on the Comprehensive R
Archive Network: http://cran.r-project.org/.

1. Introduction. We consider the problem of estimating high-dimensional
undirected graphical models. Given n independent observations from a d-
dimensional random vector X := (X1, . . . ,Xd)T , we want to estimate an undi-
rected graph G := (V ,E), where V := {1, . . . , d} contains nodes corresponding to
the d variables in X, and the edge set E describes the conditional independence
relationships between X1, . . . ,Xd . Letting X\{i,j} := {Xk :k �= i, j}, we say the
joint distribution of X is Markov to G if Xi is independent of Xj given X\{i,j} for
all (i, j) /∈ E.

One popular method for this problem is the Gaussian graphical model, in which
the random vector X is assumed to be Gaussian: X ∼ Nd(μ,�). Under this nor-
mality assumption, the graph G is encoded by the precision matrix � := �−1.
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More specifically, no edge connects Xj and Xk if and only if �jk = 0 [Dempster
(1972)]. In low dimensions where d < n, Drton and Perlman (2007, 2008) develop
a multiple testing procedure for identifying the sparsity pattern of the precision
matrix. In high dimensions where d � n, Meinshausen and Bühlmann (2006) pro-
pose a neighborhood pursuit approach for estimating Gaussian graphical models
by solving a collection of sparse regression problems using the Lasso in parallel.
Yuan and Lin (2007), Banerjee, El Ghaoui and d’Aspremont (2008) and Friedman,
Hastie and Tibshirani (2008) develop a penalized likelihood approach to directly
estimate �. Rothman et al. (2008), Ravikumar et al. (2009) and Lam and Fan
(2009) study the theoretical properties of the penalized likelihood methods. More
recently, Yuan (2010) and Cai, Liu and Luo (2011) propose the graphical Dantzig
selector and CLIME, respectively. Both of these methods can be solved by linear
programming and have more favorable theoretical properties than the penalized
likelihood approach.

There are two drawbacks of the Gaussian graphical model: (i) the distributions
of the data are in general non-Gaussian; (ii) the data could be noisy (e.g., con-
taminated by outliers). To handle the first challenge, Liu, Lafferty and Wasser-
man (2009) propose the nonparanormal family to relax the Gaussian assumption.
A random vector X belongs to a nonparanormal family if there exists a set of
univariate monotone functions {fj }dj=1 such that f (X) := (f1(X1), . . . , fd(Xd))T

is Gaussian. They provide an estimation algorithm that has the same computa-
tional cost as the graphical lasso (glasso), while it achieves the rate of convergence

O(
√

n−1/2 logd) for estimating the precision matrix in the Frobenious and spec-
tral norms. Other nonparametric graph estimation methods include forest graphical
models or conditional graphical models [Liu et al. (2011) and Liu et al. (2010)].

In this paper we show that the rate of convergence obtained by Liu, Lafferty
and Wasserman (2009) is not optimal. We present an alternative procedure that
simultaneously achieves estimation robustness and rate optimality. The main idea
is to exploit robust nonparametric rank-based statistics including Spearman’s rho
and Kendall’s tau to directly estimate the unknown correlation matrix, without ex-
plicitly calculating the marginal transformations. We call this approach nonpara-
normal SKEPTIC (since the Spearman/Kendall estimates preempt transformations
to infer correlation). The estimated correlation matrix is then plugged into exist-
ing parametric procedures (e.g., the graphical lasso, CLIME or graphical Dantzig
selector) to obtain the final estimate of the inverse correlation matrix and the graph.

By leveraging existing analysis [Cai, Liu and Luo (2011), Lam and Fan (2009),
Ravikumar et al. (2009), Yuan (2010)], we prove that although the nonparanormal
family is larger than the Gaussian family, the nonparanormal SKEPTIC achieves the
optimal parametric rates of convergence in terms of both precision matrix estima-
tion and graph recovery. This result suggests that the extra modeling flexibility and
robustness come at almost no cost in terms of statistical efficiency. Therefore, the
nonparanormal SKEPTIC can be used as a safe replacement for Gaussian estima-
tors even when the data are truly Gaussian. Moreover, by avoiding the estimation
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of the transformation functions, this new approach has fewer tuning parameters
than the original method proposed by Liu, Lafferty and Wasserman (2009).

We provide thorough numerical studies to support our theory. Our results show
that, when the data contamination rate is low, the normal-score based nonparanor-
mal estimator proposed by Liu, Lafferty and Wasserman (2009) is slightly more
efficient than the nonparanormal SKEPTIC. However, when the data contamination
rate is higher, the nonparanormal SKEPTIC significantly outperforms the normal-
score based estimator. This result reflects a trade-off between statistical efficiency
and estimation robustness.

In a related work, Xue and Zou (2012) independently proposed a similar regu-
larized rank-based estimation idea for estimating nonparanormal graphical models.
The main difference between our work and theirs is that Xue and Zou (2012) only
propose the use of Spearman’s rho estimator, while we study both Spearman’s rho
and Kendall’s tau estimators. Another major difference is that the current paper
compares the rank-based estimators with the normal-score based estimators and
discusses their robustness properties, while Xue and Zou (2012) propose and ana-
lyze adaptive versions of rank-based Dantzig selector and CLIME estimators.

The rest of the paper is organized as follows. In the next section we briefly
review some background on the nonparanormal estimator from Liu, Lafferty and
Wasserman (2009). In Section 3 we present the nonparanormal SKEPTIC estimator,
which exploits Spearman’s rho and Kendall’s tau statistics to estimate the under-
lying correlation matrix. Although not necessary for the SKEPTIC, we also pro-
vide results on consistently estimating the marginal transformations to normality.
In Section 4 we present a theoretical analysis of the method, with more detailed
proofs collected in the Appendix. In Section 5 we present numerical results on both
simulated and real data, where the problem is to construct large undirected graphs
for different biological entities (different tissue types or genes) using large-scale
genomic data sets. We then discuss the connections to existing methods and possi-
ble future directions in the last section. Some of the results in this paper were first
stated without proof in a conference version: http://icml.cc/2012/papers/707.pdf.

2. Background. We describe the nonparanormal family and the normal-score
based estimator proposed by Liu, Lafferty and Wasserman (2009).

2.1. Notation. Let A = [Ajk] ∈ R
d×d and v = (v1, . . . , vd)T ∈ R

d . For 1 ≤
q < ∞, we define ‖v‖q = (

∑d
i=1 |vi |q)1/q and ‖v‖∞ = max1≤i≤d |vi |. The ma-

trix �q -operator norm is ‖A‖q = supv �=0
‖Av‖q

‖v‖q
. In particular, for q = 1 and

q = ∞, ‖A‖1 = max1≤j≤d

∑d
i=1 |Aij | and ‖A‖∞ = max1≤i≤d

∑d
j=1 |Aij |. The

matrix �2-operator norm, or spectral norm, is the largest singular value. We de-
note ‖A‖max = maxj,k |Ajk| and ‖A‖2

F = ∑
j,k |Ajk|2. We also denote v\j =

(v1, . . . , vj−1, vj+1, . . . , vd)T ∈ R
d−1 and similarly denote by A\i,\j the subma-

trix of A obtained by removing the ith row and j th column. We use Ai,\j to rep-

http://icml.cc/2012/papers/707.pdf
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resent the ith row of A with its j th entry removed. We use λmin(A) and λmax(A)

to denote the smallest and largest eigenvalues of A.

2.2. The nonparanormal distribution. The nonparanormal family is a non-
parametric extension of the Normal family. Using the same idea as sparse additive
models [Liu, Lafferty and Wasserman (2008), Liu and Zhang (2009), Ravikumar
et al. (2009)], we replace the random variable X = (X1, . . . ,Xd)T by the trans-
formed variable f (X) = (f1(X1), . . . , fd(Xd))T , and assume that f (X) is mul-
tivariate Gaussian. The nonparanormal only depends on the univariate functions
{fj }dj=1 and the correlation matrix �0, all of which are to be estimated from data.
More precisely, we have the following definition.

DEFINITION 2.1 (Nonparanormal). Let f = {f1, . . . , fd} be a set of mono-
tone univariate functions and let �0 ∈ R

d×d be a positive-definite correla-
tion matrix with diag(�0) = 1. We say a d-dimensional random variable X =
(X1, . . . ,Xd)T has a nonparanormal distribution X ∼ NPNd(f,�0) if f (X) :=
(f1(X1), . . . , fd(Xd))T ∼ Nd(0,�0).

For continuous distributions, the nonparanormal family is equivalent to the
Gaussian copula family [Klaassen and Wellner (1997), Tsukahara (2005)].

Let �0 = (�0)−1 be the precision matrix. Liu, Lafferty and Wasserman
(2009) prove that �0 encodes the undirected graph of X, that is, �0

jk = 0 ⇔
Xj⊥⊥Xk|X\{j,k}. Therefore, to estimate the graph for the nonparanormal family,
it suffices to estimate the sparsity pattern of �0. More discussions can be found in
Lafferty, Liu and Wasserman (2012).

2.3. The normal-score estimator. Liu, Lafferty and Wasserman (2009) suggest
a two-step procedure to estimate the graph:

(1) Replace the observations by their corresponding normal-scores.
(2) Apply the glasso to the transformed data to estimate the graph.

More specifically, let x1, . . . , xn ∈ R
d be n data points and let I (·) be the in-

dicator function. We define F̂j (t) = 1
n+1

∑n
i=1 I (xi

j ≤ t) to be the scaled empiri-
cal cumulative distribution function of Xj . Liu, Lafferty and Wasserman (2009)
study the estimator of the nonparanormal transformation functions given by2

f̂j (t) = �−1(Tδn[F̂j (t)]), where �−1(·) is the standard Gaussian quantile function
and Tδn is a Winsorization (or truncation) operator defined as Tδn(x) := δn · I (x <

δn) + x · I (δn ≤ x ≤ 1 − δn) + (1 − δn) · I (x > 1 − δn). Let Ŝns = [Ŝns
jk] be the

2Instead of F̂j , Liu, Lafferty and Wasserman (2009) use the standard empirical cumulative distri-
bution function. These two estimators are asymptotically equivalent.
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correlation matrix of the transformed data, where

Ŝns
jk = (1/n)

∑n
i=1 f̂j (x

i
j )f̂k(x

i
k)√

(1/n)
∑n

i=1 f̂ 2
j (x

i
j ) ·

√
(1/n)

∑n
i=1 f̂ 2

k(x
i
k)

.(2.1)

The nonparanormal estimate of the inverse correlation matrix �̂ns can be obtained
by plugging Ŝns into the glasso.

Taking δn = 1
n+1 , we call Ŝns

jk the normal-score rank correlation coefficient.
For bivariate Gaussian copula distributions, Klaassen and Wellner (1997) prove
that Ŝns

jk is efficient in estimating �0
jk . However, it appears that their efficiency

result cannot be generalized to the high-dimensional setting. The reason is that
the standard Gaussian quantile function �−1(·) diverges very quickly when it is
evaluated at a point close to 1. To handle high-dimensional cases, Liu, Lafferty
and Wasserman (2009) suggest to use a truncation level δn = 1

4n1/4
√

π logn
. Such a

truncation level δn is chosen to control the trade-off of bias and variance in high
dimensions. They analyzed the high-dimensional scaling of the precision matrix
estimator �̂ns and showed that

∥∥�̂ns − �0∥∥
F = OP

(√
(s + d) logd + log2 n

n1/2

)
,(2.2)

∥∥�̂ns − �0∥∥
2 = OP

(√
s logd + log2 n

n1/2

)
,(2.3)

where s := Card({(j, k) ∈ {1, . . . , d} × {1, . . . , d} |�0
jk �= 0, j �= k}) is the number

of nonzero off-diagonal elements of the true precision matrix.
Using the results of Ravikumar et al. (2009), it can also be shown that, un-

der appropriate conditions, the sparsity pattern of the precision matrix can be
accurately recovered with high probability. In particular, the nonparanormal es-
timator �̂ns satisfies P(G(�̂ns,�0)) ≥ 1 − o(1), where G(�̂ns,�0) is the event
{sign(�̂ns

jk) = sign(�0
jk),∀j, k ∈ {1, . . . , d}}. We refer to Liu, Lafferty and Wasser-

man (2009) for more details.
In the next section we show that the rates in (2.2) and (2.3) are not optimal and

provide an alternative estimator that achieves the optimal rate.

3. The nonparanormal SKEPTIC. Nonparanormal distributions have two
types of parameters: the precision matrix �0 := (�0)−1 and the marginal trans-
formations {fj }dj=1. In this section we develop methods for estimating both types
of parameters. The main idea behind our new procedure is to exploit Spearman’s
rho and Kendall’s tau statistics to directly estimate �0, without explicitly calculat-
ing the marginal transformation functions {fj }dj=1. We then estimate the marginal
transformations separately.
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More specifically, let ri
j be the rank of xi

j among x1
j , . . . , xn

j and r̄j =
1
n

∑n
i=1 ri

j = n+1
2 . We consider the following statistics:

(Spearman’s rho) ρ̂jk =
∑n

i=1(r
i
j − r̄j )(r

i
k − r̄k)√∑n

i=1(r
i
j − r̄j )2 ·∑n

i=1(r
i
k − r̄k)2

,

(Kendall’s tau) τ̂jk = 2

n(n − 1)

∑
1≤i<i′≤n

sign
((

xi
j − xi′

j

)(
xi
k − xi′

k

))
.

Both ρ̂jk and τ̂jk are nonparametric correlations between the empirical realiza-
tions of random variables Xj and Xk . Note that these statistics are invariant un-
der monotone transformations. For Gaussian random variables there is a one-to-
one mapping between these two statistics; details can be found in Kendall (1948)
and Kruskal (1958). Let X̃j and X̃k be two independent copies of Xj and Xk .
We denote by Fj and Fk the CDFs of Xj and Xk . The population versions of
Spearman’s rho and Kendall’s tau are given by ρjk := Corr(Fj (Xj ),Fk(Xk)) and
τjk := Corr(sign(Xj −X̃j ), sign(Xk −X̃k)). Both ρjk and τjk are association mea-
sures based on the notion of concordance. We call two pairs of real numbers (s, t)

and (u, v) concordant if (s − t)(u−v) > 0 and disconcordant if (s − t)(u−v) < 0.
The following proposition provides further insight into the relationship between
ρjk and τjk . The proof is provided in the Appendix for completeness.

PROPOSITION 3.1. Let (X
(1)
j ,X

(1)
k ), (X

(2)
j ,X

(2)
k ) and (X

(3)
j ,X

(3)
k ) be three in-

dependent random vectors with the same distribution as (Xj ,Xk). Define

C(j, s, t;k,u, v) = P
((

X
(s)
j − X

(t)
j

)(
X

(u)
k − X

(v)
k

)
> 0

)
,

D(j, s, t;k,u, v) = P
((

X
(s)
j − X

(t)
j

)(
X

(u)
k − X

(v)
k

)
< 0

)
.

Then ρjk = 3C(j,1,2;k,1,3) − 3D(j,1,2;k,1,3) and τjk = C(j,1,2;k,1,2) −
D(j,1,2;k,1,2).

For nonparanormal distributions, the following lemma connects Spearman’s rho
and Kendall’s tau to the underlying Pearson correlation coefficient �0

jk .

LEMMA 3.1 [Kendall (1948), Kruskal (1958)]. Assuming X ∼ NPNd(f,�0),
we have �0

jk = 2 sin(π
6 ρjk) = sin(π

2 τjk).

Motivated by this lemma, we define the following estimators Ŝρ = [Ŝρ
jk] and

Ŝτ = [Ŝτ
jk] for the unknown correlation matrix �0:

Ŝ
ρ
jk =

⎧⎨⎩2 sin
(

π

6
ρ̂jk

)
, j �= k,

1, j = k,
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and

Ŝτ
jk =

⎧⎨⎩ sin
(

π

2
τ̂jk

)
, j �= k,

1, j = k.

As will be shown in later sections, the final graph estimators based on Spearman’s
rho and Kendall’s tau statistics have similar theoretical performance. Thus, in the
following sections we omit the superscripts ρ and τ and simply denote the esti-
mated correlation matrix by Ŝ.

3.1. Estimating sparse precision matrices and graphs. In this subsection we
explain how to exploit the estimated correlation matrices Ŝτ and Ŝρ to estimate the
sparse precision matrix and graph.

3.1.1. The nonparanormal SKEPTIC with the graphical Dantzig selector. The
main idea of the graphical Dantzig selector [Yuan (2010)] is to take advantage of
the connection between multivariate linear regression and entries of the inverse
covariance matrix. The following is the detailed algorithm, where δ is a tuning
parameter:

• Estimation: for j = 1, . . . , d , calculate

θ̂ j = arg min
θ∈Rd−1

‖θ‖1 subject to ‖Ŝ\j,j − Ŝ\j,\j θ‖∞ ≤ δ,

(3.1)
�̂jj = [

1 − 2
(
θ̂ j )T Ŝ\j,j + (

θ̂ j )T Ŝ\j,\j θ̂ j ] and �̂\j,j = −�̂jj θ̂
j .

• Symmetrization:

�̂gDS = arg min
�=�T

‖� − �̂‖1.(3.2)

Within each iteration, the Dantzig selector in (3.1) can be formulated as a lin-
ear program. A more sophisticated path algorithm (DASSO) to solve the Dantzig
selector has been developed by James, Radchenko and Lv (2009).

3.1.2. The nonparanormal SKEPTIC with CLIME. Let Id be the d-dimensional
identity matrix. The estimated correlation coefficient matrix Ŝ can also be plugged
into the CLIME estimator [Cai, Liu and Luo (2011)], which is defined by

�̂CLIME = arg min
�

∑
j,k

|�jk| subject to ‖Ŝ� − Id‖max ≤ �,(3.3)

where � is the tuning parameter. Cai, Liu and Luo (2011) show that this convex
optimization can be decomposed into d vector minimization problems, each of
which can be cast as a linear program. Thus, CLIME has the potential to scale to
large data sets.
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3.1.3. The nonparanormal SKEPTIC with the graphical lasso. We can also
plug the estimated correlation matrix Ŝ into the graphical lasso:

�̂glasso = arg min
��0

{
tr(Ŝ�) − log|�| + λ

∑
j,k

|�jk|
}
.(3.4)

One thing to note is that Ŝ may not be positive semidefinite. Even though the for-
mulation (3.4) is still convex, certain algorithms (like the blockwise-coordinate
descent algorithm [Friedman, Hastie and Tibshirani (2008)]) may fail if Ŝ is in-
definite. However, other algorithms like the two-metric projected Newton method
or first-order projection do not have such positive semidefinite assumption on Ŝ.
These algorithms can be directly exploited to efficiently solve (3.4).

Unlike the graphical Lasso formulation, the graphical Dantzig selector and
CLIME can both be formulated as linear programs, so they do not require posi-
tive semidefiniteness of the input correlation matrix.

3.1.4. The nonparanormal SKEPTIC with the neighborhood pursuit estimator
(the Meinshausen–Bühlmann procedure). The nonparanormal SKEPTIC can also
be applied with the Meinshausen–Bühlmann procedure to estimate the graph. As
has been discussed in Friedman, Hastie and Tibshirani (2008), the correlation ma-
trix is a sufficient statistic for the Meinshausen–Bühlmann procedure. However,
in this case, we need to make sure that Ŝ is positive semidefinite. Otherwise, the
algorithm may not converge. Practically, we can first project Ŝ into the cone of
positive semidefinite matrices. In particular, we need to solve the following con-
vex optimization problem:

S̃ = arg min
S�0

‖Ŝ − S‖max.(3.5)

Here we use the ‖ · ‖max-norm instead of the ‖ · ‖F -norm, due to theoretical con-
cerns developed in the next section. In fact, the optimization problem in (3.5) can
be formulated as the dual of a graphical lasso problem. To find the projection so-
lution, we need to search for the smallest possible tuning parameter which still
makes the optimization problem feasible. Empirically, we can use a surrogate pro-
jection procedure that computes a singular value decomposition of Ŝ and truncates
all of the negative singular values to be zero.

3.2. Computational complexity. Compared to the corresponding parametric
methods like the graphical lasso, graphical Dantzig selector, CLIME and the
Meinshausen–Bühlmann estimator, the only extra cost of the nonparanormal
SKEPTIC is the computation of Ŝ, which requires us to calculate the d(d − 1)/2
pairs of Spearman’s rho or Kendall’s tau statistics. A naive implementation of
Kendall’s tau statistic requires O(n2) flops. However, an efficient algorithm based
on sorting and balanced binary trees has been developed to calculate Kendall’s tau
statistic with complexity O(n logn). Details can be found in Christensen (2005).
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The computation of Spearman’s rho statistic only requires one sort of the data,
which has complexity O(n logn).

3.3. Estimating marginal transformations. Though estimating the graph does
not require estimating the marginal transformations, we are still interested in es-
timating marginal transformations. Estimating marginal transformations is useful
for calculating the likelihood of a nonparanormal fit. Let F̃j (t) = 1

n

∑n
i=1 I (xi

j ≤ t)

be the empirical distribution function of Xj . We estimate the marginal transforma-
tion fj using the following estimator:

f̃j (x) := �−1(T1/(2n)

[
F̃j (x)

])
,(3.6)

where the function Tδn(x) := δn · I (x < δn) + x · I (δn ≤ x ≤ 1 − δn) + (1 − δn) ·
I (x > 1 − δn). An analysis of this estimator is given in the next section.

4. Theoretical properties. We analyze the statistical properties of the non-
paranormal SKEPTIC estimator. Our main result shows that Ŝρ and Ŝτ have a fast
exponential concentration rate to �0 in the ‖ · ‖max norm. This result allows us to
leverage existing analysis of different parametric methods to analyze the nonpara-
normal SKEPTIC estimator.

In particular, Theorem 4.3 states that the nonparanormal SKEPTIC achieves the
same graph recovery and parameter estimation performance as the corresponding
parametric methods. Since the nonparanormal family is much richer than the Gaus-
sian family, such a result suggests that the nonparanormal SKEPTIC could be a safe
replacement for Gaussian graphical models. We then use the graphical Dantzig se-
lector as an illustrative example to showcase this result. Similar analysis can be
carried on for both CLIME and the graphical lasso.

4.1. Concentration properties of the estimated correlation matrices. We first
prove the concentration properties of the estimators Ŝρ and Ŝτ . Let �0

jk be the
Pearson correlation coefficient between fj (Xj ) and fk(Xk). In terms of ‖ · ‖max
norm, we show that both Ŝρ and Ŝτ converge to �0 in probability with the optimal
parametric rate. Our results are based on different versions of Hoeffding’s inequal-
ities for U -statistics. Without loss of generality, in this paper we always assume
d > n. The results for d < n are straightforward.

THEOREM 4.1. For any n ≥ 21
logd

+ 2, with probability at least 1 − 1/d2, we
have

sup
jk

∣∣Ŝρ
jk − �0

jk

∣∣≤ 8π

√
logd

n
.(4.1)

The next theorem illustrates the concentration property of Ŝτ .



2302 H. LIU ET AL.

THEOREM 4.2. For any n > 1, with probability at least 1 − 1/d , we have

sup
jk

∣∣Ŝτ
jk − �0

jk

∣∣≤ 2.45π

√
logd

n
.(4.2)

With the above results we present the following “metatheorem,” which shows
that even though the nonparanormal SKEPTIC is a semiparametric estimator, it
achieves the optimal parametric rate in high dimensions.

THEOREM 4.3 (Main theorem). If we plug the estimated matrix Ŝρ or Ŝτ into
the parametric graphical lasso (or the graphical Dantzig selector or CLIME), then
under the same conditions on �0 that ensure the consistency and graph recovery of
these parametric methods under the Gaussian model, the nonparanormal SKEPTIC

achieves the same (parametric) rate of convergence for both precision matrix esti-
mation and graph recovery under the nonparanormal model.

PROOF. The proof is based on the observation that the sample correlation ma-
trix Ŝ is a sufficient statistic for all three methods: the graphical lasso, graphi-
cal Dantzig selector and CLIME. By examining the analysis in Cai, Liu and Luo
(2011), Ravikumar et al. (2009), Yuan (2010), a sufficient condition on Ŝ to en-
able their analysis is that there exists some constant c, such that P(‖Ŝ −�0‖max >

c

√
logd

n
) ≤ 1 − 1

d
, which can be replaced by (4.1) and (4.2) from Theorems 4.1

and 4.2. �

The graphical lasso, graphical Dantzig selector and CLIME have been proved to
be minimax rate optimal over certain parameter classes under the Gaussian model.
Since the nonparanormal family is strictly larger than the Gaussian family, we
immediately justify the minimax optimality of the nonparanormal SKEPTIC esti-
mator:

COROLLARY 4.1. Over all the parameter spaces of �0 such that the graphi-
cal lasso, graphical Dantzig or CLIME are rate optimal under Gaussian models,
the corresponding nonparanormal SKEPTIC estimator is also rate optimal for the
same space of �0 under the nonparanormal model.

In terms of rates of convergence, the nonparanormal SKEPTIC can be a safe
replacement of the Gaussian graphical models. The extra flexibility and robustness
come at almost no cost. In the next subsection we showcase this main theorem
using the graphical Dantzig selector.

REMARK 4.1. Even though in this section we only present the results on the
graphical Dantzig selector, graphical lasso and CLIME, similar arguments should
hold for almost all methods that use the correlation matrix �0 as a sufficient statis-
tic.
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4.2. Applying the nonparanormal SKEPTIC with the graphical Dantzig selector.
In Theorem 4.3 we have shown that the nonparanormal SKEPTIC estimator Ŝ can
be plugged into any parametric procedure and can achieve the optimal parametric
rate of convergence. In this subsection we use the graphical Dantzig selector as an
example to see how this theorem can be applied in specific applications.

We denote �̂npn-s to be the inverse correlation matrix estimated using the non-
paranormal SKEPTIC with the graphical Dantzig selector in (3.2). Given a ma-
trix �, we define deg(�) = max1≤i≤d

∑d
j=1 I (|�ij | �= 0). Following Yuan (2010),

we consider a class of inverse correlation matrices: M1(κ, τ,M) := {� :� � 0,
diag(�−1) = 1,‖�‖1 ≤ κ, 1

τ
≤ λmin(�) ≤ λmax(�) ≤ τ,deg(�) ≤ M}, where

κ, τ > 1. We then have the following corollary of Theorem 4.3.

THEOREM 4.4. For 1 ≤ q ≤ ∞, there exists a constant C1 that depends on κ ,
τ , λmin(�

0) and λmax(�
0), such that

sup
�0∈M1(κ,τ,M)

∥∥�̂npn-s − �0∥∥
q = OP

(
M

√
logd

n

)
,

provided that limn→∞ n
M2 logd

= ∞ and δ = C1

√
logd

n
, for sufficiently large C1.

Here δ is the tuning parameter used in (3.1).

PROOF. The proof can be directly obtained by replacing Lemma 12 in Yuan
(2010) with the result of Theorem 4.3. �

The next theorem establishes the minimax lower bound for inverse correlation
matrix estimation over the class M1(κ, τ,M). Its proof can be easily obtained by
a modification of Theorem 5 in Yuan (2010).

THEOREM 4.5 [Yuan (2010)]. Let M(logd/n)1/2 = o(1). Then there exists a
constant C > 0 depending only on κ and τ such that

lim inf
n→∞ inf

�̂
sup

�0∈M1(κ,τ,M)

P

(∥∥�̂ − �0∥∥
1 ≥ CM

√
logd

n

)
> 0,

where the infimum is taken over all estimates of � based on the observed data
x1, . . . , xn.

From the above theorems, we see that the nonparanormal SKEPTIC estimator
of the inverse correlation matrix can achieve the parametric rate and is in fact
minimax rate optimal over the parameter space M1(κ, τ,M) in terms of �1-risk.
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4.3. Estimating marginal transformations. Recall the definition of f̃j (t) in
(3.6). For any fixed t , f̃j (t) converges in probability to fj (t). Theorem 4.6 pro-
vides a stronger result that f̃j converges to fj uniformly over an expanding inter-
val. This result is important for many downstream applications of nonparanormal
modeling, for example, discriminant analysis or principle component analysis; de-
tails will be provided in a follow-up paper.

THEOREM 4.6. Let gj := f −1
j be the inverse function of fj . For any

0 < γ < 1, define In := [gj (−
√

7
4(1 − γ ) logn), gj (

√
7
4(1 − γ ) logn)]. Then

supt∈In
|f̃j (t) − fj (t)| = oP (1).

5. Experimental results. We investigate the empirical performance of differ-
ent graph estimation methods on both synthetic and real data sets. In particular,
we consider the following methods: (i) npn—the original nonparanormal estima-
tor from Liu, Lafferty and Wasserman (2009); (ii) normal—the Gaussian graph-
ical model (which relies on the Gaussian assumption); (iii) npn-spearman—the
nonparanormal SKEPTIC using Spearman’s rho; (iv) npn-tau—the nonparanormal
SKEPTIC using Kendall’s tau; (v) npn-ns—the normal-score based estimator de-
fined in (2.1) with δn = 1

n+1 .

5.1. Summary of the results. To compare the graph estimation performance of
two procedures A and B , in the following we use A >slightly B to represent that A

slightly outperforms B; A > B means that A is better than B; A � B means that
A is significantly better than B; while A ≈ B means that A and B have similar
performance. Here we summarize the main results:

• Non-Gaussian data without outliers: npn-ns ≈ npn ≈ npn-spearman ≈ npn-
tau � normal.

• Non-Gaussian data with a low level of outliers: npn-tau ≈ npn-spearman >

npn > npn-ns � normal.
• Non-Gaussian data with a higher level of outliers: npn-tau > npn-spearman �

npn > npn-ns � normal.
• Gaussian data without outliers: normal ≈ npn-ns ≈ npn >slightly npn-

spearman ≈ npn-tau.
• Gaussian data with a low level of outliers: npn-tau ≈ npn-spearman > npn >

npn-ns � normal.
• Gaussian data with a higher level of outliers: npn-tau > npn-spearman > npn >

npn-ns > normal.

These results indicate a trade-off between estimation robustness and statisti-
cal efficiency. For nonparanormal data without outliers, npn-ns and npn behave
similarly to npn-tau and npn-spearman. However, if the data are contaminated by
outliers, npn-tau and npn-spearman outperform npn-ns and npn even when the
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contamination level is low. Overall, our simulations suggest that both npn-tau and
npn-spearman have a good balance of statistical efficiency and robustness. In addi-
tion, since both the nonparanormal SKEPTIC and the normal-score based methods
are rank-based, they are invariant to different choices of marginal transformations
fj in the true model. In contrast, the Gaussian estimators (the graphical Lasso,
CLIME, etc.) are not marginal transformation invariant. Their performance de-
creases dramatically when nonidentity transformations are applied. Going beyond
numerical simulations, we also apply our method to a large-scale genomic data set.

5.2. Numerical simulations. We adopt the same data generating procedure as
in Liu, Lafferty and Wasserman (2009). To generate a d-dimensional sparse graph
G = (V ,E), let V = {1, . . . , d} correspond to variables X = (X1, . . . ,Xd). We as-
sociate each index j ∈ {1, . . . , d} with a bivariate data point (Y

(1)
j , Y

(2)
j ) ∈ [0,1]2,

where Y
(k)
1 , . . . , Y

(k)
d ∼ Uniform[0,1] for k = 1,2. Each pair of vertices (i, j) is

included in the edge set E with probability P((i, j) ∈ E) = 1√
2π

exp(−‖yi−yj‖2

2s
),

where yi := (y
(1)
i , y

(2)
i ) is the empirical observation of (Y

(1)
i , Y

(2)
i ) and ‖ · ‖ de-

notes Euclidean distance. Here, s = 0.125 is a parameter that controls the spar-
sity level of the generated graph. We restrict the maximum degree of the graph
to be 4 and build the inverse correlation matrix �0 according to �0

jk = 1 if j = k,

�0
jk = 0.245 if (j, k) ∈ E, and �0

jk = 0 otherwise. Here the value 0.245 guarantees

positive definiteness of �0. Let �0 = (�0)−1. To obtain the correlation matrix, we
simply rescale �0 so that all its diagonal elements are 1. We then sample n data
points x1, . . . , xn from the nonparanormal distribution NPNd(f 0,�0), where for
simplicity we use the same univariate transformations on each dimension, that is,
f 0

1 = · · · = f 0
d = f 0. To sample data from the nonparanormal distribution, we also

need g0 := (f 0)−1. The following two different versions of g0 are used in the
simulations:

DEFINITION 5.1 (Gaussian CDF transformation). Let g0 be a univariate
Gaussian cumulative distribution function with mean μg0 and the standard devia-

tion σg0 :g0(t) := �(
t−μg0
σg0

). The Gaussian CDF transformation g0
j = (f 0

j )−1 for

the j th dimension is defined as

g0
j (zj ) := g0(zj ) − ∫

g0(t)φ((t − μj)/σj ) dt√∫
(g0(y) − ∫

g0(t)φ((t − μj)/σj ) dt)2φ((y − μj)/σj ) dy
,(5.1)

where φ(·) is the standard Gaussian density function.

DEFINITION 5.2 (Power transformation). Let g0(t) := sign(t)|t |α where
α > 0 is a parameter. The power transformation for the j th dimension is defined



2306 H. LIU ET AL.

as

g0
j (zj ) := g0(zj − μj)√∫

g2
0(t − μj)φ((t − μj)/σj ) dt

,(5.2)

where φ(·) is the standard Gaussian density function.

These transformations were used by Liu, Lafferty and Wasserman (2009) to
study the performance of the original nonparanormal estimator. To comply with
their simulation design, for the Gaussian CDF transformation we set μg0 = 0.05
and σg0 = 0.4; for the power transformation, we set α = 3.

To generate synthetic data, we set d = 100, resulting in
(100

2

)+ 100 = 5050 pa-
rameters to be estimated. The sample sizes vary from n = 100,200 to 500. Three
conditions are considered, corresponding to using the power transformation, the
Gaussian CDF transformation and the linear transformation (or no transforma-
tion).3

To evaluate the robustness of these methods, we consider two types of data con-
tamination mechanisms, deterministic contamination and random contamination.
Let r ∈ (0,1) be the contamination level. For deterministic contamination we re-
place �nr� data points with a deterministic vector (+5,−5,+5,−5,+5, . . .)T ∈
R

d , in which the numbers +5 and −5 occur in an alternating way. For random con-
tamination, we randomly (according to a uniform distribution) select �nr� entries
of each dimension and replace them with either +5 or −5 with equal probabil-
ity. From the robustness point of view, the deterministic contamination is more
malicious and can severely hurt nonrobust procedures. In contrast, the random
contamination is relatively benign and is more realistic for modern scientific data
analysis.

Both the normal-score based nonparanormal estimators (npn and npn-ns) and
the nonparanormal SKEPTIC estimators (npn-spearman and npn-tau) are two-step
procedures. In the first step we obtain an estimate Ŝ of the correlation matrix; in
the second step we plug Ŝ into a parametric graph estimation procedure. In this
numerical study, we consider two parametric baseline procedures: (i) the graphi-
cal lasso and (ii) the Meinshausen–Bühlmann graph estimator. The former repre-
sents the likelihood-based approach and the latter is a type of pseudo-likelihood-
based approach. In our experiments, we find that CLIME has behavior similar
to the graphical lasso, while the graphical Dantzig selector behaves similarly to
the Meinshausen–Bühlmann method. Our implementations of the nonparanormal
SKEPTIC, graphical lasso and Meinshausen–Bühlmann methods are available in
the R package huge.4

3For linear transformation, the data exactly follow the Gaussian distribution.
4http://cran.r-project.org/web/packages/huge. The package huge corrects some nonconvergence

problems in the glasso package.

http://cran.r-project.org/web/packages/huge
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Let G = (V ,E) be a d-dimensional graph. We denote by |E| the number of
edges in the graph G. We use false positive and negative rates to evaluate the
graph estimation performance. Let Ĝλ = (V , Êλ) be an estimated graph using
the regularization parameter λ in either the graphical lasso procedure (3.4) or the
Meinshausen–Bühlmann procedure. The number of false positives when using the
regularization parameter λ is FP(λ) := the number of edges in Êλ but not in E.
The number of false negatives at λ is defined as FN(λ) := the number of edges in
E but not in Êλ. We further define the false negative rate (FNR) and false positive
rate (FPR) as

FNR(λ) := FN(λ)

|E| and FPR(λ) := FP(λ)
/[(d

2

)
− |E|

]
.(5.3)

Let � be the set of all regularization parameters used to create the full path. The
oracle regularization parameter λ∗ is defined as

λ∗ := arg min
λ∈�

{
FNR(λ) + FPR(λ)

}
.

The oracle score is defined to be FNR(λ∗) + FPR(λ∗). To illustrate the overall
performance of the studied methods over the full paths, the averaged ROC curves
for n = 200, d = 100 over 100 trials are shown in Figures 1–4, using (FNR(λ),1−
FPR(λ)). For each figure five curves are presented, corresponding to npn, npn-tau,
npn-spearman, npn-ns and normal.

Let FPR := FPR(λ∗) and FNR := FNR(λ∗). Tables 1–4 provide numerical com-
parisons of the three methods on data sets with the different transformations, where
we repeat the experiments 100 times and report the average FPR and FNR values
with the corresponding standard errors in parentheses.

In the following we provide detailed analysis based on these numerical simula-
tions.

5.2.1. Non-Gaussian data with no outliers. From the power transformation
and CDF transformation plots in Figures 1–4, we see that, when the contamina-
tion level r is zero, the performance of the nonparanormal SKEPTIC estimators
(npn-spearman and npn-tau) and the previous normal-score based nonparanormal
estimators (npn, and npn-ns) is comparable. In this case, all these methods signifi-
cantly outperform the corresponding parametric methods (the graphical lasso and
Meinshausen–Bühlmann procedure).

From Tables 1–4, we see that in terms of oracle FPR and FNR, npn-ns and npn
seem slightly better than npn-spearman and npn-tau.

5.2.2. Non-Gaussian data with low level of outliers. When the outlier contam-
ination level is low (r = 0.01 for the deterministic contamination and r = 0.1 for
the random contamination), the performance of the nonparanormal SKEPTIC (npn-
spearman and npn-tau) is significantly better than that of npn and npn-ns. Still, all
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FIG. 1. ROC curves for the c.d.f., linear and power transformations (top, middle, bottom) using the
Meinshausen–Bühlmann graph estimator, with deterministic data contamination at different levels
(r = 0, 0.01, 0.05). Here n = 200 and d = 100. Note: “npn” is the original Winsorized normal-s-
core nonparanormal estimator from Liu, Lafferty and Wasserman (2009); “normal” is the naive
Gaussian graph estimator; “Spearman” represents the nonparanormal SKEPTIC using Spearman’s
rho; “Kendall” represents the nonparanormal SKEPTIC using Kendall’s tau; “npn-ns” represents
the normal-score based nonparanormal estimator.

the semiparametric methods significantly outperform the corresponding paramet-
ric methods (the graphical lasso and parallel lasso procedure). Similar patterns can
also be found based on the quantitative comparisons in Tables 1–4.

5.2.3. Non-Gaussian data with higher level of outliers. From Figures 1–4, we
see that when the data contamination level is higher (r = 0.05 for the determin-
istic contamination and r = 0.20 for the random contamination), the performance
of the nonparanormal SKEPTIC (npn-spearman and npn-tau) is significantly bet-
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FIG. 2. ROC curves for the c.d.f., linear and power transformations (top, middle, bottom) using the
glasso graph estimator, with deterministic data contamination at different levels (r = 0, 0.01, 0.05),
with n = 200 and d = 100.

ter than that of npn and npn-ns. For this high outlier case, npn-tau outperforms
npn-spearman, suggesting that Kendall’s tau is more robust than Spearman’s rho
statistic. The parametric methods (the graphical lasso and parallel lasso procedure)
perform the worst.

Unlike the previous low outlier case, the quantitative results from Tables 1–4
present interesting patterns. For deterministic contamination, we do not see signif-
icant improvement of the npn-spearman and npn-tau over npn and npn-ns in terms
of the oracle FPR and FNR. At first sight this seems counterintuitive since the cor-
responding ROC curves suggest that npn-spearman and npn-tau are globally bet-
ter than npn and npn-ns. The main reason for such a result is that the oracle score
point happens to coincide with the intersection point of different ROC curves. On
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FIG. 3. ROC curves for the c.d.f., linear and power transformations (top, middle, bottom) using the
glasso graph estimator, with random data contamination at different levels (r = 0.05, 0.1, 0.2), with
n = 200 and d = 100.

the other hand, for the random contamination setting, we see that the performance
of npn-spearman and npn-tau uniformly dominates that of the npn and npn-ns.

5.2.4. Gaussian data with no outliers. From the linear transformation plot in
Figures 1–4, we see that when the outlier contamination level is r = 0 the perfor-
mance of all these methods is comparable. Based on Tables 1–4, we could see that
in terms of oracle FPR and FNR, normal, npn-ns and npn are slightly better than
npn-spearman and npn-tau. This result suggests that there is only a very small ef-
ficiency loss for the nonparanormal SKEPTIC with truly Gaussian data, though this
loss seems negligible.
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FIG. 4. ROC curves for the c.d.f., linear and power transformations (top, middle, bottom) using
the Meinshausen–Bühlmann graph estimator, with random data contamination at different levels
(r = 0.05, 0.1, 0.2), with n = 200 and d = 100.

5.2.5. Gaussian data with Lowerk and higher levels of outliers. From the lin-
ear transformation plot in Figures 1–4, we see that when the outlier contamination
level is r > 0, the performance of the parametric methods like the graphical lasso
immediately decreases. The main reason is that these methods are based on the
Pearson correlation matrix, which is very sensitive to outliers. In contrast, the semi-
parametric methods (npn-spearman, npn-tau, npn-ns and npn) are more resistant
to outliers. Among them, npn-tau is the most robust, and npn-spearman behaves
similarly. Both methods outperform npn, which further outperforms npn-ns.

In summary, the simulation results illustrate an interesting trade-off between
statistical efficiency and estimation robustness. In general, both npn-spearman
and npn-tau have very good overall performance. In practice, which method to
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TABLE 1
Quantitative comparison of the 5 methods on simulated data sets using different nonparanormal transformations. The graphs are estimated using the

glasso algorithm with deterministic data contamination

npn npn-ns Normal Spearman Kendall

tf r n FPR(%) FNR FPR FNR FPR FNR FPR FNR FPR FNR

c.d.f. 0.00 100 11 (2.9) 13 (3.5) 11 (3.1) 13 (3.6) 26 (6.9) 38 (9.2) 11 (3.4) 15 (3.6) 11 (3.2) 15 (3.6)
200 6 (2) 5 (2.1) 6 (1.9) 6 (2.5) 18 (6.7) 32 (17.2) 6 (2.2) 6 (2.4) 6 (2.1) 6 (2.4)
500 2 (1.6) 1 (1.2) 3 (1.7) 1 (1.1) 11 (4.2) 19 (20.9) 3 (1.6) 2 (1.4) 3 (1.6) 2 (1.4)

0.01 100 14 (3.8) 15 (3.9) 16 (4.4) 15 (4.5) 33 (8) 38 (11.4) 13 (3.1) 16 (3.8) 13 (3.2) 16 (3.9)
200 12 (3.7) 16 (4.5) 24 (7.8) 13 (6.7) 40 (9.7) 28 (15.8) 10 (2.7) 12 (3.4) 10 (2.8) 12 (3.1)
500 4 (1.6) 5 (2) 7 (2.4) 8 (2.7) 40 (9.3) 17 (14.2) 3 (1.5) 3 (1.5) 3 (1.4) 3 (1.6)

0.05 100 27 (2.6) 12 (3.5) 26 (2.4) 12 (3.5) 40 (10.4) 40 (13) 25 (2.3) 14 (3.3) 27 (2.9) 13 (3.2)
200 36 (2) 7 (2) 37 (2) 7 (2) 37 (13.8) 35 (24.4) 36 (2.4) 8 (2.5) 36 (2.3) 8 (2.7)
500 33 (1.3) 1 (0.9) 33 (1.2) 1 (1) 43 (10.7) 21 (17.4) 31 (1.4) 1 (1) 31 (1.5) 1 (1.2)

Linear 0.00 100 11 (3.2) 13 (3.7) 11 (2.9) 13 (3.1) 11 (2.8) 12 (3.2) 11 (2.6) 14 (3.5) 11 (2.8) 15 (3.5)
200 6 (2.1) 5 (2) 5 (2) 5 (2) 5 (1.5) 5 (4.1) 6 (2) 6 (2.1) 6 (2.1) 6 (2.3)
500 2 (1) 1 (1.1) 2 (1.1) 1 (1) 2 (0.9) 1 (0.7) 2 (0.9) 1 (1.2) 2 (0.9) 1 (1.2)

0.01 100 14 (3.3) 16 (4.1) 16 (4.3) 16 (4.8) 25 (3.3) 13 (7.6) 13 (3.5) 16 (4) 13 (3.8) 16 (4.5)
200 13 (4.4) 16 (4.6) 27 (5.9) 11 (5.6) 37 (4) 6 (8.2) 10 (2.7) 12 (3.2) 9 (2.9) 12 (3.3)
500 5 (2.1) 5 (2.3) 7 (2.3) 10 (3.4) 33 (2.9) 2 (3.6) 3 (1.2) 3 (1.6) 3 (1.3) 3 (1.6)

0.05 100 26 (2.4) 12 (3.2) 27 (2.6) 12 (3.3) 35 (4.9) 17 (7.5) 26 (2.4) 13 (3.4) 27 (2.5) 13 (3.1)
200 37 (1.9) 7 (3) 37 (1.9) 7 (2.9) 37 (5.5) 7 (12.1) 36 (2.4) 8 (2.8) 37 (2.6) 8 (2.8)
500 33 (1.4) 1 (1) 33 (1.3) 1 (1.1) 35 (3.3) 5 (5.8) 31 (1.4) 1 (1) 31 (1.4) 1 (1.1)

Power 0.00 100 11 (2.9) 13 (3.4) 11 (3.2) 13 (3.4) 25 (5) 32 (6.7) 11 (3.3) 14 (3.6) 12 (3.5) 14 (3.7)
200 6 (2.7) 5 (2.4) 6 (2.9) 5 (2.2) 19 (4.2) 18 (6.4) 6 (2.7) 6 (2.7) 6 (2.6) 6 (2.7)
500 2 (1.5) 1 (1.1) 2 (1.4) 1 (1.1) 9 (2.3) 8 (3) 2 (1.3) 1 (1.3) 2 (1.5) 1 (1.3)

0.01 100 14 (3.5) 16 (4.4) 16 (3.8) 16 (4.4) 33 (5.2) 32 (6.1) 13 (3.6) 16 (4.2) 13 (3.3) 16 (3.9)
200 12 (3.5) 17 (4.3) 21 (7.2) 15 (7.5) 50 (8.5) 23 (13.1) 10 (2.8) 12 (3.3) 9 (2.7) 12 (3.5)
500 5 (1.6) 5 (2) 5 (1.9) 7 (2.3) 40 (4.5) 13 (6.1) 3 (1.4) 3 (1.4) 3 (1.3) 3 (1.5)

0.05 100 26 (2.3) 12 (3.1) 26 (2.2) 12 (3.2) 43 (6.3) 41 (8.7) 25 (2.5) 13 (3.4) 26 (2.5) 13 (3.3)
200 37 (2.1) 8 (3.1) 37 (2.1) 8 (3.2) 48 (6.8) 27 (11.9) 36 (2.5) 8 (2.8) 37 (2.7) 8 (3.3)
500 33 (1.4) 1 (1.1) 33 (1.2) 1 (1.8) 47 (3.4) 14 (5.3) 31 (1.4) 1 (1.2) 31 (2.8) 1 (3.2)
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TABLE 2
Quantitative comparison of the 5 methods on simulated data sets using different nonparanormal transformations. The graphs are estimated using the

Meinshausen–Bühlmann algorithm with deterministic data contamination

npn npn-ns Normal Spearman Kendall

tf r n FPR(%) FNR FPR FNR FPR FNR FPR FNR FPR FNR

c.d.f. 0.00 100 10 (2.8) 15 (4.2) 10 (2.9) 15 (4.4) 25 (5.5) 44 (6.4) 11 (2.6) 16 (4.4) 11 (2.7) 16 (4.4)
200 4 (1.5) 5 (2.5) 5 (1.7) 6 (3) 20 (4.6) 30 (5.4) 5 (1.7) 5 (2.6) 5 (1.9) 5 (2.4)
500 1 (0.7) 1 (0.8) 1 (0.7) 1 (1) 11 (2.9) 12 (3.4) 1 (0.6) 1 (0.9) 1 (0.6) 1 (0.8)

0.01 100 12 (3.5) 16 (4) 14 (3.3) 15 (3.5) 33 (7.4) 43 (8) 11 (3) 17 (3.9) 12 (3.1) 16 (3.9)
200 15 (3.4) 12 (3.5) 21 (3.4) 12 (3.6) 38 (4.6) 29 (5.1) 10 (3.3) 13 (3.6) 10 (3.1) 12 (3.4)
500 4 (1.7) 4 (2.9) 6 (2.4) 5 (3.3) 39 (3.4) 14 (4.6) 2 (1.4) 2 (2.2) 2 (1.2) 2 (2.2)

0.05 100 22 (2.5) 14 (3.3) 23 (2.5) 15 (3.5) 39 (7) 43 (7.9) 21 (3.2) 16 (4.1) 22 (3) 16 (4.2)
200 35 (2.8) 9 (3.5) 35 (3) 9 (3.5) 42 (4.3) 28 (5.7) 32 (3.2) 11 (4.1) 33 (3.5) 11 (3.8)
500 27 (2.3) 3 (1.9) 29 (1.9) 3 (1.9) 46 (4.2) 15 (4.6) 21 (2.7) 4 (2.3) 20 (2.6) 4 (2.4)

Linear 0.00 100 10 (2.8) 15 (3.5) 10 (2.7) 14 (3.4) 9 (2.5) 14 (3.2) 11 (2.8) 16 (3.6) 11 (2.6) 16 (3.4)
200 4 (1.5) 5 (1.9) 4 (1.5) 5 (1.8) 4 (1.6) 5 (2) 5 (1.5) 6 (2.4) 5 (1.6) 6 (2.3)
500 1 (0.6) 1 (1.1) 1 (0.6) 1 (1.1) 1 (0.6) 1 (1.1) 1 (0.6) 1 (1.1) 1 (0.6) 1 (1.3)

0.01 100 12 (2.9) 16 (3.9) 14 (3.5) 16 (4.1) 22 (3) 15 (3.7) 12 (3.5) 17 (4) 11 (3.1) 18 (4.2)
200 16 (3.8) 13 (4.3) 23 (3.7) 11 (4.1) 34 (2.3) 7 (2.7) 10 (3.4) 13 (4) 10 (3.1) 13 (3.8)
500 4 (1.5) 4 (1.9) 7 (2.2) 5 (2.2) 23 (2.4) 4 (2.2) 2 (1.1) 2 (1.4) 2 (1) 2 (1.5)

0.05 100 23 (2.8) 15 (3.3) 23 (2.5) 15 (3.6) 30 (3.9) 20 (4.1) 22 (3.1) 16 (4.1) 21 (3.3) 17 (3.6)
200 35 (2.6) 9 (3.2) 36 (2.6) 8 (3.1) 37 (2.1) 6 (2.2) 32 (2.9) 10 (3.4) 33 (3) 10 (3.3)
500 27 (2.1) 2 (1.5) 29 (1.9) 2 (1.5) 33 (2) 4 (1.8) 21 (2.5) 4 (2.1) 20 (2.7) 4 (2.3)

Power 0.00 100 10 (2.9) 15 (3.8) 10 (2.9) 14 (3.9) 18 (4.2) 33 (5.3) 11 (3.1) 16 (4.2) 10 (3.3) 17 (4.2)
200 4 (1.6) 5 (1.9) 4 (1.7) 5 (1.9) 14 (2.9) 18 (4.1) 5 (1.5) 6 (2.2) 5 (1.6) 6 (2.2)
500 1 (0.6) 1 (0.7) 1 (0.5) 1 (0.7) 7 (1.8) 6 (2) 1 (0.5) 1 (0.8) 1 (0.6) 1 (0.7)

0.01 100 13 (2.9) 16 (3.9) 14 (2.9) 16 (4.4) 26 (5.5) 37 (6.7) 12 (2.8) 18 (3.9) 12 (3) 17 (3.3)
200 17 (4) 13 (4.6) 21 (4) 12 (4.2) 45 (4.6) 23 (5.7) 11 (3.1) 13 (3.8) 10 (3.3) 13 (3.9)
500 4 (1.5) 4 (2.4) 5 (2.1) 5 (2.8) 36 (4.2) 13 (6.4) 2 (1.1) 2 (1.9) 2 (1.4) 2 (2)

0.05 100 22 (2.8) 15 (3.3) 23 (2.5) 15 (3.3) 41 (9.8) 42 (11) 20 (2.9) 17 (3.6) 22 (2.9) 17 (3.6)
200 35 (2.8) 9 (4.1) 35 (2.6) 9 (3.9) 50 (5.4) 24 (7.5) 32 (2.9) 10 (3.4) 33 (2.9) 10 (3.9)
500 27 (1.9) 2 (1.7) 28 (2.1) 2 (1.7) 45 (3.7) 14 (4.4) 20 (2.4) 4 (2.3) 20 (2.8) 4 (2.5)
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TABLE 3
Quantitative comparison of the 5 methods on simulated data sets using different nonparanormal transformations. The graphs are estimated using the

glasso algorithm with random data contamination

npn npn-ns Normal Spearman Kendall

tf r n FPR(%) FNR FPR FNR FPR FNR FPR FNR FPR FNR

c.d.f. 0.05 100 16 (3.6) 24 (4.9) 17 (4.4) 26 (5.7) 27 (12.9) 57 (13.3) 16 (3.9) 23 (4.8) 16 (4.1) 23 (5)
200 10 (2.2) 12 (3) 11 (2.6) 14 (3.6) 26 (10.9) 51 (12.5) 10 (2.8) 11 (3.2) 9 (2.6) 11 (3.3)
500 4 (2.1) 4 (2.5) 5 (2.1) 6 (2.7) 22 (8.3) 40 (13.9) 4 (2.1) 4 (2.2) 4 (2) 4 (2.1)

0.10 100 19 (5) 35 (6.2) 20 (4.9) 37 (6.3) 30 (17.4) 59 (18) 17 (4.8) 33 (6.1) 18 (4.8) 33 (6.2)
200 15 (3.8) 21 (4.6) 16 (3.9) 25 (5.1) 29 (13.2) 56 (13.3) 13 (3.3) 18 (4.6) 13 (3.5) 18 (4.5)
500 7 (2.3) 9 (2.7) 9 (2.4) 12 (3.1) 27 (11.3) 50 (13) 6 (1.9) 7 (2.2) 6 (2.1) 6 (2.2)

0.20 100 28 (7.9) 47 (8.2) 29 (7.5) 48 (8.2) 30 (19.2) 64 (20.4) 24 (7.8) 50 (8.2) 24 (7.9) 49 (7.8)
200 24 (6.7) 39 (7.5) 28 (6.7) 39 (6.9) 31 (17.8) 61 (18.6) 20 (5.8) 37 (6.7) 19 (5.7) 37 (6)
500 17 (3.5) 23 (4.6) 20 (4.7) 28 (5) 34 (15.4) 54 (15.6) 13 (3.6) 19 (4.4) 12 (3.3) 19 (4.2)

Linear 0.05 100 15 (3.5) 25 (4.6) 16 (4.6) 26 (4.7) 23 (6.3) 38 (6.7) 15 (3.6) 23 (4.6) 14 (3.2) 24 (4.6)
500 5 (2.4) 4 (1.9) 5 (2.4) 5 (2) 10 (2.7) 12 (3.7) 4 (2.2) 3 (1.7) 4 (2.2) 3 (1.6)
200 10 (2.3) 13 (3.4) 11 (2.5) 14 (3.4) 16 (4.3) 27 (8.4) 9 (2.5) 11 (3) 9 (2.2) 11 (3.2)

0.10 100 19 (4.8) 35 (6) 20 (5.4) 37 (6.3) 28 (10.2) 48 (9.6) 19 (4.6) 32 (5.2) 18 (4.6) 32 (5.3)
200 14 (4) 22 (4.5) 15 (3.8) 25 (4.2) 24 (6.5) 40 (7.1) 13 (3) 18 (4.2) 12 (3.1) 18 (4.3)
500 8 (2.1) 9 (2.7) 10 (2.5) 11 (3.2) 19 (4.6) 24 (4.8) 6 (1.9) 7 (2.4) 6 (2.2) 6 (2.3)

0.20 100 28 (7.6) 48 (7.8) 30 (9) 47 (8.8) 35 (18) 53 (17.5) 24 (7.6) 49 (7.6) 24 (7) 49 (7.2)
200 25 (5.1) 37 (6.5) 30 (6.5) 36 (7) 32 (11.4) 50 (11.6) 19 (5.3) 37 (6.3) 18 (4.8) 38 (5.7)
500 18 (4) 23 (5.2) 22 (4.8) 25 (5.4) 27 (7.4) 41 (8.2) 13 (3.8) 19 (4.2) 13 (3.5) 19 (4.2)

Power 0.05 100 15 (4.5) 25 (5.7) 16 (4.4) 25 (5) 33 (13.2) 55 (13.9) 15 (4.1) 23 (4.8) 16 (4.3) 22 (5.1)
200 10 (3.2) 13 (3.7) 10 (3.1) 14 (3.5) 30 (8.4) 52 (8.9) 9 (2.8) 12 (3.4) 9 (2.7) 11 (3.2)
500 4 (2.2) 4 (1.8) 5 (2) 5 (1.9) 28 (6.9) 39 (8.1) 4 (2) 3 (1.7) 4 (2.1) 3 (1.7)

0.10 100 20 (4.9) 35 (5.7) 20 (6) 36 (6.4) 38 (22.2) 56 (22.5) 18 (5.2) 32 (5.7) 18 (5.1) 32 (5.8)
200 14 (4.1) 22 (5.2) 16 (3.8) 23 (5.1) 39 (16.4) 52 (17.3) 13 (3.9) 19 (4.5) 12 (3.7) 18 (4.1)
500 7 (2.2) 9 (2.7) 8 (2.2) 10 (2.9) 37 (11.7) 46 (12.1) 6 (1.7) 6 (2.2) 5 (1.7) 6 (2.1)

0.20 100 27 (7.7) 48 (9.5) 30 (8.4) 47 (9.9) 42 (24.8) 54 (25.6) 22 (7.3) 50 (8.9) 23 (8) 49 (9.2)
200 24 (6) 38 (7.2) 27 (5.9) 38 (7.3) 41 (24.4) 54 (25) 20 (4.7) 37 (5.5) 19 (5.1) 36 (5.8)
500 18 (4) 23 (4.8) 20 (4.2) 24 (5.3) 41 (16.9) 51 (17.7) 13 (3.6) 19 (4.3) 12 (3.1) 19 (4.3)
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TABLE 4
Quantitative comparison of the 5 methods on simulated data sets using different nonparanormal transformations. The graphs are estimated using the

Meinshausen–Bühlmann algorithm with random data contamination

npn npn-ns Normal Spearman Kendall

tf r n FPR(%) FNR FPR FNR FPR FNR FPR FNR FPR FNR

c.d.f. 0.05 100 15 (3.7) 27 (4.3) 15 (3.5) 30 (4.5) 29 (16.1) 60 (15.8) 13 (3.3) 27 (4.4) 14 (3.2) 26 (4.3)
200 9 (2.4) 13 (3.1) 10 (2.7) 15 (4.1) 27 (9.7) 53 (10.5) 9 (2.5) 11 (3.4) 8 (2.7) 11 (3.3)
500 3 (1.5) 4 (1.8) 4 (1.4) 5 (2.2) 21 (5.7) 42 (6.8) 3 (1.3) 3 (1.8) 3 (1.2) 3 (1.8)

0.10 100 18 (4.7) 40 (5.4) 18 (5.7) 42 (6.6) 38 (21.6) 55 (21.7) 18 (5) 37 (5.8) 17 (5.1) 36 (5.6)
200 13 (3.6) 25 (5.3) 15 (3.9) 28 (5.6) 32 (14.2) 56 (14) 12 (3.2) 21 (5.2) 12 (3.2) 21 (5)
500 7 (2.4) 10 (2.9) 9 (2.9) 14 (3.4) 24 (9.2) 53 (10.6) 5 (1.8) 6 (2.6) 5 (1.5) 6 (2.6)

0.20 100 22 (8.2) 55 (8.2) 22 (7.8) 56 (8.4) 50 (31.4) 45 (31) 22 (7.7) 54 (9) 22 (7) 53 (8)
200 19 (6.5) 45 (7.5) 19 (7.2) 48 (8) 36 (23.7) 57 (23.5) 19 (6.2) 40 (7.3) 19 (5.5) 41 (7.1)
500 14 (4.1) 28 (5) 15 (3.9) 35 (5.6) 29 (16.3) 57 (15.7) 12 (3) 21 (4.4) 12 (3.4) 21 (4.6)

Linear 0.05 100 14 (3.6) 29 (4.9) 14 (3.6) 30 (4.7) 19 (5.8) 45 (6.8) 14 (4) 26 (5.3) 13 (4.3) 26 (5.2)
200 10 (2.9) 14 (3.5) 10 (2.9) 16 (4.2) 15 (4.4) 31 (5) 9 (2.7) 12 (3.1) 8 (2.4) 12 (2.9)
500 3 (1.3) 3 (1.6) 4 (1.5) 4 (1.9) 8 (2.7) 14 (3.3) 3 (1.2) 3 (1.7) 3 (1.1) 3 (1.6)

0.10 100 17 (5) 41 (6.3) 17 (4.6) 43 (6.2) 20 (6.9) 59 (7.9) 18 (5.2) 37 (6.3) 18 (4.6) 35 (5.8)
200 14 (3.8) 25 (5.2) 14 (4.2) 29 (5.6) 19 (6.6) 47 (6.9) 12 (3.1) 21 (4.4) 12 (3.2) 21 (4.6)
500 7 (2.2) 10 (2.9) 8 (2.6) 13 (3.2) 14 (4.2) 30 (5.8) 5 (1.7) 7 (2.4) 5 (1.7) 7 (2.5)

0.20 100 23 (9.1) 54 (9.3) 22 (8.8) 56 (9.2) 28 (18) 61 (18.1) 22 (8.4) 53 (8.4) 23 (8.6) 52 (8.8)
200 19 (5.8) 44 (6.7) 19 (5.9) 47 (6.6) 23 (10) 60 (10.2) 19 (5.7) 40 (7) 19 (6) 39 (7.5)
500 14 (3.9) 29 (4.9) 14 (4.2) 33 (6) 20 (7.1) 48 (8.4) 13 (3.7) 20 (4.5) 12 (3.2) 20 (4.2)

Power 0.05 100 15 (4.2) 28 (4.9) 15 (3.9) 29 (5) 30 (13.7) 58 (14.4) 14 (4.3) 26 (5.1) 15 (4) 25 (4.8)
200 9 (2.5) 14 (3.9) 9 (2.6) 15 (3.9) 27 (10.4) 52 (10.2) 8 (2.6) 12 (3.2) 8 (2.2) 12 (3.1)
500 3 (1.3) 3 (1.5) 3 (1.3) 4 (1.6) 20 (6.2) 44 (7.2) 3 (1.1) 2 (1.4) 2 (1) 2 (1.3)

0.10 100 18 (5.2) 40 (5.1) 18 (5.4) 42 (5.6) 41 (25.4) 52 (25) 17 (5) 37 (5.8) 17 (4.8) 36 (5.1)
200 14 (3.9) 25 (5.1) 14 (3.9) 27 (5.6) 33 (20) 57 (19.5) 12 (2.7) 20 (4.4) 12 (3.4) 20 (4.3)
500 7 (1.9) 10 (2.9) 7 (2.3) 11 (3) 26 (11.3) 55 (13) 5 (1.7) 7 (2.2) 5 (1.6) 6 (2.1)

0.20 100 22 (6.9) 55 (8.4) 22 (7.4) 56 (8.7) 46 (26.9) 48 (26.9) 21 (7.4) 54 (8.3) 22 (7.2) 52 (8.4)
200 19 (5.9) 44 (7.1) 19 (6.4) 46 (7.3) 43 (25.5) 51 (25.5) 19 (6.1) 40 (7.2) 18 (4.9) 40 (6.2)
500 13 (4.1) 27 (5.7) 14 (4.8) 29 (5.7) 35 (18.6) 56 (19.3) 13 (3.4) 20 (4.7) 12 (3.4) 19 (4.5)
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use should be determined by knowledge about the data. For example, for high-
throughput genomics data sets, we believe that using npn-spearman and npn-tau
is preferable to using less robust methods like npn-ns. In contrast, if the data are
free from outliers, a normal-score based method like npn could be a good choice.

5.3. Gene expression data. We compare different methods on a large ge-
nomics data set. In this study, we collect 13,182 publicly available microarray
samples for Affymetrix’s HGU133a platform. These samples are downloaded from
GEO and Array Express. Our data contains 2717 tissue types (e.g., lung cancer,
stem cell, etc.). For each array sample, there are 22,283 probes, corresponding to
12,719 genes. This is thus far the largest microarray gene expression data set that
has been collected.

The main purpose of this study is to estimate the conditional independence
graphs over different genes and different tissue types. To estimate the gene graph,
we treat the 13,182 arrays as independent observations and the expression value
of each gene as a random variable. To estimate the tissue graph, we average all
the arrays belonging to the same tissue type and treat this tissue type expression
as a random variable. In this setting, the 12,719 gene expressions are treated as in-
dependent observations. While the gene and tissue types are not independent, we
adopt this approach as our working procedure, for simplicity.

Two major challenges for conducting statistical analysis on large-scale inte-
grated data sets are data cleaning and batch/lab effects removal. We conduct surro-
gate variable analysis [Leek and Storey (2007)] on this data to remove batch effects
and normalize the data from different labs. Since the main purpose of this paper
is to compare different methods on empirical data sets, we focus on presenting
the differential graphs between different methods. The detailed data preprocessing
protocols and the scientific implications of the obtained results are not reported.

We first screen out all the genes whose marginal standard deviation is below
a given threshold. Such a procedure provides us a list of 2000 genes which vary
the most across different array samples. To estimate the gene graph, we first cal-
culate the full regularization path for 100 tuning parameters using npn-spearman
and automatically select the tuning parameter using the StARS stability-based ap-
proach [Liu, Roeder and Wasserman (2010)]. The resulting graph contains 1557
edges. We then examine the full regularization paths of the other graph estimation
methods and select the graph with closest sparsity level.

To estimate the tissue network, we first remove all the data for tissue types
which have less than 5 replications, leaving 2714 tissue types. We only use the
2000 filtered out genes to estimate the tissue network. After averaging the array
samples belonging to the same tissue type, we obtain a final data matrix with size
2000 × 2714. The remaining procedure of estimating the tissue graph is the same
as that of estimating the gene graph. Some summary statistics of the estimated
gene and tissue graphs are presented in Table 5.
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TABLE 5
Summary statistics of the HGU133a data networks estimated at the gene and tissue levels

Edge no. Edge diff

Network dim Spearman Normal npn-ns SP > GA SP < GA SP > NS SP < NS

Tissue 2714 2639 2379 2478 602 342 307 146
Gene 2000 1557 1550 1411 1235 1228 691 545

Note: GA := normal; SP := spearman; NS := npn-ns. A > B means the number of edges only appear
in the estimated graph of A, but not in that of B; A < B is vice versa.

From Table 5, we see that the estimated tissue graph is more dense than the gene
graph. Since both graphs contain around 2000 nodes with more than 1500 edges,
it is not very informative to visualize whole graphs. Instead we are interested in
understanding the differential graphs.

For example, at the gene level, the npn-sp graph contains 1235 edges that are
not in the normal graph. In contrast, the normal graph contains 1228 edges that
are not in the npn-sp graph. Since there are 1235/1557 ≈ 80% edges in npn-sp
that are not present in the normal graph, this suggests that the data are highly
non-Gaussian. When we further compare the npn-sp gene graph with the npn-ns
graph, we found that there are 691/1557 ≈ 45% edges that are not present in the
npn-ns graph, suggesting that this data may contain high levels of outliers. Since
this data set is integrated from many sources, this is not surprising. Compared
with the gene graphs, the tissue graphs present a different pattern. Even though
the delivered tissue graphs are much denser than the gene graphs, there are only
602/2714 ≈ 22% npn-sp edges that are not present in the normal graph. Also,
there are only 342/2639 ≈ 12% edges in the normal graph that are not in the npn-
sp graph. Such a result suggests that the data are still non-Gaussian. However, at
the tissue level the data seems to contain a much stronger signal than at the gene
level. (This may also be caused by possible uninterpreted lab effects.) A similar
conclusion can be drawn when we compare the npn-spearman tissue graph with
the npn-ns tissue graph. For better visualization, we plot the differential graphs
in Figure 5. These plots show the difference between the estimated graphs and
confirm the above analysis.

6. Conclusions and discussion. Most methods for estimating high-dimen-
sional undirected graphs rely on the normality assumption. To weaken this overly
restrictive parametric assumption, we propose the nonparanormal SKEPTIC. This
improved estimator obviates the need to explicitly estimate the marginal trans-
formations and greatly improves the statistical rate of convergence. Our analysis is
nonasymptotic, and the obtained rate is minimax optimal over many model classes.
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(a) (b)

(c) (d)

FIG. 5. Differential gene networks between different methods. For A vs. B , the red color represents
the edges that only present in A but not in B , the black color represents the edges that only present in
B but not in A. (These graphics are best visualized in color.) (a) Gene network (npn-sp vs. normal);
(b) gene network (npn-sp vs. npn-ns); (c) tissue network (npn-sp vs. normal); (d) tissue network
(npn-sp vs. npn-ns).

The nonparanormal SKEPTIC can thus be used as a safe replacement for Gaussian
based estimators, even when the data are truly Gaussian.

APPENDIX: PROOFS OF MAIN RESULTS

A.1. Proof of Proposition 3.1. The result on τjk directly follows from the
definition of τjk .

Here we prove the result holds for ρjk . Since Fj (Xj ) ∼ Uniform[0,1], we have
ρjk = 12E[Fj (Xj )Fk(Xk)] − 3. We can also easily show that E[1 − Fj (Xj )(1 −
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Fk(Xk))] = E[Fj (Xj )Fk(Xk)]. Moreover, we have
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Combining (A.1) and (A.2), we obtain

E
[
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]= 1
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2C(j,1,2;k,1,3).

Therefore, we have ρjk = 12E[Fj (Xj )Fk(Xk)]− 3 = 3(2C(j,1,2;k,1,3)− 1) =
3C(j,1,2;k,1,3)−3D(j,1,2;k,1,3). The last equality follows from the fact that
C(j,1,2;k,1,3) = 1 − D(j,1,2;k,1,3).

A.2. Proof of Theorem 4.1. The main difficulty of this analysis is that Spear-
man’s rho static is over rank variables which depend on all the samples. To handle
this issue, we first rewrite the rho-statistic in a different form [see page 318, Equa-
tion (9.21) of Hoeffding (1948)]:
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where τ̂jk is Kenadall’s tau and Ujk = 3
n(n−1)(n−2)

∑
i �=s �=t sign(xi

j − xs
j )(x

i
k − xt

k)

is a 3rd-order U -statistic with bounded but asymmetric kernel.

Let 0 < α < 1. Since 6
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Without loss of generality, we assume n can be divided by 3. Using Hoeffding’s
inequality with asymmetric kernels [Hoeffding (1963)],

T1(α) = d2
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√
logd

n
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Unlike τ̂jk which is an unbiased estimator of τjk , ρ̂jk is a biased estimator. To
prove the desired result, we apply the following bias equation from Zimmerman,
Zumbo and Williams (2003):
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Equivalently, we can write
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It is easy to see that |ajk| ≤ π
n−2 . Therefore, for all n > 6π

t
+ 2 (which implies that

|ajk| ≤ t
6 ),

P

(
sup
jk

∣∣Ŝρ
jk − �0

jk

∣∣> t
)

= d2
P

(∣∣∣∣2 sin
(

π

6
ρ̂jk

)
− 2 sin

(
π

6
Eρ̂jk + ajk

)∣∣∣∣> t

)
≤ d2

P

(∣∣∣∣ρ̂jk − Eρ̂jk − 6

π
ajk

∣∣∣∣> 3

π
t

)
≤ d2

P

(
|ρ̂jk − Eρ̂jk| > 3

π
t −

∣∣∣∣ 6

π
ajk

∣∣∣∣)
≤ d2

P

(
|ρ̂jk − Eρ̂jk| > 3

π
t − 1

π
t

)
= d2

P

(
|ρ̂jk − Eρ̂jk| > 2

π
t

)
.

We get the desired result by choosing α = 3
√

6
8 .
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A.3. Proof of Theorem 4.2. It is easy to see that τ̂jk is an unbiased estimator
of τjk : Eτ̂jk = τjk . We have

P
(∣∣Ŝτ

jk − �0
jk

∣∣> t
)= P

(∣∣∣∣sin
(

π

2
τ̂jk

)
− sin

(
π

2
τjk

)∣∣∣∣> t

)
≤ P

(
|τ̂jk − τjk| > 2

π
t

)
.

Since τ̂jk can be written as a U -statistic, τ̂jk = 2
n(n−1)

∑
1≤i<i′≤n Kτ (x

i, xi′),

where Kτ(x
i, xi′) = sign(xi

j − xi′
j )(xi

k − xi′
k ) is a kernel bounded between −1

and 1. Using Hoeffding’s inequality for the U -statistic, we get

P

(
sup
j,k

∣∣Ŝτ
jk − �0

jk

∣∣> t
)

≤ d2 exp
(
− nt2

2π2

)
.

We then obtain (4.2).

A.4. Proof of Theorem 4.6. We first present some useful lemmas. Let �(·)
and φ(·) be the cumulative distribution function and density function of standard
Gaussian. We start with some preliminary lemmas on the almost sure limit of the
Gaussian maxima and the standardized empirical processes. Since gj = f −1

j and

fj (t) = �−1(Fj (t)), we have gj (u) = F−1
j (�(u)).

LEMMA A.1 [Pickands (1969)]. Letting z1, . . . , zn ∼ N(0,1), we then have

lim infn→∞
sup1≤i≤n zi−√

2 logn

log logn/
√

2 logn
= −1

2 and lim supn→∞
sup1≤i≤n zi−√

2 logn

log logn/
√

2 logn
= 1

2 al-

most surely.

For any γ > 0 and 0 < α < 1 < β ≤ 7
4(1 − γ ), we define subintervals

I1n := [gj (0), gj (
√

α logn)] and I2n := [gj (
√

α logn), gj (
√

β logn)] and I3n :=
[gj (

√
β logn), gj (

√
7
4(1 − γ ) logn)]. We also define

u∗
n :=

√
2 logn − log logn√

2 logn
and t∗n :=

√
2 logn + log logn√

2 logn
.(A.3)

LEMMA A.2. For all t ∈ I1n ∪ I2n ∪ I3n, we have, for large enough n, 1
n

≤
F̃j (t) ≤ 1 − 1

n
almost surely.

PROOF. By Lemma A.1, for any c > 0 and large enough n, we have the stan-
dard Gaussian random variables z1, . . . , zn satisfy sup1≤i≤n zi ∈ [√2 logn − (1

2 +
c)

log logn√
2 logn

,
√

2 logn + (1
2 + c)

log logn

2
√

logn
] almost surely. Letting c = 1

2 , we have, for
large enough n,

P

(
sup

1≤i≤n

zi ∈
[√

2 logn − log logn√
2 logn

,
√

2 logn + log logn√
2 logn

])
= 1.
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Using the definitions in (A.3), we have, for large enough n, sup1≤i≤n xi
j ∈

[gj (u
∗
n), gj (t

∗
n)] almost surely. Therefore, sup1≤i≤n xi

j /∈ I1n ∪ I2n ∪ I3n al-

most surely. From the definition of F̃j , only the values greater or equal to the
sup1≤i≤n xi

j are truncated. The result then follows. �

The next lemma is from Chapter 16 of Shorack and Wellner (1986). It charac-
terizes the almost sure limit of the standardized empirical process.

LEMMA A.3 (Almost sure limit of the standardized empirical process). Con-

sider a sequence of subintervals [L(j)
n ,U

(j)
n ] with both L

(j)
n = gj (

√
α logn) ↑ ∞

and U
(j)
n = gj (

√
β logn) ↑ ∞, then for 0 < α < β ≤ 7

4(1 − γ )

lim sup
n→∞

√
n

2 log logn
sup

L
(j)
n <t<U

(j)
n

∣∣∣∣ F̃j (t) − Fj (t)√
Fj (t)(1 − Fj (t))

∣∣∣∣= C a.s.,

where 0 < C ≤ 2
√

2 is a constant.

PROOF. This result follows from a combination of Theorems 1 and 2 (Chap-
ter 16) of Shorack and Wellner (1986). �

The following lemma characterizes the behavior of a random sequence using a
deterministic sequence.

LEMMA A.4. For any 0 < α < 2, there exists a constant C, such that

lim sup
n→∞

(�−1)′(max{F̃j (gj (
√

α logn)),Fj (gj (
√

α logn))})
(�−1)′(Fj (gj (

√
α logn)))

≤ C a.s.

PROOF. It suffices to consider the case F̃j > Fj . First, for large enough n√
φ(

√
α logn)√

α logn
≤ φ

(√
α logn + 4

√
log logn

n1−α/2

)
· nα/4.(A.4)

This is true since φ(
√

α logn + 4
√

log logn

n1−α/2 ) = φ(
√

α logn) · (1 − o(1)).
Therefore,

φ

(√
α logn + 4

√
log logn

n1−α/2

)
· nα/4 ≥ n−α/4

2
√

π

and √
φ(

√
α logn)√

α logn
= n−α/4

(2πα logn)1/4 .
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Equation (A.4) follows from a combination of these results.
Further, using the fact that 1 − �(t) ≤ φ(t)

t
for t ≥ 1, we have

4

√
log logn

n

√
1 − �(

√
α logn)

≤ 4

√
log logn

n

√
φ(

√
α logn)√

α logn

≤ 4 · φ
(√

α logn + 4

√
log logn

n1−α/2

)√
log logn

n1−α/2

≤ �

(√
α logn + 4

√
log logn

n1−α/2

)
− �(

√
α logn),

where the last step follows from the mean value theorem.

Thus, �(
√

α logn)+4
√

log logn
n

√
1 − �(

√
α logn) ≤ �(

√
α logn+4

√
log logn

n1−α/2 ).

By applying �−1(·) on both sides and the fact that Fj (gj (t)) = �(t), we have

�−1
(
Fj

(
gj (

√
α logn)

)+ 4

√
log logn

n

√
1 − Fj

(
gj (

√
α logn)

))

≤
√

α logn + 4

√
log logn

n1−α/2 .

From Lemma A.3, for large enough n, F̃j (t) ≤ Fj (t) + 4
√

log logn
n

·
√

1 − Fj (t).

Therefore, �−1(F̃j (gj (
√

α logn))) ≤ √
α logn + 4

√
log logn

n1−α/2 . Finally, we have(
�−1)′(F̃j

(
gj (

√
α logn)

))
= 1

φ(�−1(F̃j (gj (
√

α logn))))

≤ √
2π exp

((
√

α logn + 4
√

(log logn)/n1−α/2)2

2

)
� (

�−1)′(Fj

(
gj (

√
α logn)

))
.

This finishes the proof. �

PROOF OF THEOREM 4.6. Due to symmetricity, we only need to conduct

analysis on a subinterval of I s
n ⊂ In : I s

n := [gj (0), gj (
√

7
4(1 − γ ) logn)].

Recall that for any 0 < γ < 1 and 0 < α < 1 < β ≤ 7
4(1 − γ ), we de-

fine I1n := [gj (0), gj (
√

α logn)] and I2n := [gj (
√

α logn), gj (
√

β logn)] and



2324 H. LIU ET AL.

I3n := [gj (
√

β logn), gj (
√

7
4(1 − γ ) logn)]. By Lemma A.2, we know that on

I1n ∪ I2n ∪ I3n, 1
n

≤ F̃j (t) ≤ 1 − 1
n

for large enough n almost surely. Therefore, we
only need to analyze the term

sup
t∈I1n∪I2n∪I3n

∣∣�−1(F̃j (t)
)− �−1(Fj (t)

)∣∣.
We first consider the term supt∈I1n

|�−1(F̃j (t)) − �−1(Fj (t))|. Since
�−1 is a continuous function on the interval between min{F̃j (gj (0)),Fj (gj (0))}
and max{F̃j (gj (

√
α logn)),Fj (gj (

√
α logn)} and is differentiable on the cor-

responding open set, by the mean-value theorem, for some ξn,t , such that
ξn,t ∈ [min{F̃j (gj (0)),Fj (gj (0))},max{F̃j (gj (

√
α logn)),Fj (gj (

√
α logn))}].

Thus, |�−1(F̃j (t)) − �−1(Fj (t))| = |(�−1)′(ξn,t )(F̃j (t) − Fj (t))| for t ∈ I1n.
By Lemma A.4, the following inequality holds almost surely:(

�−1)′(ξn,t ) ≤ (
�−1)′(max

{
Fj

(
gj (

√
α logn)

)
, F̃j

(
gj (

√
α logn)

)})
≤ C

(
�−1)′(Fj

(
gj (

√
α logn)

))= C

φ(
√

α logn)
≤ c1n

α/2,

where C and c1 are some generic constants and φ(·) is the standard Gaussian
density function.

Using |(�−1)′(ξn,t )| ≤ c1n
α/2 and the Dvoretzky–Kiefer–Wolfowitz inequality,

we have supt∈I1n
|�−1(F̃j (t)) − �−1(Fj (t))| = OP (

√
log logn

n1−α ). Next, we consider

the term supt∈I2n
|�−1(F̃j (t))−�−1(Fj (t))|. By Lemma A.3, for large enough n,

sup
t∈I2n

∣∣F̃j (t) − Fj (t)
∣∣= OP

(√
log logn

n
·
√

1 − Fj

(
gj (

√
α logn)

))

= OP

(√
log logn

n
·
√

n−α/2
√

α logn

)

= OP

(√
log logn

nα/2+1

)
.

Similarly, we have supt∈I2n
|�−1(F̃j (t)) − �−1(Fj (t))| = OP (

√
log logn

n1+α/2−β ) and

supt∈I3n
|�−1(F̃j (t)) − �−1(Fj (t))| = OP (

√
log logn

nβ/2−3/4+7γ /4 ). By choosing β =
3
2(1 − γ ) and α = 1 − γ , all terms vanish. �
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